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ABSTRACT
Increases in code footprint and control flow complexity have made
low-latency instruction fetch challenging. Dedicated Instruction
Prefetchers (DIPs) can provide performance gains (up to 5%) for a
subset of applications that are poorly served by today’s ubiquitous
Fetch-Directed Instruction Prefetching (FDIP). However, DIPs incur
the significant overhead of in-core metadata storage (for all work-
loads) and energy and performance loss from excess prefetches
(for many workloads), leading to 11% of workloads actually losing
performance. This work addresses how to provide the benefits of a
DIP without its costs when the DIP cannot provide a benefit.

Our key insight is that workloads that benefit from DIPs can
tolerate increased Branch Target Buffer (BTB) misses. This allows
us to dynamically re-purpose the existing BTB storage between the
BTB and the DIP. We train a simple performance counter based
decision tree to select the optimal configuration at runtime, which
allows us to achieve different energy/performance optimization
goals. As a result, we pay essentially no area overhead when a DIP
is needed, and can use the larger BTB when it is beneficial, or even
power it off when not needed.

We look at our impact on two groups of benchmarks: those
where the right configuration choice can improve performance or
energy and those where the wrong choice could hurt them. For
the benchmarks with improvement potential, when optimizing for
performance, we are able to obtain 86% of the oracle potential, and
when optimizing for energy, 98% of the potential, both while avoid-
ing essentially all performance and energy losses on the remaining
benchmarks. This demonstrates that our technique is able to dy-
namically adapt to different performance/energy goals and obtain
essentially all of the potential gains of DIP without the overheads
they experience today.

1 INTRODUCTION
Several studies have shown that the increasing code footprint of
datacenter workloads cause frequent instruction cache misses [8, 9,
16, 18, 25, 50, 54, 59]. Even with well-provisioned frontends (effec-
tive Branch-Prediction-Unit (BPU), large BTBs and I-caches, etc.),
instruction supply often falls short for modern server and cloud
applications. Dedicated Instruction Prefetchers (DIPs)1 have been
proposed to alleviate this bottleneck, and a plethora of works has
explored both hardware and software techniques. Common hard-
ware based approaches include record and replay based prefetchers
( [6, 9, 10, 17, 27, 28, 31, 49, 50]) and branch predictor directed
prefetchers ( [7, 12, 34, 35, 43, 58]), while software based techniques
often use profiling to change the code layout ( [5, 39, 40, 44]) or
insert prefetch instructions ( [4, 9, 29, 37, 38]). While there has been
1We use “dedicated” to contrast with the “integrated” default prefetching that the BTB
and BP provide through FDIP, and to identify the large class of proposed designs that
only do instruction prefetching.
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Figure 1: Our proposed dynamic reconfiguration of the BTB
to share space with a Dedicated Instruction Prefetcher (DIP)
or save energy. We assume a 12k-entry, 3-bank baseline BTB
storage, leading to 6 configurations.

extensive work on DIPs, it is crucial to evaluate them together with
the baseline instruction prefetcher that already exists in nearly all
modern processors.

Essentially all modern processors employ decoupled frontends
for effective instruction prefetch [1, 3, 11, 15, 20, 41, 56]. This Fetch
Directed Instruction Prefetching (FDIP) [46–48] leverages the exist-
ing Branch Predictor Unit (BPU) and BTB to run-ahead and identify
future basic blocks to prefetch into the L1I. As modern processors
include large BTBs and highly accurate BPUs, FDIP is extremely
effective for the majority of applications, and particularly those that
fit in the existing frontend structures. Further, as FDIP leverages the
existing BTB and BPU resources, it requires very little additional
metadata storage compared to most DIPs.

ThePotential andPeril ofDIPs.While today’s well-provisioned
frontends make FDIP highly effective in most cases, workloads with
particularly large instruction footprints can overwhelm the BTB
and BPU and make FDIP ineffective [8, 9, 25, 54]. In these cases,
DIPs have been shown to deliver performance benefits on top of
FDIP ( [6, 28, 33–35, 49]). According to our simulations of 2122
benchmark traces, a DIP can provide more than 2% performance
improvement for 1% of the benchmarks, with a maximum benefit
of 5%. However, these benefits come with the cost of extra in-core
metadata storage (area), cache pollution and contention (perfor-
mance), and excess prefetch requests (energy). Specifically, while
we observe that 5% of benchmarks see a >1% performance improve-
ment, almost 12% suffer from >1% performance loss, and 33% see a
>1% energy increase. In addition, the 84% of benchmarks that see
no performance/energy gains or losses still pay the in-core area
overhead. These results show that with a representative (aggres-
sive) FDIP baseline [23, 24] and including wrong path instruction
prefetching, the overall benefit of DIPs is limited, as are the num-
ber of benchmarks that benefit. However, as pointed out in many
studies, instruction footprint is growing, and this gives reason to
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believe that the performance difference between FDIP and DIP will
increase in future workloads.

Goal.Our goal is to provide the performance and energy benefits
of DIPs for those workloads that benefit from them while avoid-
ing the costs (performance, energy, and area) for the majority of
workloads that do not. To achieve this goal, we introduce Protean,
which dynamically allocates the existing BTB storage between the
BTB (to support the baseline FDIP) and the DIP metadata (for appli-
cations where the DIP is effective), or power gates it to save energy
(for applications that do not require the large BTB capacity). (See
Figure 1.) This allows us to match the instruction prefetching needs
of the application or program phase2 without extra storage or the
dynamic costs of the DIP when it is not beneficial.

Insight. We observe that most benchmarks that benefit from a
DIP can tolerate BTBmisses owing to Post Fetch Correction (PFC) of
direct branches. This is because PFC [24] is able to re-steer the fron-
tend early on a BTB miss to a direct branch, since direct branches
contain the target address encoded in the instruction. As a result,
such BTB misses do not wait until the execute stage for re-steering
and only need to flush the Fetch Target Queue (FTQ), not the ROB
and pipeline, making them far less performance critical. We ob-
serve that applications that benefit from a DIP are also insensitive
to increased (direct) BTB misses for this reason, making it effective
to share BTB capacity.

