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ABSTRACT
New non-volatile memory technologies show great promise for

extending the memory hierarchy, but have limited endurance that

needs to be mitigated toward their reliable use closer to the pro-

cessor. Wear leveling is a common technique for prolonging the

life of endurance-limited memory, where existing wear-leveling

approaches either employ costly full-indirection mapping between

logical and physical addresses, or choose simple mappings that

cannot cope with extremely unbalanced write workloads. In this

work, we propose ECC-Map, a new wear-leveling device archi-

tecture that can level even the most unbalanced and adversarial

workloads, while enjoying low mapping complexity compared to

full indirection. Its key idea is using a family of efficiently com-

putable mapping functions allowing to selectively remap heavily

written addresses, while controlling the mapping costs by limiting

the number of functions used at any given time. ECC-Map is evalu-

ated on common synthetic workloads, and is shown to significantly

outperform existing wear-leveling architectures. The advantage

of ECC-Map grows with the device’s size-to-endurance ratio, a

parameter that is expected to grow in the scaling trend of growing

capacities and shrinking reliabilities.
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•Hardware→Non-volatile memory; Hardware reliability; Anal-
ysis and design of emerging devices and systems; Memory and dense
storage; • Information systems→ Storage class memory.
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Non-volatile memory, persistent memories, wear-leveling, error-

correcting codes.

1 INTRODUCTION
Computing systems are challenged by the growing memory de-

mands of data-intensive applications. These demands grow faster

than the scaling of DRAM, the principal main-memory technol-

ogy [13]. Thus, new memories, called persistent non-volatile (NV)

memories are being designed and deployed in emerging comput-

ing architectures. These memories have lower cost than DRAM

memories, and faster access than non-volatile storage technolo-

gies such as NAND Flash. The design challenge of NV memories

lies in their “sandwich” status: having both performance expecta-

tions of main memory and cost expectations of backing storage.

NV memories already exist in a variety of technologies such as

PCM, RERAM, MRAM [1, 9, 20], and others, but it is expected that

scaled-up versions of these (or other) technologies will find an even

more dominant role in the future. In those systems, it is expected

that commercial NV memory devices will have large capacities,

small data units (lines) for fast access, and limited endurance due

to low cost/high density.

As NV memories take upon the demanding workloads of data-

intensive applications, concern is raised about their limited en-

durance. This concern is not new: early phase-change memory

(PCM) based main-memory architectures already addressed their

limited endurance by devising wear-leveling mechanisms. How-

ever, the existing solutions are not sufficient to mitigate the problem

in the scaling trend of growing memory capacities and shrinking

endurances (due to increased density). In fact, the wear-leveling

problem becomes dramatically more challenging as the capacity

grows or as the endurance decreases (and doubly so if both hap-

pen simultaneously). Consequently, we revisit the wear-leveling

problem in this work, and propose a new device architecture we call
ECC-Map to support flexible wear leveling with low implementation

costs.

Even though Flash devices suffer from a similar endurance prob-

lem [21], existing solutions for Flash devices do not fit persistent

NV memories. Writing in Flash devices is split between program

and erase operations [11], where each works at a different gran-

ularity. The effect of this is that individual lines (“pages” in the

Flash terminology) cannot be re-written in-place, which necessi-

tates out-of-place writing and frequent data movements (garbage

collection) [17]. For that purpose, most Flash storage products im-

plement a full-indirection translation layer in their controllers. Full

indirection using mapping tables makes the wear-leveling problem

easier to handle, but with the high cost of using large tables in ex-

pensive controller memory. In the case of persistent NV memories,

for example in PCM, the device cells do not have to be erased before

writing to them. In addition, the access granularity is typically finer

than in Flash devices. Those properties obviate the need for garbage

collection, allowing to use more economical mechanisms for wear

leveling compared to full indirection tables.

Toward a clear presentation of the problem and our ECC-Map

architecture, we use a simple memory-device model. The device is

accessed by a host computing system through a read/write interface

spanning a linear range of logical addresses, and it employs an inter-

nal controller for managing the read/write of the physical memory.

The device-host read/write interface uses data units we call lines.
From the host side, a line is addressed by its logical line address
(LLA), and internally a line is stored in a physical line address (PLA).
The device has 𝑁 PLAs in total, and every PLA can be written at

most 𝑤𝑚𝑎𝑥 times in the device lifetime. The basic need that the

device architecture needs to fulfil is mapping flexibility between
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LLAs and PLAs, such that even if LLA write loads are extremely

unbalanced, no PLA will exceed its endurance limit𝑤𝑚𝑎𝑥 prema-

turely. In addition to mapping flexibility, the architecture needs to

specify the wear-leveling algorithms governing the evolution of this

mapping in the device lifetime, and the internal data movements.

Awell-knownwear-leveling architecture, called Start-Gap (SG) [14],
uses a very economical mapping structure and allowing basic ad-

dress remappings called gap movements. The gap is a spare PLA,

and its movement is done by writing into it the LLA residing in

the adjacent PLA. While SG has demonstrated good wear-leveling

performance in some natural workloads, in extremely unbalanced

workloads its performance is not satisfactory. In particular, when

𝑤𝑚𝑎𝑥 is not orders of magnitudes larger than 𝑁 , SG fails to ade-

quately level an adversarial workload that continuously writes to a

single LLA, which we call the 1-LLA workload in this paper. This is

a major potential impediment in practice given the earlier stated

trend of growing 𝑁 and shrinking 𝑤𝑚𝑎𝑥 . Some mitigations have

been proposed for this undesired behavior, but none of them fully

solve the problem. Dividing the device to regions is a common useful

propositionmade in [14, 15, 26] (and others); but with the blessing of

breaking𝑁 into small “mini-devices” comes the curse (and complex-

ity) of simultaneously managing many such mini-devices. Other

proposed approaches to deal with extremely unbalanced workloads

have been to cache those writes in an unlimited-endurance media,

or better yet, to block the writes from the device by caching them

“elsewhere”. While these may work in specific system settings, a

stand-alone persistent-memory device can assume neither of the

two, and must guarantee adequate wear leveling on its own.