Solution. Protean dynamically allocates the existing BTB stor-
age between BTB and DIPmetadata or power-gatedmodes to obtain
the best benefit according to the specified performance/energy op-
timization goal. For our baseline design with a three-bank BTB, we
can choose from among the six configurations shown in Figure 1.
To do so, we need: compatible BTB and DIP metadata layouts, to
allow us to share the same storage; a mechanism that enables us to
define a desired performance/energy goal; and a method to dynam-
ically and efficiently choose the correct configuration at runtime.
Our final design uses a scoring metric that enables us to vary the
desired performance/energy optimization goal, which, in turn, al-
lows us to train a machine learning algorithm to choose the correct
configuration for the goal at runtime. The result is a system that
can efficiently and accurately share BTB storage between the BTB
and DIP to achieve a given performance/energy optimization goal,
and thereby achieve nearly all of the potential benefits of DIPs,
while avoiding nearly all of their cost where they do not provide a
benefit.

Our work makes the following contributions:
• We show that BTB and instruction prefetching interact in a

useful way: benchmarks that require DIP can tolerate direct
BTB misses due to effective Post Fetch Correction.

• We show how the storage used for the BTB can be re-
purposed for storing DIP metadata, leading to a range of
BTB/DIP configurations for essentially the same area cost
as today’s standard frontend.

• We propose a scoring methodology that allows us to evalu-
ate and train for a range of performance/energy goals.

• We show how a decision tree can be used to accurately
choose the best BTB/DIP configuration for a range of per-
formance/energy goals.

2Hence Protean, referring to the shape-shifting Greek god, Proteus.
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• We demonstrate that this system is able to achieve nearly
all of the potential DIP performance/energy benefits for the
applications where there is a potential gain, while avoiding
nearly all of the potential losses.

• We note that while our work enables the limited benefits
available from DIPs today, it also provides a framework for
obtaining the benefits of future DIPs and addressing future
workloads by simply re-training the decision tree.

2 BACKGROUND
We start by introducing FDIP (Section 2.1) and demonstrating how
FDIP provides nearly all of the potential benefits, which corrobo-
rates previous results (Section 2.2). We then look at how a state-
of-the-art dedicated instruction prefetcher (DIP) can improve on
FDIP (Section 2.3), and see that it pays significant penalties in area,
energy, and performance for the majority of applications where
it provides no benefit (Section 2.4). This background motivates
our goals of obtaining the benefits of the DIPs without their costs,
which we then address in the remainder of the paper.

2.1 Fetch Directed Instruction Prefetching
Fetch-Directed Instruction Prefetching (FDIP) is a ubiquitous tech-
nique that takes advantage of the Branch Prediction Unit (BPU) and
the Branch Target Buffer (BTB) to predict future control flow and
run-ahead using that information to issue instruction prefetches [46–
48]. Essentially all current high-performance processors employ
a variant of FDIP, including IBM [1], AMD [11], Samsung [55],
Arm [3], Intel [42], Marvell [56], etc.

FDIP places predicted instructions in a Fetch Target Queue (FTQ,
see Figure 2), which decouples the generated instruction prefetches
from instruction fetch, and enables the branch predictor to run-
ahead during fetch stalls from instruction cache misses. While
the FTQ logically holds predicted instructions, in practice they are
stored at a coarser granularity, e.g., 32 byte [24] or 64 byte [32] basic
blocks. Because FDIP leverages the existing frontend resources it is
almost metadata-free (requiring only 186 bytes for the FTQ [24])
and benefits from improvements to the BPU and BTB.

With FDIP, the pipeline takes the entry at the head of the FTQ as
a demand fetch while the other entries in the FTQ are issued to the
instruction cache as prefetches. As long as FDIP can accurately run
far enough ahead, basic blocks are likely to have been prefetched
into the instruction cache by the time they reach the head of the
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FTQ, thereby resulting in a cache hit at demand fetch. To avoid
repeated cache searches when entries reach the head of the FTQ,
Ishii et al. [24] propose issuing all FTQ entries as demand loads
into the instruction cache such that the loaded lines are locked, and
then storing the resulting cache way in the FTQ’s metadata. The
way information then allows them to avoid a tag search when the
FTQ entry makes it to the head.

One challenge with FDIP is how far ahead to prefetch. Since
the predicted control flow accuracy decreases with each predicted
branch, prefetching further ahead increases the likelihood of wrong
path prefetching, leading to cache pollution and port contention.
To address this, Reinmann et al. advocated limiting prefetching to
10 basic blocks [47] while Perais et al. limit in-flight prefetches to
4 [43].

One particularly important FDIP detail is Post Fetch Correc-
tion (PFC) [24], which re-steers the frontend as early as possible,
thereby minimizing the impact of direct BTB misses and branch-
mispredictions. PFC detects if an unconditional direct branch is mis-
predicted as not-taken or if a predicted taken direct branch misses
in the BTB (dashed arrow in Figure 2 from decode). These cases can
be detected early in decode/pre-decode stage, which means that
only the FTQ needs to be flushed after such a miss, as opposed to
waiting until branch resolution in the execute stage, which requires
costly flushing of ROB entries. This is particularly important to
model, as BTB misses and mispredicted direct branches appear far
more costly without PFC, which can result in an over-emphasis of
the impact of BTB size and BTB prefetching.

2.2 FDIP Delivers Excellent Prefetching
Current processors with large BTBs and highly accurate branch
predictors provide a solid foundation for FDIP. Figure 3 shows that
a realistic FDIP implementation [24] comes very close to a state-
of-the art DIP, the Entangled Instruction Prefetching (EIP) [49],
and even does well against an infinite capacity instruction cache.
Indeed, the majority of our 2122 benchmark traces show that FDIP
is within 1% of the ideal instruction cache (51%) or state-of-the-art
DIP (95%). As discussed by Ishii et al. [24], this demonstrates how
effective FDIP implementations are, but also shows that there is a
small subset (5%) of applications where a DIP is beneficial. Our work
not only enables the benefits of DIPs for this subset today, but also
provides a framework for leveraging future DIPs and for addressing
future workloads through simply re-training our decision trees.