The new device architecture we present in this paper aims to

solve the wear-leveling problem by enhancing the flexibility of the

LLA-PLA mapping, while keeping the costs associated with this

new mapping small and controlled. The fundamental problem of

wear-leveling mapping architectures is that they must be able to

map frequently-written LLAs flexibly across the PLA space, and

tracking a flexible workload-dependent mapping costs memory and

processing resources. If any LLA can be heavily written, resulting

in its repeated remapping within the entire PLA space, it appears

intuitively necessary for the device to keep for each LLA its current

full PLA address. Storing and maintaining such a mapping entails

high cost (memory space) and complexity (persisting and/or wear-

leveling meta-data), which we would like to avoid for commercial

viability. Fortunately, contradicting this intuition, we show in the

sequel a mapping architecture that is able to relocate any LLA

across the entire PLA space, without maintaining costly LLA to

PLA mapping.

Themain idea of ECC-Map is to use a family of mapping functions
to maintain the LLA-PLAmapping. A large family of functions gives

more flexibility than the simple functions used in prior work, and

at the same time more efficiency than offered by a mapping table

in memory. Around these mapping functions we design the entire

mapping architecture and its algorithms, which we summarize in

the following by stating ECC-Map’s main ingredients.

(1) A family of efficiently computablemapping functions
with properties allowing effective reclaiming of unused

wear. Each member of the family is defined by an integer

mapping index.

(2) A sliding window bounding the range of mapping indices

used throughout the device at a given time. The window

size controls the mapping complexity.

(3) Selective remapping of specific logical addresses from

their current physical locations to a new location deter-

mined by a subsequent mapping index.

(4) A remapping trigger invoked when a physical location

reaches a designated wear threshold based on either a write-

count estimate or reliability estimate.

(5) Mapping-index randomization to prevent an adversary

from tracking mapping pairs and generating harmful adap-

tive workloads.

Ingredients 1-4 are new, to the best of our knowledge, while ingre-

dient 5 is a commonly used security measure.

We provide the details of the ECC-Map architecture in Section 2,

and in Section 3 we present the performance evaluation of ECC-

Map on a device discrete-event simulation. The results show that

high device utilizations can be reached even for 𝑁 /𝑤𝑚𝑎𝑥 ratios

that fail prior wear-leveling architectures. The promising results

of the modeled device in the simulation environment motivate the

future implementation of ECC-Map in a hardware device within a

working computing system. For that, in Section 4 we discuss finer

implementation details toward a more practical realization of the

architecture in hardware.

2 THE MAPPING ARCHITECTURE
It is imperative upon a memory device to maximize its ability to

serve host writes before reaching its physical endurance limits. In

this work, we assume an endurance model whereby each PLA is

limited to𝑤𝑚𝑎𝑥 total physical writes, and once exceeded, it cannot

be used anymore for read or write. To guarantee full usability, we

define the device’s lifetime as the time until any PLA exceeds𝑤𝑚𝑎𝑥
writes. Hence, the key performance objective in this work is to

maximize the total number of host writes served by the device in

its lifetime. Let 𝑁 be the number of PLAs in the device, that is, its

physical capacity in units of lines. Then𝑤𝑚𝑎𝑥 · 𝑁 is a fundamental

upper bound on the number of host writes served within the device

lifetime. With respect to this fundamental bound, we define the

writing utilization as

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
#𝐻𝑜𝑠𝑡 𝑤𝑟𝑖𝑡𝑒𝑠

𝑤𝑚𝑎𝑥 · 𝑁
, (1)

which corresponds to a specific write workload served by the device.

The utilization is a number between 0 and 1, the higher the better.

Note that the utilization measure accounts for the full storage cost𝑁 ,

even in the case of over-provisioned physical storage 𝑁 > 𝐾 , where

𝐾 is the number of LLAs. Furthermore, the numerator counts host
writes and not physical writes (the latter include internal writes by

the mapping layer), and thus (1) captures the true utility offered by

the device to the customer. In contrast, some prior works (e.g., [14])

use performance measures that count the total number of physical

writes (including internal writes), and are thus not valid in cases of

significant write amplification. Later in the paper we evaluate the

utilization for several important workloads, focusing primarily on

notoriously challenging workloads.

Improving the utilization by wear leveling is made possible by

implementing a mapping layer that spreads the uneven LLA access
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more evenly across the PLA space. The mapping layer maintains a

dynamic mapping function between the 𝐾 LLAs and the 𝑁 PLAs;

in general 𝑁 ≥ 𝐾 , and we define 𝜌 = (𝑁 − 𝐾)/𝑁 ≥ 0 as the spare
factor of the device. At any point in time, the mapping function

needs to be injective, that is, not mapping multiple LLAs to the same

PLA. The function needs not be surjective, that is, not all PLAs need
to map to LLAs. The simplest but most costly implementation of

the mapping function is by a mapping table having an entry for

each LLA storing its mapped PLA. A mapping table can wear level

effectively, but its hardware and maintenance costs are prohibitive.

Much more efficient mapping layers use a global efficiently com-

putable function: 𝑃𝐿𝐴 = 𝑓 (𝐿𝐿𝐴), where 𝑓 (·) changes in time, and

storing its specification can be done with little memory. The key of

the proposed mapping architecture of this work is to extend this

from a single function 𝑓 (·) to a family of functions {𝑓𝑖 (·)}, allowing
different LLAs to be mapped using different mapping indices 𝑖 . The

combined mapping function, which maps every LLA to the PLA

output by the function 𝑓𝑖 (·) designated for it, needs to be an injec-

tive mapping at every given time. Adding the index to the mapping

function improves its flexibility to level the wear, while bounding

the mapping cost is possible by limiting the range of indices used

throughout the LLA space at any given time.

2.1 Implementation of the Mapping Functions
To implement the family of functions, we use encoding functions

of cyclic error-correcting codes (ECC), used elsewhere for error

correction and detection, including as cyclic redundancy check

(CRC) [12] codes. We choose these functions for the several advan-

tages they offer: 1) efficient hardware implementation, 2) simple

reverse mapping, and 3) spreading an LLA mapping across the

entire PLA space (as we detail later). The third feature is critical

for obtaining high utilization in adversarial workloads, and is in

general not satisfied by alternative options such as cryptographic

pseudo-random permutations. Common cryptographic functions

also require significantly higher computation load relative to cyclic

ECC encoding.

Assuming 𝑁 (the number of PLAs) is an integer power of 2, we

define an integer parameter𝑚 = log
2
𝑁 . For the function family

we take a binary cyclic ECC with parameters [𝑛, 𝑘], where 𝑛 is the

codeword length and 𝑘 is the number of information bits input

to the encoder. 𝑟 = 𝑛 − 𝑘 is the redundancy of the code, and the

code is specified by a binary generator polynomial of degree 𝑟 . A

convenient source for such codes is the family of primitive BCH

codes that exist for a rich variety of [𝑛, 𝑘] combinations; some

sample generator polynomials of BCH codes can be found in [7].

We choose a code with 𝑟 =𝑚 and 𝑘 ≥ 2𝑚. The input to the encoder

is the binary vector [𝐿𝐿𝐴|𝑖], where | represents concatenation and 𝑖

is the mapping index. 𝐿𝐿𝐴 is represented as an𝑚-bit vector and 𝑖 as

a (𝑘 −𝑚)-bit vector, both using the standard binary representation.

The encoding is depicted in Figure 1a. The output of the encoder is

an 𝑟 =𝑚-bit representation of the output 𝑃𝐿𝐴. Using the encoder

as specified, we get the following.

Property 1. 𝑓𝑖 (·) is an injective function for every index 𝑖 .

Property 1 is proven by contradiction: assume there are two

different LLAs mapping to the same PLA for the same index. Then

by subtracting the corresponding two codewords (modulo 2), we

PLALLA index

m mk −m

(a) Forward mapping.
m mk −m

PLA LLAindex

(b) Inverse mapping.

Figure 1: (a) Forward mapping. The input LLA and the func-
tion index (in white) comprise the input to the ECC encoder.
The encoder’s output (shaded orange) gives the PLA resulting
from the mapping. (b) Inverse mapping. PLA and LLA ex-
change roles: PLA is now part of the input (in white) and LLA
is the output (shaded blue). Since this layout is a cyclic shift
from the forward mapping, the exact same encoder function
can be used.

get (from linearity) a third codeword all of whose non-zeros are

confined to𝑚 or less consecutive coordinates, which contradicts a

known property of cyclic codes with redundancy 𝑟 =𝑚.

The inverse mapping (from PLA and index to LLA) is shown in

Figure 1b: the input is [𝑖 |𝑃𝐿𝐴] and the output is 𝐿𝐿𝐴. From the

cyclic property of the code and the fact that Figure 1b is obtained

from Figure 1a by a cyclic shift of𝑚 positions to the left, the in-

verse mapping can use the same encoding function used by the

forward mapping, but note the required reordering of the input

arguments [𝑖 |𝑃𝐿𝐴] vs. [𝐿𝐿𝐴|𝑖]. This family of functions also enjoys

the following very useful property (proved in the Appendix).

Property 2. For any 0 ≤ 𝑖 < 𝑗 < 𝑁 , 𝑓𝑖 (𝐿𝐿𝐴) ≠ 𝑓𝑗 (𝐿𝐿𝐴) for
every 𝐿𝐿𝐴.

The importance of Property 2 is that a single LLA does not return

to the same PLA before reaching index 𝑖 = 𝑁 . This allows the wear-

leveling scheme using this mapping to utilize the endurance of all

𝑁 PLAs even if a single LLA is written by the host.

2.2 Sliding Window of Mapping Indices
The large number (≥ 𝑁 ) of mapping indices supported by the

proposed mapping functions is clearly useful for effective spreading

of the write load throughout the entire device. However, toward

limiting the resources consumed by the mapping, we restrict all

LLAs to have mapping indices in a subset of 𝑆 consecutive indices.

This subset changes as a sliding window throughout the device

lifetime. That is, the mapping-index set is {base, base+1, . . . , base+
𝑆 − 1}, for some integer base, and every LLA has a mapping index

𝑖 = base + offset𝑖 , (2)

where offset𝑖 ∈ {0, . . . , 𝑆 −1}. This allows the mapping architecture

to keep the value of base in a global register, and represent the index

𝑖 compactly as offset𝑖 , which takes only log
2
𝑆 bits. Figure 2a depicts

this restriction of indices to a sliding window of size 𝑆 = 4. 𝑆 is a

design parameter of the architecture: large 𝑆 allows more flexibility

for selective remapping, but also increases the complexity and/or

costs of maintaining the mapping. We defer to Section 4 the detailed

discussion of the effect of 𝑆 on mapping complexity. In the mean
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Index 0 1 2 3 4 … 𝑀 − 1

Function 𝑓! 𝑓" 𝑓# 𝑓$ 𝑓% 𝑓&'"

(a) Mapping sliding window.

Index 0 1 2 3 4 … 𝑀 − 1

Function 𝑓! 𝑓" 𝑓# 𝑓$ 𝑓% 𝑓&'"

(b) Mapping sliding window after a movement.

Figure 2: Sliding window of active mapping indices, for the
case 𝑆 = 4. (a) Initial set in shaded orange when base = 0. (b)
After incrementing to base = 1, the set moves to the window
in shaded blue.

time, we note a practical disadvantage of using offset𝑖 (as in (2)) for

representing the index, due to the need to update offset𝑖 when the

window slides to a subsequent base, even if 𝑖 is unchanged. Instead,

we propose an alternative compact representation: 𝑖 = 𝑖 mod 𝑆 ,

which can be used to recover 𝑖 using the formula

𝑖 = base + ((𝑖 − base) mod 𝑆) . (3)

It is clear that 𝑖 remains unchanged if 𝑖 is unchanged, even if base is

increased. For example, an LLA mapped with 𝑖 = 3 in Figure 2a has

𝑖 = 3, which remains the same even after the window movement to

base = 1 in Figure 2b. In this latter state, 𝑖 can be recovered by (3):

𝑖 = 1 + (3 − 1)mod 4 = 3.

2.3 Selective Remapping
The unique feature of the proposed architecture is that different

LLAs can be mapped by different mapping functions (mapping

indices). This feature allows selective remapping of heavily writ-

ten LLAs by incrementing their mapping index, while keeping

other LLAs at their current mapping indices and physical locations.

Thanks to the device over-provisioning (𝑁 > 𝐾), it is possible to

remap an LLA with minimal change to the mapping of other LLAs.

A heavier remapping operation, called catch-up, occurs when the

remapped LLA’s mapping index is incremented beyond the cur-

rent index window. In this case, the index window needs to shift,

and with it will move all the LLAs that are currently mapped by

indices below its new base index. However, since 𝑆 ≫ 1, catch-up

events reflect a minuscule minority of the remapping events. We

give some more details on the remapping operations, starting with

how remapping events are triggered.