2.3 EIP: A Dedicated Instruction Prefetcher
While our approach is independent of any particular DIP, we evalu-
ate our approach with the winner of the 1st Instruction Prefetching
Championship [22], the Entangled Instruction Prefetcher (EIP) [49].

EIP is a state-of-the-art Dedicated Instruction Prefetcher that
has been shown to deliver considerable performance improvement
over FDIP baseline for a subset of applications [49]. EIP is a “record
and replay” based DIP, which works by finding earlier basic blocks
and using them to trigger timely prefetches for later misses. EIP
achieves this by keeping a history buffer of the start addresses of
recent basic blocks and the time at which they were demanded. On
an instruction cache miss, EIP uses the history to find a basic block
that was sufficiently far before the miss, and then “entangles” the
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Figure 3: Benefits of an infinite instruction cache or a state-
of-the-art DIP over the baseline FDIP. Across our 2122 bench-
mark traces we see that FDIP instruction prefetching is
within 1% of an infinite instruction cache for 51% of the
benchmarks and within 1% of a state-of-the-art DIP for al-
most 95% of the benchmarks. This makes it hard to justify
the area and dynamic costs of a DIP by itself.

start address of the earlier basic block with the desired prefetch
address via the Entanglement mapping table. For demand access
at the head of the FTQ, EIP checks the entanglement table to see if
there are any entangled prefetches and issues them. If a prefetch
is late, EIP finds an even earlier basic block in the history and
entangles the prefetch with it instead. To improve efficiency, EIP
uses a compressed storage format that allows multiple cache lines
to be entangled to each basic block and stores the length of the basic
block for better prefetching coverage. EIP uses this information to
both issue prefetches for the subsequent cache lines in the current
basic block and for basic blocks which are entangled to the current
basic block.

EIP has two main advantages over FDIP. First, because EIP is
able to adjust how early it initiates prefetch requests over a very
large range, as opposed to FDIP, which can only run ahead in the
predicted program flow, it is able to generate prefetches far earlier.
This allows it to schedule prefetches earlier enough to handle BTB
misses or BPU mispredictions when the frontend is stalled. Second,
because it uses a separate metadata storage (the entanglement
table), EIP is not affected by the BPU and BTB capacity limitations
that FDIP suffers from for applications with large code footprints.
As a result, the state-of-the-art EIP provides a maximum of 5%
improvement, with >1% and >2% improvements for only 5% and 2%
of benchmarks, respectively3.

2.4 The cost of a DIP
Although EIP is effective for a some applications, it also entails sig-
nificant costs, particularly for the applications that see no benefit
on top of the FDIP baseline. These costs include increased energy
consumption due to excess prefetches and performance loss due to
cache pollution and data cache misses being delayed due to port
contention. The complexity of this trade-off is shown in Figure 4.
We see that almost 5% of our 2122 benchmark traces show >1%

3While EIP is the best-performing DIP, we note that our performance numbers are
lower than what was reported in the original paper [49]. This is largely due to our
using a baseline that implements PFC, has a larger BTB (12k-entry vs. 8k-entry)
and larger FTQ, a more competitive BPU, and a simulator that models wrong path
instruction-prefetching.
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Figure 4: The impact of a specific DIP (the Entangled Instruc-
tion Prefetcher) normalized to the FDIP baseline across our
2122 benchmark traces on performance (blue) and energy
(red). Left: For the 5% of benchmarks that exhibit an per-
formance gain of >1% with the DIP. Middle: For the 84% of
benchmarks that have less than a 1% performance change.
Right: For the rest 11% of benchmarks that show a perfor-
mance loss of >1%.

performance gain with EIP (left), while almost 12% show a perfor-
mance loss of >1% (right). The remaining 84% (middle) see no loss
or benefit with EIP. For energy, the impact ranges from a savings
of 0.15% (up to 2.7%) for those with a performance benefit (left)
to an increase of 3.6% (up to 4.5%) for those with a performance
loss (right). And for the vast majority which do not benefit from
EIP (middle), we see an energy increase of 0.6% (up to 3.3%). This
demonstrates that while EIP can benefit a subset of applications,
overall it is hard to justify its area and dynamic performance and
energy costs. (See Section 7 for simulation details.)

While the dynamic performance and energy costs of EIP could
be avoided by deactivating it when not needed, the area cost is
fixed. The proposed 4K-entry entanglement table (which repre-
sents 97% area overhead of EIP) requires roughly 40KB of metadata
storage [49]. As few applications benefit from EIP, an industrial
research team (Ishii et al. [23, 24]), concluded based on an ISO-area
comparison that a DIP, such as EIP, on top of FDIP is difficult to
justify. It is further worth noting that not all area in a processor is
of equal cost: adding a 40KB of metadata to a multi-MB cache is
indeed a small overhead, but adding a similar amount inside the
frontend of the core is a much more daunting challenge from a
timing point of view. As DIPs such as EIP are tightly integrated
into the core, and they benefit only a small set of applications, this
makes them hard to justify in practice4.

2.5 Challenge: The Benefits of a DIP without its
cost

The preceding analysis of FDIP and DIP shows us that DIPs can
provide a meaningful benefit for a subset of applications but that
they come with a significant dynamic and static cost. This leads us
to the two main questions of this work:

4We are unable to find a published reference to this and can only relate that the authors
have had discussions with industrial design teams in multiple companies that have
emphasized this point.
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(1) Can we avoid the static area costs by sharing existing fron-
tend metadata storage? (Section 3)

(2) Can we obtain the benefits of DIP without its dynamic
performance and energy costs by dynamically enabling/ dis-
abling it at runtime? We take a step further to identify the
best configuration when enabling/disabling the DIP (Sec-
tion 4).

3 AVOIDING THE STATIC COSTS
To reduce the static area cost of a DIP, we propose sharing metadata
storage with another frontend structure. For this to work, we need
to identify a structure that is compatible (in terms of the physical
storage format) and complementary (i.e., not needed at the same
time). There are a range of frontend storage structures one could
consider: TLBs, BPU, BTBs, etc. The first-level TLBs and BTBs
are latency-critical, and, even though the logic changes needed to
dynamically re-purpose their storage are small, doing so might have
a significant impact on the cycle time. First-level TLBs also have
low capacities, for example, 256 4kB pages in Intel’s Alder Lake [2],
and translation is still required to issue FDIP prefetches. The BPU
is also latency-critical and its costs of mispredictions are high as
they are detected late in the execute stage and require ROB/FTQ
flushes.

Sharing the second-level BTB storage, however, is more promis-
ing. Not only are L2 BTBs larger (up to 12k entries in Intel’s Alder
Lake [2]), but there is reason to believe that their performance is
complementary to that of a DIP. This is because a DIP is needed
when FDIP is unsuccessful, and, when that happens, it is either
because the BTB or the BPU are not effective. While this might
suggest sharing the BPU storage, the cost of BTB misses are far
lower than that of BPU misses, as they can often be corrected early
in the pipeline with PFC.

3.1 Are BTB and DIP data compatible?
To dynamically share the BTB storage with a DIP, the existing BTB
storage must have a readout width, associativity, and capacity that
is compatible with those required for the DIP. We examine EIP
and focus on sharing storage for its entanglement table, as it is
almost 98% of its metadata storage5. While the exact details of BTB
implementations are proprietary, we compare a typical BTB [53]
to EIP. We assume a baseline 12-way 12k-entry BTB, as in Intel’s
Alder Lake, built of three 4-way, 4k-entry banks, with each bank

5EIP also proposes small changes to the instruction cache, but can function at lower
performance without them. We model EIP’s history buffer in our evaluation, but as it
is only 1KB in storage, we do not propose sharing it with other frontend resources.
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separately configurable as either DIPmetadata storage, BTB storage,
or power-gated. This is consistent with Intel’s recent designs which
allow adjusting BTB capacity on-demand [21].

Figure 5 shows that the BTB entry is 79 bits, which is compatible
to the EIP entanglement entry. However, we see that the number
of tag bits varies, indicating that the lookup logic (indexing and tag
comparisons) will require a configurable shifter on the index and
tag comparators. While the rough width of each entry is a good
match, specific designs may end up wasting a few bits of each entry
if they do not align perfectly. This significant storage compatibility
indicates that it is plausible to dynamically allocate the three storage
banks between BTB storage, DIP metadata storage, and powered-off
states. As we assume a minimum of 4k-entries for BTB storage, we
end up with the six configurations shown in Figure 1. Alternatively,
one could allow DIP and BTB entries to compete for space within
the banks, although we have not investigated this.

While adding reconfigurability to the BTB will incur some over-
head, it is unlikely to significantly affect the critical path as we are
modifying the 2nd-level BTB and Intel has already demonstrated
similar reconfigurability. If added latency did become an issue, we
could readily support a design where one bank (the one is always
assigned to BTB entries) retains the baseline latency, as it is never
reconfigured. This would allow our decision tree (Section 5.1) to
choose a low-latency configuration as appropriate.

3.2 Is the BTB complementary to the DIP?
For the performance loss of sharing the BTB to be minimal, we
need the effects of the BTB and the DIP to be complementary. That
is, the performance loss of reduced BTB capacity must be negligible
when the DIP is beneficial. To investigate this, we look at the impact
of reducing the BTB capacity on the potential benefit of improved
instruction delivery: e.g., how much the potential benefit a DIP
could deliver would be reduced by a smaller BTB. Specifically, we
use an infinite instruction cache with our baseline 12k BTB to show
the limit of what an ideal DIP could achieve over FDIP, and consider
whether the applications that could benefit from a DIP suffer from
reduced BTB capacity.

Figure 6a shows that approximately half of our benchmarks
could benefit from a DIP as their performance goes up with the
infinite instruction cache, e.g., the black line is above zero. More
interestingly, the vast majority of the benchmarks see little loss
from reducing the BTB capacity from 12k to 8k entries (red dots
are close to the black line). However, Figure 6b shows that some
benchmarks suffer significantly from reducing the BTB further to
4k entries (red benchmarks below 0 on the right). This suggests
that using 4k entries of BTB capacity for a DIP (e.g., 8k BTB + 4k
DIP) will not significantly reduce the potential benefit, but that
there are many benchmarks for which giving up 8k entries may be
problematic (e.g., 4k BTB + 8k DIP). We also explored the potential
benefits of a larger 64k-entry BTB directly in Figure 6a, but found
that there was more to be gained from better instruction fetch.

To understand why some benchmarks are particularly sensitive
to the 4k BTB vs. the 8k BTB, we look at the impact of the type
of BTB misses they experience. We observe that benchmarks that
see a significant loss in performance potential with a smaller BTB
do so because they have significantly more indirect branch BTB
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(a) Reducing the BTB to 8k-entries (red) has little impact on the potential
benefits of improved instruction fetch (black).

(b) Many benchmarks see a significant loss with a 4k-entry BTB (red), but
providing PFC for indirect branches addresses most of this (blue).

Figure 6: Exploring whether BTB and DIP effects are comple-
mentary. For most applications (top, red dots) reducing the
BTB size to 8k-entries has very little impact on the potential
improvements of better instruction fetch (infinite instruc-
tion cache, black line). Reducing the BTB size to 4k-entries
causes a significant number of benchmarks to no longer be
able to reach that potential (bottom, red dots below 0). By
applying PFC to indirect branches, which is not realistic, we
see that those benchmarks regain half of their potential (bot-
tom, blue dots). This, combined with the data showing the
dramatically greater increase in direct BTB misses in Fig-
ure 7, indicates that much of our ability to re-purpose the
BTB storage for DIP without losing performance potential
is due to the benefit of effective PFC. We also see that the
benefits of increasing BTB size alone are far smaller (top,
blue line).

misses with the smaller BTB size (red dots on Figure 7, left). This
leads to a performance loss, as the PFC can eliminate most of the
performance loss from direct branch BTB misses, but not the indirect
ones. We confirmed this by modifying the simulator to provide the
same PFC benefit for indirect BTB misses (which is not possible to
implement), and observed that about half of the performance loss
is recovered (blue dots in Figure 6b).