2.3.1 Remapping trigger. Selective remapping warrants the defini-

tion of a trigger event for moving a specific LLA from its current

PLA. A global write counter, used in most prior wear-leveling ar-

chitectures (e.g., [14]), would not suffice in this case. Informally, we

remap an LLA written by the host if its current PLA has reached a

wear level that holds the risk of its premature failing. Toward this

end, we specify a wear threshold 𝜙 < 𝑤𝑚𝑎𝑥 , with the following

policy: a host write to an LLA mapped to a PLA that had exceeded
𝜙 writes will be written after remapping the LLA to a different

PLA. Note that the policy is only applied to host writes; a write

that is part of a remapping operation will not trigger an additional

remapping, even if the written PLA exceeded the threshold. This

differentiation makes the remapping procedures (discussed next)

simpler and more deterministic. The value of 𝜙 is an optimization

variable, set to vacate a worn PLA “just in time” to keep it usable

for all future remappings. In Section 3 we specify a formula for the

value of 𝜙 , derived based on analysis of ECC-Map that is included

in the appendix. Although 𝜙 is given as a count of physical writes,

implementing the remapping trigger does not require maintaining

PLA write counters (which would be expensive). Instead, reaching

a threshold of 𝜙 can be detected by a reliability measurement of the

PLA, for example by counting the number of bit errors corrected

by the decoder of the data error-correcting codes.

2.3.2 Regular remapping. The vast majority of remapping oper-

ations follow the simple procedure we describe next. When 𝐿𝐿𝐴

triggers remapping, it is moved from mapping index 𝑖 to 𝑖 + 1. If

𝑓𝑖+1 (𝐿𝐿𝐴) is an unused PLA, the remapping is complete – we call

this a non-colliding regular remapping. In a colliding regular remap-

ping, before writing 𝐿𝐿𝐴 to 𝑓𝑖+1 (𝐿𝐿𝐴), 𝐿𝐿𝐴′ currently mapped to

this PLA with index 𝑗 is remapped to index 𝑗 + 𝛿 , and 𝛿 is the

smallest positive integer such that 𝑓𝑗+𝛿 (𝐿𝐿𝐴′) is an unused PLA.

The procedure guarantees the movement of 𝐿𝐿𝐴 to index 𝑖 + 1, and

in case of collision, moves 𝐿𝐿𝐴′ out to a free PLA. The rationale

behind giving 𝐿𝐿𝐴 the priority over 𝐿𝐿𝐴′ is to minimize the index

increase of host-written LLAs, thus allowing more writes before an

LLA exits the index window.

2.3.3 Catch-up remapping. When an LLA needs to move during

regular remapping to an index equal to or greater than base + 𝑆 ,
a catch-up procedure is invoked. In the catch-up procedure we

first set a new base value greater than the current one, and then

remap every LLA with index smaller than the new base to an index

greater or equal to it. The amount by which base is shifted, as well

as the new indices chosen for the catching-up LLAs, are a matter

for optimization. In this work we simply set base← base + 𝑆 , and
remap all LLAs with smaller indices to the new base index. Other

catch-up algorithms (not used in this work) may alternatively add

less than 𝑆 to base, and/or move LLAs to indices strictly beyond

the new base.

Figure 3a and Figure 3b illustrate the operations of regular remap-

ping described above. The plotted arrays represent the PLA space of

the device, and the capital letters in the array are the LLAs mapped

to the corresponding PLAs. Initially, LLA 𝐴 is mapped by index 𝑖 as

shown at the top part of Figure 3a. Upon its triggered remapping,

𝐴 moves to its PLA position at the bottom part by incrementing its

index to 𝑖 + 1. In this remapping there is no collision with another

LLA. Figure 3b shows the next remapping of 𝐴, in which there is

collision with LLA 𝐹 ; to free the PLA to 𝐴, 𝐹 is moved to the PLA

mapped to it by index 𝑗 + 3, because the lower indices 𝑗 + 1 and

𝑗 + 2 map to used PLAs.

Figure 4 illustrates the catch-up procedure described above. For

𝑆 = 4, the figure displays the mapping index of each LLA. Initially,

base = 0 and𝐴 has index 3 (top part). Upon remapping of𝐴 (bottom

part), its index is incremented to 4, which falls outside the current

window {base = 0, 1, 2, 3 = 𝑆 − 1}, thus invoking catch-up. This

example implements the simple algorithm we use in this work:

setting base← base+𝑆 = 4, and updating all LLAs to the new base.
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A B C D E F G H I J K L

B C D A E F G H I J K L

𝑖

𝑖 + 1

Before:

After:

(a) Regular remapping - non-colliding case.

B C D A E F G H I J K L

B C D E A G H I J K F L

𝑖 + 1 𝑖 + 2

𝑗

𝑗 + 1 𝑗 + 2 𝑗 + 3

Before:

After:

(b) Regular remapping - colliding case.

Figure 3: Illustration of regular remapping. (a) The non-
colliding case. In this case, 𝐴 moves from index 𝑖 to 𝑖 + 1

and reaches a free PLA. (b) The colliding case. In this case,
the next index 𝑖 + 2 maps 𝐴 to a used PLA, thus requiring the
movement of 𝐹 to a subsequent index that maps it to a free
PLA.

A B C D E F G H I J K L

3 20 2 1 1 3 0 13 20

F A C B I G E H L D K J

4 4 4 4 4 4 4 4 4 4 4 4

Before:

After:

Figure 4: Illustration of the catch-up procedure. Initially,
base = 0 and all LLAs have indices in the range {0, 1, 2, 3}.
Then𝐴 is remapped to index 4, invoking a catch-up procedure
leading to base = 4 and all LLAs mapped with index 4.

The final ingredient of the proposed mapping architecture is

index randomization, applied for the purpose of hiding the instan-

taneous mapping functions from an adversary generating the write

workload.

2.4 Mapping-index Randomization
As we make the standard assumption that the mapping functions

used by the architecture are publicly known, an adversary may be

able to track the mapping of LLAs and issue writes to those mapped

to high-wear PLAs. To prevent this, we add a pseudo-random trans-

formation between the running mapping indices 1, 2, 3, . . . , 𝑁 − 1

and the actual mapping numbers fed to the mapping functions

(forward and inverse) of Figure 1a and Figure 1b.