What is most interesting to note is that half the performance
loss is from the indirect BTB misses, despite the fact that the direct
BTB misses increase enormously more with the smaller BTB size.
Specifically, Figure 7 shows that the indirect MPKI for the bench-
marks that are sensitive (red dots) increases by 1 while the direct
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Figure 7: Increase in indirect (left) and overall (right) BTB
MPKI for benchmarks with an infinite instruction cache and
4k BTB over the baseline of 12k BTB and normal instruction
cache. Red dots show benchmarks sensitive to reducing the
BTB capacity, from Figure 6b.

BTB MPKI increases by over 20. And yet, both indirect and direct
contribute a similar amount to the performance loss. This indicates
that our ability to re-purpose the BTB for DIP is heavily enabled
by PFC’s ability to cheaply correct direct BTB misses and indicates
that L1I hits are more important than BTB hits, as re-steering can
happen quickly even if the FTQ goes down the wrong path. Finally,
this suggests that for the applications that suffer increased indi-
rect branch misses, the BTB size should not be decreased, as these
applications are limited by the BTB and not the cache.

4 AVOIDING THE DYNAMIC COSTS
To explore the potential of dynamically sharing metadata storage
between the BTB and a DIP, we first look at the normalized perfor-
mance and energy for each benchmark and configuration in Figure 8.
We see that there is no single configuration (color) that provides the
best performance (right) and energy (bottom) for all benchmarks.
This demonstrates that the optimal configuration varies depending
on the benchmark and the desired performance-energy trade-off.

To choose the best configuration we need to define an objective
function that allows us to trade-off performance and energy. In this
work we use the perpendicular distance to a configuration from
a line through the origin of the performance-energy space as the
score. Example scores are shown in Figure 8 by the solid black line
(Performance-only goal, e.g., distance in the performance dimen-
sion only) and the dashed line (Balanced performance/energy goal,
e.g., distance equally in the performance and energy dimensions).
The further the configuration is to the lower-right of the line, the
higher the score. This allows us to change the performance-energy
optimization goal by simply varying the slope of the line as shown
in Figure 9 from 4:1 (Performance over energy) to 1:1 (Balanced
energy equal to performance) to 1:4 (Energy over performance).
Figure 9 shows that the configurations with the best scores vary
with the goal.

As previously discussed, only a minority of the benchmarks see
a performance increase with a DIP. More generally, only a minority
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Figure 8: Configuration space normalized to the 12k BTB
FDIP baseline with 16 MSHRs. The score for the furthest
red point shown for a performance-only objective function
(solid black line) and an equal performance-energy objective
function (dashed black line).

of the benchmarks see a potential score increase for a given opti-
mization goal, and this subset varies with the goal. For example,
Figure 9 shows that if we define sensitive benchmarks as those
where the best configuration choice can increase the score by more
than 1.0 (dashed line)6, only 8% of the benchmarks are sensitive
for the Performance goal, while that number is 68% for the Energy
goal, and 66% for the Balanced goal. Conversely, a large number of
benchmarks can be severely impacted by bad configuration choices.
These configurations are to the upper-left of the dashed lines in
Figure 9, and continue further in Figure 8.

We define three groups of benchmarks: Sensitive-good have a best
configuration that improves their score by 1.0 or more, Sensitive-
bad have a worst configuration that hurts their score by more
than 1.0 and no configuration that improves the score by more
than 1.0, and Insensitive have a best configuration that improves
the score by less than 1.0 and a worst configuration that hurts
the score by no more than 1.0. We found that 41/123/193 of the
Performance/Balanced/Energy Sensitive-good applications (2-10%
of total) also had a configuration that could hurt their score by more
than 1.0.

Table 1: Benchmark sensitivities by optimization goal

Sensitive-good Insensitive Sensitive

Performance 171 (8%) 1212 (57%) 739 (35%)
Balanced 1387 (65%) 16 (0.75%) 719 (34%)
Energy 1443 (68%) 5 (<0.3%) 674 (32%)

The distribution of benchmark sensitivity for the different opti-
mization goals is shown in Table 1. The Performance goal has many
fewer Sensitive-good benchmarks as the slope of its trade-off line
(Figure 9a) is steep enough that the large number of 4k BTB config-
urations (blue points) fall close within the dashed lines, leading to
more benchmarks being classified as Insensitive. As the slope of the
6The meaning of the score changes with the optimization slope, but in the performance-
only or power-only extremes it would be percent change in IPC or energy, respectively.
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Figure 9: Impact of optimization goal on configuration choice. Performance/Energy trade-off is shown by the slope of the lines.
Insensitive benchmark’s best and worst configurations are marked in white and red respectively. The best configuration for the
Sensitive-good applications are marked in black.
optimization goals is lowered (more emphasis on energy, Figure 9b
and Figure 9c), more of the 4k BTB configurations are classified
as the Sensitive-good, resulting in less Insensitive benchmarks for
these two optimization goals.

The potential benefit of dynamically choosing the configuration
is shown in Figure 10, which compares an Oracle selection of the
best dynamic policy for each Sensitive-good benchmark to the five
Static configurations across all benchmarks, normalized to the 12k
BTB baseline. We see that the Sensitive-good benchmarks have
a potential 1.5% performance gain on average (max 5.5%) with a
1.5% average energy savings for the the Performance goal (a), and
a 2.7% energy savings (max 6.1%) with 0% performance loss for the
Energy goal (b). These results are better than any of the static single
policy configurations shown to their right. (Note that we do not
include the Sensitive-bad or Insensitive benchmarks in the Oracle
configurations as they are essentially unchanged in the Oracle
configuration, while they may see significant losses in the Static
Configurations.) The impact on potential benefit across the different
optimization goals is shown in Figure 10c, where the swing from
performance to energy as the goal changes is shown in the marked
averages. It is worth noting that the best configuration is the same
for 80% of all benchmarks regardless of goal, as the majority have
little potential for improvement, and the benefits are limited to only
the sensitive-good subset.

5 DYNAMIC RUNTIME CONFIGURATION
There are two main challenges with dynamically choosing the con-
figuration at run-time: First, building a sufficiently cheap, yet accu-
rate, classifier, and second, choosing a reconfiguration period that
is short enough to capture phase behavior while being long enough
to amortize the warm-up incurred from configuration changes.

5.1 Classification
In this work we train a Decision Tree (DT) to select the configu-
ration based on readily available performance counters. A DT is
a tree structure that is walked to determine the final choice. Each
non-leaf node in the tree contains the ID of the input to evaluate

and its threshold value for deciding which way to go. The leaf
nodes contain the final output, or choice of the DT. This makes DTs
compact in storage (they store input IDs and thresholds at each
node) and cheap to evaluate (the latency is determined by the depth
of the tree).

To address our range of optimization goals, we simply train one
DT for each goal. This results in 3 decision trees: 1 for each op-
timization goal (Performance/Balanced/Energy). At runtime, we
periodically evaluate the DT for the current optimization goal us-
ing the current performance counter inputs to determine the next
configuration. Our DT uses 15 different performance counters, with
the three most important ones for each optimization goal shown
in Table 2. We did not include the current configuration in the train-
ing as that would combinatorially explode the training. Despite
this, the DT is very accurate on the chosen performance counters.

For training we simulate all six configurations for the bench-
marks in the training set and calculate the score for each of the
three optimization goals for each time period after 20M instructions
of warm-up. We split the training benchmarks into windows of 20M
instructions and used the performance counter values during those
windows to identify the optimal configuration for next window.
The optimal choice for each time period is determined by picking
the configuration with the highest score. This approach does not
include the cost of warming the BTB/DIP storage structures on
configuration changes, and we find the final accuracy to be slightly
lower (see Section 7).

To evaluate training robustness, we performed 20 random permu-
tations of an 80/20 training/test split of the benchmarks. The result-
ing DTs provided accuracies between 97% to 98.8%, demonstrating
robust training. We also explored 50/50 training/test splits with
the random permutations and observed slightly reduced accuracies
between 92% to 97%. Training on just 8% or 20% of benchmarks
resulted in 90% DT accuracy for balanced and energy optimization
goals, but lower for performance, showing the DT is robust even
with little training data. Further, we found that random forests
performed similarly, while the accuracy of a single-layer neural
network was lower, at 87% to 95%, for the 80/20 split.
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Figure 10: Potential improvements on the benchmarks of choosing the best configuration for each Sensitive-good benchmark
(Oracle, left) vs. a single policy for all benchmarks (Static, right), for performance (a) and energy (b), and the average impact of
changing the optimization goal on the score in the performance/energy configuration space(c).

The resulting DTs contain 1291/773/603 nodes and a maximum
depth of 23/22/19 for performance/balance/energy trade-offs re-
spectively, meaning they require approximately 4KB of storage
(assuming 16 bits for threshold and remaining 1 byte for the ID
of the feature to compare) and up to 23 memory accesses for each
evaluation. Due to the simple nature of the DTs, either HW or SW
could evaluate the DT in less than 2500 cycles (depth of 25 with at
most one 100-cycle memory access per level), which is a negligible
overhead compared to the 20M instruction windows between evalu-
ations. The DT can always be made smaller (using cost-complexity
pruning) for a trade-off in accuracy. However, evaluating this size
decision tree has a negligible time and storage overhead so we did
not look into this further.

Table 2: Top 3 Performance Counters

Performance Goal Balanced Goal Energy Goal

L1I total MPKI Branch MPKI L1I total MPKI
ITLB MPKI L1I total MPKI L2C total iMPKI
STLB iMPKI ITLB MPKI LLC total iMPKI

(All performance counters used: BTB MPKI direct/indirect/total, BP MPKI,
L1I MPKI demand/prefetch/total, L2C iMPKI demand/prefetch/total, LLC

iMPKI demand/prefetch/total, ITLB/STLB iMPKI)

5.2 Dynamic Reconfiguration Interval
To evaluate the potential gains from shorter reconfiguration inter-
vals vs. the cost of more frequent BTB/DIP metadata zeroing and
warm-up, we compared a system with no warm-up penalty to one
which zeros the portion of the metadata that is reconfigured. In both
cases we use an Oracle decision to isolate the potential of shorter in-
tervals from the accuracy of the decision. The Performance, Energy,
and Balanced results are shown in Figure 11.

The results show that without the warm-up cost, shorter inter-
vals can improve the score significantly across all three optimization
goals (blue, top line) as they can take the benefit of shorter phases.
However, the warm-up cost from such frequent changes (red, bot-
tom line) negates this benefit. Indeed, we see that the warm-up
cost is sufficiently high that only when we use our full simulation
trace (e.g., a single 100M instruction interval), do we amortize the
warm-up cost. This suggests that intervals of ∼100M instructions
or longer between re-configurations would be preferred. However,
as our simulation traces are on average only 100M instructions, we
use 20M instruction intervals in the rest of the paper and include
the cost of warm-up.

6 METHODOLOGY
We use ChampSim [19] with the architectural parameters in Table 3.
Our L2 BTB has 12k entries, as with Intel’s Alder Lake performance
core [2], and we assume it is composed of 3 separate banks, each of
which can be power-gated, as in [21, 26]. We use 2122 traces from
the 1st Instruction Prefetching Competition [22] and the Cham-
pionship Value Prediction Workshop [13]. The traces contain a
diverse set of workloads including server, client, cryptography,
compute integer/floating point, and SPEC.

We model a 24-entry FTQ, with each entry holding 32 aligned
bytes (8 instructions), for a total capacity of 192 instructions, fol-
lowing [24]. The FTQ issues prefetches from the entries which are
not at the head and a small prefetch queue tries to coalesce requests
before issuing them to the L1I. The fetch unit issues a demand
request for the entry at the head of the FTQ, which means that the
instruction cache is potentially probed twice for each instruction:
once on a prefetch and once on demand. However, prefetch reads
are significantly lower-energy tag array reads, while the demand
accesses also read the data. Writes to the tag and data array are
similar in the case of either a demand or prefetch miss.
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out the cost of warming the metadata, with an Oracle con-
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vals are required to amortize the warm-up overhead. As the
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has only 1 re-configuration (after a warm-up interval of 20M
instructions).