For the transformation we use a standard linear-feedback shift

register (LFSR) [2, 18], which is initialized to a random seed gen-

erated internally by the device. The random seed is the output

mapping number corresponding to the initial mapping index 1 (we

skip index 0 in the randomized setting). Then, each update of the

register using the linear feedback gives the output mapping num-

ber of the subsequent mapping index. To maintain Property 2 for

the output mapping numbers, we use an𝑚-bit LFSR with period

2
𝑚 − 1 = 𝑁 − 1. This guarantees that no two indices in 1, . . . , 𝑁 − 1

have the same outputmapping number, and fixes the𝑘−2𝑚most sig-

nificant bits of the output mapping number to the same value for all

indices 1, . . . , 𝑁 − 1, thus implying 𝑓
LFSR(𝑖 ) (𝐿𝐿𝐴) ≠ 𝑓

LFSR( 𝑗 ) (𝐿𝐿𝐴)
similarly to Property 2.

3 EVALUATION AND RESULTS
Before evaluating the proposed mapping architecture, we spec-

ify the formula we use to set the threshold parameter 𝜙 (See Sec-

tion 2.3.1), as a function of the architecture parameters 𝑁,𝑤𝑚𝑎𝑥 , 𝑆 .

The formula is based on a theoretical analysis of ECC-Map for the

1-LLA workload that repeatedly writes to a single LLA until reach-

ing the device end of life. The detailed analysis can be found in the

appendix. We denote 𝛼 ≜ 𝜙/𝑤𝑚𝑎𝑥 as the fractional threshold, and

set 𝛼 to be the following

𝛼opt =

{
1 − 𝑁

𝑆𝑤𝑚𝑎𝑥
, 𝑁

𝑤𝑚𝑎𝑥
< 𝑆

3

2

3
, otherwise

(4)

The subscript “opt” is used to mark the fact that this 𝛼 maximizes

the utilization on the 1-LLA workload, according to the model and

its analysis in the appendix.

3.1 Evaluation
Implementation. To evaluate the performance of the proposed ar-

chitecture, we implemented all of its ingredients in a Python-based

discrete-event simulator. The simulator accepts an arbitrary write

workload, and runs it through the proposed device mapping layer,

including exact management of the indexed mapping functions, and

performing all remappings (regular and catch-up). Upon reaching

the device end of life, that is, when a PLA first exceeds𝑤𝑚𝑎𝑥 writes,

the simulator stops and records the utilization value for this work-

load. Using a software simulator allows us to examine the device

performance in a large variety and broad range of system variables.

The principal system variable in our evaluation, which turns out

to be the key performance determinant, is the size-to-endurance
ratio 𝑁 /𝑤𝑚𝑎𝑥 . In general, as 𝑁 /𝑤𝑚𝑎𝑥 grows, the more “difficult” it

becomes for a given mapping architecture to level the wear. This

fact is observed in [14], with the inequality 1/𝜓 > 𝑁 /𝑤𝑚𝑎𝑥 , where
the left-hand side is the frequency of internal-copy writes required

by the SG architecture. The same ratio𝑁 /𝑤𝑚𝑎𝑥 also appears (twice)
in (4). The principal dependence on the ratio 𝑁 /𝑤𝑚𝑎𝑥 allows us

to use relatively small values in most tests (𝑁 = 1024, varying

𝑤𝑚𝑎𝑥 ), significantly speeding up the evaluation. To prove that the

absolute values of 𝑁 ,𝑤𝑚𝑎𝑥 are secondary to their ratio, our evalua-

tions include tests we repeat with 4 and 16 times larger 𝑁 ,𝑤𝑚𝑎𝑥 ,

showing no significant difference. We thus expect that much larger

commercial devices with these size-to-endurance ratios – for exam-

ple, a 𝑁 /𝑤𝑚𝑎𝑥 = 2 device with 2G-lines and endurance 1𝑒9 – will

perform similarly.

In addition to 𝑁 /𝑤𝑚𝑎𝑥 , other system variables we examine in

our evaluation are the window size 𝑆 , the spare factor 𝜌 , and the
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trigger threshold 𝜙 . For convenience, we list in Table 1 the default

values we use for these system variables, unless noted otherwise

(each result typically varies one variable, leaving the rest to their

default values).

system variable default value

Size-to-endurance ratio 𝑁 /𝑤𝑚𝑎𝑥 0.5

Window size 𝑆 32

Spare factor 𝜌 20%

Trigger threshold 𝜙 set by (4) to 𝛼opt𝑤𝑚𝑎𝑥

Table 1: Default values of system variables.

Comparison. In addition to studying the performance of the

proposed architecture, this section compares this performance to

the three state-of-the-art wear-leveling architectures for PCM: the

SG and RBSG architecture [14], where the latter adds region parti-

tion on the former, and the region-based secure-PCMmain-memory

architecture [15] (Sec-Mem). The last of the three works by dynam-

ically remapping a full region every certain number of host writes

to it since the last remapping. Note that dynamic region mapping

requires a mapping table with size linear in the number of regions.

While there are follow-up works enhancing these architectures

in different ways, these three works are the best known for the

standard device model we consider here. Therefore, we expect to

see similar advantage over other variants, which also use global

or region write counters as a trigger for remapping. For the SG

architecture we use a device with the same logical capacity 𝐾 , and

a single spare PLA, as specified in [14]; for RBSG we use the same

𝐾 and 𝑁 parameters as ECC-Map. The secure PCM architecture

does not need spare, thus it is used with 𝑁 = 𝐾 (and the same

𝐾). Note that the comparison is fair even if the values of 𝑁 are

not equal, because the utilization metric penalizes the increased 𝑁

appropriately.

Measurements.We ran different write workloads, and for each

architecture we counted the total number of writes (host and phys-

ical) the device served until its end of life. We recorded several

performance metrics: the (logical) utilization (1), the number of host
writes, and the number of physical writes. We repeated each test

five times and averaged the results to smooth out the workload

randomness.

Workloads. We tested four write workloads in our evaluations:

1) the 1-LLA workload, 2) the stress workload, 3) the uniform work-

load, and 4) the Zipfian distribution Zipf. In 1), we randomly choose

a single LLA, and write to it repeatedly until reaching end of life.

In 2), we randomly pick a 3% fraction of the LLAs and write only to

them, where the selection within the set is uniform. In 3), each write

draws an LLA uniformly from the entire space. In 4), each write

draws an LLA from the whole address space with a non-uniform

selection that follows the distribution 𝑝 (𝑖, 𝐾) = 1/𝑖∑𝐾
𝑛=1

1/𝑛 , where 𝑖

is the LLA’s sequence number and 𝐾 is the number of LLAs. The

1-LLA workload is the key motivation of this work, hence it will be

the focus of the evaluation. The stress and Zipf workloads model

other challenging write patterns that the device needs to handle,

and the “easier” uniform workload is included mainly as reference,

since it is handled well by prior wear-leveling architectures.