We implement Post fetch correction (PFC) for BTB misses (direct
calls/jumps/returns) and branch mispredictions (direct calls/jumps).
BTB misses are resolved earlier (1 cycle after fetch, e.g., pre-decode
[24]), whereas branch-mispredictions for direct calls/jumps are
resolved after full decode of 4 cycles, as shown in Figure 27. We track
returns and indirect branches in the BTB, but get their targets from
the return address stack and indirect target predictor, respectively.
BTB misses to indirect branches result in ROB flushes after execute,
as they cannot be corrected early.

ChampSim does not natively model the impact of wrong-path
execution on caches or TLBs, but only includes their pipeline exe-
cution delay. This means that FDIP generates prefetches until the
FTQ is filled or an incorrectly predicted branch or BTB miss is en-
countered, thereby avoiding wrong-path prefetching. The EIP [49]
and FDIP [24] evaluations use trace-driven simulators with this
behavior. However, as wrong-path prefetching has been shown to
be beneficial by bringing in lines that will be needed shortly [34, 45],

7To explore sensitivity to PFC latencies, we evaluated a 4-cycle re-steer on correctly
predicted branches with BTB misses. We found that it had negligible impact for our
energy and balanced optimization goals, but reduced the number of sensitive-good
performance benchmarks by half and reduced their potential score by 21%. This
demonstrates that the ability to tradeoff BTB space is dependent on the PFC latency
and the optimization goal.

Table 3: Simulation Parameters

Core: 4GHz OoO, 8-wide fetch, 24-entry Fetch Target Queue, 8-wide
decode, 60-entry Decode Queue, 352-entry ROB, 128-entry scheduler

L1 BTB 128-entry, 2-way, 1-cycle latency
L2 BTB 12K-entry, 12-way, 2-cycle latency, 3

banks
Branch direction predictor TAGE-SC [52], 8-table, 1024-entry/table
Indirect predictor ITTAGE [51], 8-table, 512-entry/table
Return address stack 32-entry
Branch predictor bandwidth Up to 8-instructions (32B) or 1-taken

branch per cycle

ITLB/DTLB 256/128 entry 8-way
L2 TLB 2k entry 16 way - 50 cycle miss penalty

L1 Instruction Cache 32KB, 8-way, 16 MSHRs, 4-cycle
L1 Data Cache 48KB, 12-way, 16 MSHRs, 5-cycle, Next

Line Prefetcher
L2 Unified Cache 512KB, 8-way, 32 MSHRs, 15-cycle, Sig-

nature Path Prefetcher (SPP) [30]
L3 Unified Cache 2MB, 16-way, 64 MSHRs, 35-cycle
DRAM 1 channel, 3200MT/s (25.6GB/s)

the lack of it can hurt the baseline and thereby increase the apparent
benefit of DIPs.

To address this, we added wrong-path instruction prefetching
for BTB misses for predicted taken branches and branch mispredic-
tions. When on the wrong-path, our frontend continues predicting
basic blocks using the BP and BTB and issuing prefetches. As soon
as the BTB miss is resolved (at decode) or the misprediction is
resolved (at execute), execution returns to the correct path. With
wrong-path prefetching we observed that the potential gain of a
DIP over the baseline was reduced from 2% (max 9.8%) to 1.52%
(max 5.3%) for Sensitive good benchmarks, but Protean’s ability
to take advantage of that potential was not significantly affected,
showing the robustness of our approach.

With wrong-path prefetching for instructions, we found that
FDIP could consume all L1I MSHRs, and thereby prevent the DIP
from issuing prefetches. Indeed, some benchmarks had up to 12%
of execution cycles where no MSHRs were available. We therefore
limited FDIP to 8 of the 16 MSHRs and reserved the remaining 8 for
the DIP. While MSHR allocation could be adjusted dynamically, we
found that statically allocating 8 MHSRs to FDIP across all applica-
tions had negligible impact on performance (max 0.02% of cycles
with no MSHRs available), and actually delivered a performance
benefit of 0.038% (up to 2.3%) across all the applications. As a re-
sult, our proposed configurations all statically assign 8 L1I MHSRs
to FDIP and the remaining 8 to the DIP when it is active, vs. our
baseline 12k BTB which shares 16 MHSRs between the two.

As Protean can work with essentially any DIP whose metadata
is largely compatible with the BTB storage, we chose the state-
of-the-art Entangled Instruction Prefetcher (EIP) [49] and use the
implementation provided by the authors [14]. We support two
configurations sharing the BTB storage for the EIP entanglement
table: 4k entries, 4-way (one bank) or 8k entries, 8-way (two banks).
The original EIP used a 4k-entry, 16-way table. We use physical
address prefetching in EIP to avoid the severe TLB contention EIP
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causes, as observed by Vavouliotis et al. [57]. During execution,
EIP accesses its entanglement table after every demand access to
generate prefetches.

All simulations start with 20M instructions of warm-up in the
baseline 12K BTB configuration followed by 100M instructions of
simulation, or execution to the end for the shorter traces. After
each 20M instruction period we evaluate the DT for the chosen
optimization goal using the performance counter values from the
previous period, and choose the next configuration based on its
output. We zero the L2 BTB bank if it is reconfigured to run a
different configuration (e.g. BTB to DIP, DIP to BTB, or BTB to off,
etc.). We do not move entries or adjust the LRU ordering of the BTB
entries across the ways.

We modeled both dynamic and static energy of the BTBs, ITLB,
DTLB, L2 TLB, L1I, L1D, L2, and LLC using CACTI with a 22nm
process [36]. Note that we have chosen to focus on on-chip storage
structures related to instruction delivery in our energy evaluation
to investigate the impact in the core itself. However, our decision
tree could easily be retrained to include energy effects from other
parts of the system8.