3.2 Results
We first use the default values from Table 1 and plot in Figure 5a the

utilizations of the four architectures for each of the four workloads.

It is first observed that ECC-Map significantly outperforms the three

prior architectures on the 1-LLA workload. RBSG’s performance

is satisfactory only on the uniform workload, and SG’s is lower

than ECC-Map on all workloads except Zipf, on which it is very

close to ECC-Map. Sec-Mem’s performance on the stress workload

is about a 1/3 worse than ECC-Map. On the uniform workload

all architectures have good performance, as expected, with Sec-

Mem slightly ahead of ECC-Map coming second. We continue

the experiment with progressively larger size-to-endurance ratios

𝑁 /𝑤𝑚𝑎𝑥 . Recall from the discussion in Section 3.1 that larger ratios

are in general more difficult to wear-level. Moving from the default

value of 0.5 in Figure 5a, we plot in Figures 5b-5e the utilizations for

four larger values of 𝑁 /𝑤𝑚𝑎𝑥 , each time multiplying it by 2. We get

these ratios by fixing 𝑁 and halving𝑤𝑚𝑎𝑥 successively. The value

of 𝜙 is calculated using (4) for each tested ratio. We indeed see that

increasing the size-to-endurance ratio decreases the utilizations on

the 1-LLA and stress workloads. However, this decrease is much

more graceful in ECC-Map than in Sec-Mem, while both SG and

RBSG have near-zero utilizations on these workloads starting from

𝑁 /𝑤𝑚𝑎𝑥 = 2. The performance of ECC-Map on the Zipf workload

even improves with larger size-to-endurance ratios, for reasons

that will be explained later in Section 3.2.3. The very low utilization

values of both SG/RBSG and Sec-Mem throughout Figure 5 mean

that these architectures cannot be used by devices with such size-

to-endurance ratios.

3.2.1 Dependence on the absolute device size. In the next experi-

ment, we examine the (in)sensitivity of the results to the absolute

values of 𝑁 ,𝑤𝑚𝑎𝑥 , thus corroborating our claim that performance

is determined by their ratio 𝑁 /𝑤𝑚𝑎𝑥 . Toward that, we ran the same

workloads with the same ratios and three different device sizes

𝑁 = 1024, 4096, 16384 (with corresponding 𝑤𝑚𝑎𝑥 values). The re-

sults are recorded in Table 2, showing almost identical values of

(logical) utilization between the different sizes.

3.2.2 Dependence on the window size 𝑆 . In Figure 6, we plot the

utilization’s dependence on the window-size parameter 𝑆 . Recall

that 𝑆 controls the mapping richness/complexity, so it is important

to examine its effect on performance. We ran the workloads using

the default device parameters, each time implementing a different

window size 𝑆 = 16, 32, 64, 128. First, the results show that for all

values of 𝑆 and all workloads, the architecture achieves significant

utilization (for comparison, we plot the RBSG 1-LLA utilization as

a horizontal line). It can be observed that significant improvement

is offered to the 1-LLA workload when increasing 𝑆 from 16 to 32,

while subsequent increases give more modest advantages. That

means that for these device parameters, 𝑆 = 32 may be the right

compromise between performance and mapping cost. It can also

be seen that the uniform and stress workloads are less sensitive

to the value of 𝑆 . This is because more balanced workloads have

more balanced mapping-index distributions, and thus fewer catch-

up remappings even when 𝑆 is small. The stress workload sees

some small utilization decrease in 𝑆 = 128, which can be attributed

to the fact that 𝜙 is optimized for the 1-LLA workload. In a real
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Figure 5: Utilization as a function of the size-to-endurance ratio.

Workload Device size - 𝑁 𝑤𝑚𝑎𝑥 𝜙 Logical utilization (1) Host writes Physical writes

1-LLA

1024 128 96 0.61 80540 108779.8

4096 512 384 0.61 1281893.6 1777136

16384 2048 1536 0.61 20443371 28573809.8

Uniform

1024 128 96 0.65 85005.2 100765.4

4096 512 384 0.65 1368310.4 1702714.2

16384 2048 1536 0.65 21910283.2 28316701.2

Stress

1024 128 96 0.73 95844.6 115641.8

4096 512 384 0.74 1559924.4 1952942.6

16384 2048 1536 0.75 24888046.8 31827576

Zipf

1024 128 96 0.55 71901.2 86187.2

4096 512 384 0.56 1184265.8 1495514.2

16384 2048 1536 0.54 18242031.2 23847574.6

Table 2: Comparing detailed run statistics (averaged) for three different device sizes with the same ratio 𝑁 /𝑤𝑚𝑎𝑥 = 8.

implementation of the architecture, one may choose to set 𝜙 to

jointly optimize for different workloads, but good utilization is

achieved even with the simple formula used in this work.

3.2.3 Dependence on the remapping threshold 𝜙 . To expand on

the issue of optimizing the threshold 𝜙 , we point back to Figure 5

and note that for 𝑁 /𝑤𝑚𝑎𝑥 = 0.5, the value of the fractional ratio

𝜙/𝑤𝑚𝑎𝑥 according to (4) is as high as 1−1/64. Such high thresholds,

while optimal for the 1-LLA workload, limit the performance on

the Zipf workload. Thus, a possible solution is to set 𝜙/𝑤𝑚𝑎𝑥 as the

minimum between the outcome of (4) and a predefined limit, e.g.,

0.8. The effect of this is demonstrated in Figure 7, comparing the

performance of ECC-Map with and without this modification. It can

be seen that the Zipf utilization increased from around 0.4 (as also

seen in Figure 5a) to over 0.7. At the same time, the modification did

decrease the 1-LLA (and stress) utilizations, but not significantly

so.

To validate the correctness of the 𝜙opt derived in (4), we next

want to see the utilization as a function of𝜙 . We define𝜙opt ≜ 𝛼opt ·
𝑤𝑚𝑎𝑥 , and for convenience plot in Figure 8 the utilization as a func-

tion of𝜙/𝜙opt−1. The x-axis point 0 represents the value of𝜙 = 𝜙opt
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Figure 6: Utilization as a function of the mapping window
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Figure 7: ECC-map with 𝜙 = 𝜙opt vs.
with 𝜙 = min (𝜙opt, 0.8𝑤𝑚𝑎𝑥 ).

as specified by (4), where the values to the left and right of that

point represent smaller and bigger 𝜙 values, respectively. One can

see that utilization on the 1-LLA (and stress) workload is maximized

close to the value of 0, indicating the correctness of the analysis

leading to the specified value 𝜙opt. Further, it is seen that a small

increase in 𝜙 may harm utilization significantly (for all workloads

except the uniform), while a decrease is largely harmless and even

helpful for the Zipf workload. For good performance in all work-

loads, this plot motivates adopting the point of 𝜙/𝜙opt = 0.8, which

we also use in the next sub-section. The plot also gives an important

insight for design purposes: since one may have only an estimate

of the line wear, it is important that it will be an overestimate, such

that harmless premature remappings are favored over late ones

that decrease utilization.