7 RESULTS
We evaluate Protean’s ability to achieve the benefits of a DIP with-
out its cost for our three optimization goals (Performance, Balanced,
and Energy) across three metrics: Performance (IPC), Energy, and
Score in Figure 12. Results are normalized to the baseline 12k BTB
configuration without a DIP. For each optimization goal and metric
we present results with perfect configuration selection (Oracle) and
using our online Decision Tree (DT ). Results are presented for the
Sensitive-good and Sensitive-bad benchmarks and include metadata
warm-up costs on configuration changes. Each column shows Score,
Performance and Energy for a specific optimization labeled on the
top of the column. For Score and Performance higher is better, and,
for Energy, lower is better. This is seen in the Oracle extending
further down in the bottom right plot.

Classification. The online classification accuracy of the DT is
a bit lower than during training (95-97.5%, vs. 97-98.5%, see Sec-
tion 5.1). This comes from the online DT evaluation using inputs
from performance counters which have experienced warm-up ef-
fects from configuration changes, while our offline training data did
not include warm-up. One extreme case of this is an outlier in the
sensitive-bad set whose score is -16 (outlier in the energy optimiza-
tion column of Figure 12. For this benchmark, the DT repeatedly
switches between the 4/8/12K BTB configurations, while the Oracle
choice is to stay with the 12k BTB. As a result, Protean reduces per-
formance by 14% and increases energy by 13% for this case. Overall
we note that the 6 similar outliers are a small subset of the 674 total
in the sensitive-bad group, which demonstrates that we succeed
in avoiding most of the downsides. The distribution of the con-
figurations selected across the sensitive-good benchmarks (across
individual windows of 20M instructions) is shown in Table 4.

Impact. Across all benchmarks, the DT is able to achieve an
absolute score difference vs. the Oracle of less than 0.25/0.50 for
8For example, we could re-train to include DRAM, GPU, networking, I/O, displays
(for mobile devices), etc. However, in most of those cases the static energy of those
system components would so outweigh the the actual instruction delivery as to bury
the core-level impacts.

Table 4: Configurations for Sensitive-good Benchmarks

Performance Balanced Energy

12k BTB 10% 2% 1.5%
8k BTB 1% 5% 5.3%
4k BTB 8.5% 84% 89%

4k BTB + 4k EIP 48% 6.5% 3.7%
4k BTB + 8k EIP 20% 1.5% 0.3%
8k BTB + 4k EIP 12% 0.6% 0.4%

90%/95% of all benchmarks, highlighting the robustness of the clas-
sifier. Table 5 demonstrates that Protean is able to come very close
to achieving the full potential benefits of the state-of-the art DIP
while Table 6 shows that this is achieved while avoiding nearly all
of its costs. We see that when optimizing for Performance, Balanced,
or Energy, Protean achieves an average of 86/96/98% of the maxi-
mum potential (Oracle) for the Sensitive-good benchmarks, without
requiring extra in-core metadata storage and while avoiding nearly
all of the DIP’s run-time costs. For the sensitive-bad benchmarks,
Protean avoids almost all of the downsides of static configurations.
This demonstrates that Protean is successful in obtaining nearly all
the benefits of a DIP while avoiding nearly all its costs.

Table 5: Protean’s ability to achieve the potential benefits vs.
the Oracle for sensitive-good benchmarks

Perf. Goal Balanced Goal Energy Goal

Score 1.59 / 1.84 1.90 / 1.97
(96% of potential) 2.54 / 2.6

Perf.
1.31% / 1.52%

(86% of potential) 0.07% / 0.12% -0.036%/0.005%

Energy 1.33% / 1.51% 2.61% / 2.66% 2.63% / 2.67%
(98% of potential)

Positive numbers indicate better results: increased score, increased
performance, or energy savings.

Table 6: Protean’s ability to avoid potential costs vs. the Ora-
cle for sensitive-bad Benchmarks

Perf. Goal Balanced Goal Energy Goal

Score 0.09 / 0.12 0.102 / 0.14 0.04 / 0.1
Perf. 0.08% / 0.11% 0.013% / 0.04% -0.02% / 0.03%
Energy 0.04% / 0.07% 0.13% / 0.16% 0.05% / 0.09%

Positive numbers indicate better results: increased score, increased
performance, or energy savings.

8 CONCLUSIONS
State-of-the-art Dedicated Instruction Prefetchers (DIPs) provide
benefits for a very limited number of applications at significant
static (area) and dynamic (energy and bandwidth) cost for most
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Figure 12: Ability of Protean to achieve the Performance and Energy benefits of a DIP (Sensitive-good) without suffering from
its costs (Sensitive-bad), nor requiring its additional storage. Oracle (left, blue) shows the potential with perfect configuration
selection compared to our online Decision Tree (right, red). Left column: Performance Goal, Middle column: Balanced Goal,
Right column: Energy Goal. Results are normalized to the baseline 12k BTB with 16 shared L1I MSHRs. For Energy, 1 outlier
extends beyond the plot as discussed in the text.

others. This work shows how we can achieve these benefits where
possible without paying the costs.

Protean accomplishes this by sharing the existing frontend BTB
storage between the DIP and the BTB. We demonstrate that this is
practical because the applications that benefit from DIPs are less
sensitive to BTB misses due to effective Post-Fetch Correction. This
allows us to dynamically re-assign BTB storage banks based on
the application behavior, resulting in six frontend configurations.
We show that a Decision Tree can accurately and robustly pick
a good configuration at run-time, and that we can target a range
of energy/performance goals by simply training for the desired
trade-off. While our use of aggressive, but realistic, baseline FDIP

prefetching and Post-Fetch Correction limits the maximum benefits
of the particular state-of-the-art DIP we considered, we were able
to achieve 86% of the performance potential, 98% of the energy
potential, and 96% of the balanced performance/energy potential,
while avoiding essentially all of the penalties.

While the benefits today are limited by current-generation DIPs,
Protean provides a general framework that can be easily re-trained
for future advances. Indeed, with the development of more effective
DIPs, and as applications become more challenging for FDIP, we
expect Protean to be of even greater value in enabling designs that
obtain the benefits of DIPs without paying their area and run-time
costs.
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