3.2.4 Dependence on the spare factor. Finally, in Figure 9 we plot

the utilization for four different values of spare factor 𝜌 = 0.1, 0.15,

0.2, 0.25. 𝑁 is fixed to its default value, and 𝐾 is varied to get the
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Figure 8: Utilization as the threshold-trigger 𝜙 is varied from
its optimized value.
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Figure 9: Utilization for different values of spare factor.

corresponding spare factors. Recall from Section 2.3.2 that using

spare PLAs helps having non-colliding regular remappings, which

reduces the amount of internal-copy writes and slows down the

advancement of mapping indices. Firstly, the plot shows that even

with spare factor as small as 0.1 the utilization is significant. That

said, increasing it to 0.15 gives substantial advantage in the more

challenging workloads of 1-LLA and Zipf. Increasing it further ex-

hibits diminishing returns. We reiterate the fact that the utilization

metric takes into account the added cost of the spare PLAs, thus

giving a fair comparison across different spare factors. The fact that

the utilization is normalized by 𝑁 means that it is not necessarily

increasing with the spare factor, as seen in the decreasing trend

for the uniform workload. This decrease can be attributed to the

growing number of remappings needed to claim unused endurance

in more spare PLAs.
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4 IMPLEMENTATION CONSIDERATIONS
Toward using the ECC-Map architecture in a real memory device,

this section expands upon important details needed for efficient

implementation. Primarily, it discusses ways by which the window-

size parameter 𝑆 translates to bounded implementation complexity.

4.1 Achieving Low-Complexity Mapping
The basic requirement from the architecture to support read and

write operations is to be able to map any LLA to its current PLA.

In ECC-Map, this requirement is reduced to mapping an LLA to its
current mapping index, thence finding the PLA by simple invocation

of the mapping function. Using a global register for the current base

mapping index, this requirement is further reduced to mapping an

LLA to its offset from the base index – see (3) in Section 2. This last

reduction is the key promise toward achieving efficient mapping:

representing the offset index only requires log
2
𝑆 bits (rounded

upward to the next integer), while representing the PLA or the

full mapping index requires log
2
𝑁 bits. Recall that 𝑁 is a device

parameter that grows with the scaling of the memory size, while 𝑆

is a small fixed constant. For example, in a 500GB memory device

with line size of 512B, we have 𝑁 ≈ 2
30
, while the “recommended”

window-size parameter in Section 3 is 𝑆 = 32 = 2
5
.

In addition to the forward (LLA→PLA) mapping, the remapping

operations described in Section 2.3 require inverse-mapping a PLA

to its mapping index. The simplest and lowest-cost way to support

inverse mapping is by storing the offset index on the line itself on

the media, alongside the data. The cost is negligible when the line

size is much larger than log
2
𝑆 . Next, we describe three possible

implementation approaches of the forward mapping in ECC-Map.

4.1.1 Reduced-size mapping table. The straightforward way to im-

plement forward mapping in the proposed architecture is through a

table mapping each LLA to its offset mapping index, see Figure 10a.

This already gives a major advantage over full-indirection mapping:

for example, in a 500GB device with line size 512B and 𝑆 = 32 this

saves 1 − log
2
𝑆/log

2
𝑁 = 83.25% of the table memory cost, where

𝑁 = 500𝑒9/512.

4.1.2 Advanced mapping data structures. The fact that 𝑆 is a rela-
tively small constant opens the way to devising clever data struc-

tures for mapping LLAs to offsets, which will be more economical

than a table. Such data structures are beyond the scope of this work,

but we give a simple example case to clarify this direction. Suppose

that the base mapping index is defined to be the default, and the

mapping data structure only needs to record LLAs having other

indices. Then we need a data structure that records membership in

the remaining 𝑆 − 1 offsets, and whose size is proportional to the

number of LLAs not using the default index. Keeping this data struc-

ture size under the constraints of the pre-allocated memory is an

interesting optimization problem. In unbalanced workloads (such

as 1-LLA and stress), we naturally get that the majority of LLAs use

the same mapping index, and in more balanced workloads we can

afford triggering special catch-up remappings for consolidating the

mapping data structure.

4.1.3 Mapping with no data structure. It is possible to implement

the forward mapping without using any data structure, except for

the global base register. Recall that for the inverse mapping we

LLA Compact index

0 1

1 0

2 3

3 3

4 2

5 3

Base index: 5002

(a)

LLA

PLA|1
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PLA|2

PLA|3
base:

+1

+2

+3

PLA:

+0

(b)

Figure 10: (a) The straightforward forward-mapping imple-
mentation: Reduced-size mapping table, example for 𝑆 = 4.
A global base register, and log

2
𝑆 offset bits for each LLA. (b)

Most economical forward-mapping implementation: Map-
ping with no data structure, example for 𝑆 = 4. First calculat-
ing the PLAs {𝑓

base+𝑖 (𝐿𝐿𝐴)}3𝑖=0
, then reading from the media

the PLAs’ offset values, and choosing the one that matches
the offset used in the forward mapping (the PLA marked in
green).

store in every PLA its offset index. Thus, given an LLA, we can

find all 𝑆 PLAs that may be mapped to it for the current base, and

read from each one the log
2
𝑆 inverse-mapping bits. The 𝑆 PLAs

are {𝑓
base
(𝐿𝐿𝐴), 𝑓

base+1 (𝐿𝐿𝐴), . . . , 𝑓base+𝑆−1
(𝐿𝐿𝐴)}, and it can be

verified
1
that there is exactly one 𝑃𝐿𝐴 = 𝑓𝑖 (𝐿𝐿𝐴) whose stored

inverse-mapping offset bits represent the index 𝑖 according to (3).

This matching PLA is found as the current mapping of the LLA. See

Figure 10b. While this method requires accessing multiple physical

locations on the memory media, only a small number 𝑆 log
2
𝑆 of

bits are read in total, and this operation may also be parallelized

depending on the memory technology.

4.2 Efficient LFSR Transformation
Recall from Section 2.4 that the running index 𝑖 calculated in (3)

undergoes an LFSR transformation before entering the index fields

of the mapping functions in Figure 1a and Figure 1b. To perform

these transformations, the device has to have efficient access to the

values 𝐿𝐹𝑆𝑅(𝑖), for 𝑖 = base, . . . , base + 𝑆 − 1. This can be achieved

either by maintaining a cache holding these 𝑆 values, or by efficient

cycling of the LFSR back and forth in this range.

5 RELATEDWORK
Wear leveling is a key problem in designing and deploying wear-

limited memories, and has thus attracted considerable prior re-

search attention. The problem initially arose in Flash-based memo-

ries, and later considered for phase-change memories (PCM) and

related emerging technologies for persistent memories. In Flash

memory the problem is somewhat simplified, at least from the

mapping perspective, thanks to the common employment of full

indirection in the flash translation layer (FTL). In persistent mem-

ories based on PCM (and related) technologies, full indirection is

not a likely option, due to the lack of need for out-of-place writing,

and the smaller line sizes.

1
otherwise violating the proven property that an LLA is mapped to exactly one PLA.
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Prior wear-leveling solutions, for both Flash and PCM devices,

use a variety of techniques, at different parts of the memory stack:

from the operating system to the physical representation of cell

levels. We now briefly mention a non-exhaustive sample of these

techniques.

5.1 Wear-leveling and Related Techniques for
PCM Devices

Themost celebrated PCMwear-leveling architecture is Start-Gap [14],

thanks to its simplicity and extremely efficient mapping layer. The

key technique used in Start-Gap [14] is periodical line shifting,
called therein gap movements. In addition, it proposes to divide the

device to regions to better mitigate extremely unbalanced workloads

(though at the cost of unused endurance in some regions). In [26]

and [15], line shifting is complemented by region swapping for im-

proved wear spreading. While region swapping helps, its flexibility

for claiming unused endurance depends on the region size, and fine

region partition requires large mapping tables. Region swapping

is further enhanced in [27] by considering endurance variation

among different regions for selecting the swap target. Exploiting

variation is a useful technique, complementary to the design of the

mapping architecture, and can also enhance the proposed ECC-Map

architecture. Another technique used in almost all wear-leveling

architectures is address randomization for hiding the mapping from

an adversary, as we implement here in ECC-Map.

Additional works address wear leveling as part of larger archi-

tectural settings, building on the techniques mentioned in the previ-

ous paragraph. [3–5] incorporate wear leveling into the operating-

system stack; [24, 25] combine PCM and DRAM (the latter having

much higher endurance); and [23] proposes a novel hardware ad-

dress decoder (PRAD) that can help in wear leveling (among other

things).

A vastly studied approach, related to wear leveling, is wear re-
duction. [6] proposes a physical-writing mechanism for PCM that

reduces the write wear. [10] uses information from the L1 cache

to write only modified data to the PCM media. A similar objec-

tive is pursued in [8], which in addition presents a wear-leveling

scheme in PCM when it acts as a cache. Wear reduction techniques

are extremely useful in practice, and can similarly enhance the

performance of ECC-Map.

5.2 Wear-leveling Techniques for Flash Devices
Flash-based memories differ from PCM and newer persistent mem-

ories in their internal structure of large update units (called blocks),

each comprising many lines (known as pages). Due to this struc-

ture, Flash wear leveling is done at the larger block granularity, and

assuming the availability of a translation layer supporting flexible

logical to physical mapping. Most of the techniques use a table

that tracks the wear of each data block, hence picking low-wear

blocks for the incoming host writes. [16] considers the endurance

variability among different blocks, and tabulates block reliability

statistics based onmeasuring program error rate. ECC-Map can also

be extended to consider variability, by setting variable 𝜙 thresholds

for different parts of the device. [19] further extends the reliability

estimation by considering retention errors through time measure-

ments between consecutive program cycles. [22] suggests using

multiple block remapping thresholds, reducing the number of writes

between remappings as the device ages.

6 CONCLUSION
In this work, we present ECC-Map, a novel wear-leveling scheme

for persistent memories that can handle even the most unbalanced

workloads. A family of efficient functions based on ECC encoders

provides flexible and economical mapping, and enables remap-

ping operations that are more targeted to the incident workload.

ECC-Map’s remapping algorithms are extremely simple, which is

important for implementation on device controllers. Toward that,

many interesting topics are left for future work. Among them: 1)

the organization of the mapping meta-data on the memory me-

dia, 2) the optimization and scheduling of remapping operations,

and 3) further improvements to the proposed mapping algorithms,

offering interesting tradeoffs among different workloads.
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APPENDIX / SUPPLEMENTARY MATERIAL
Discussion of the Overall Device Operation
As detailed in Section 2.3, host writes go directly to their mapped

PLAs so long that the PLA’s write count is below 𝜙 , and trigger

remapping otherwise. That means that a PLA can reach its end-

of-life of𝑤𝑚𝑎𝑥 writes only during a remapping operation. There

are two factors by which the utilization (1) is degraded from its

theoretical limit of 1: 1) remaining unused writes of PLAs, and

2) internal-copy writes during remapping. There is at most one

internal-copy write in a regular remapping operation: one when

the remapping is colliding, and none when it is non-colliding. Con-

sidering 𝑓𝑖 (·) as a random function whose output is uniformly

drawn from {0, . . . , 𝑁 −1}, the probability that a regular remapping

is colliding equals 𝐾/𝑁 = 1 − 𝜌 . Hence the number of internal-

copy writes can be reduced by increasing the spare factor 𝜌 . In

a colliding regular remapping, the mapping index of the evicted

𝐿𝐿𝐴′ is incremented 𝛿 times before a free PLA is found. With the

same randomness assumption above, 𝛿 is geometrically distributed

with parameter 𝜌 and mean 1/𝜌 . That means we need to choose 𝜌

such that 1/𝜌 ≪ 𝑆 , otherwise, colliding regular remappings will

frequently consume the entire window of 𝑆 indices, invoking a

costly catch-up remapping. Sample parameters that satisfy this

requirement are 𝜌 = 0.15 and 𝑆 = 64 ≫ 6.66.

Performance Estimate for the 1-LLAWorkload
For the 1-LLA workload and the catch-up algorithm we choose

in this work (see Section 2.3.3), the last of every 𝑆 consecutive

regular remappings will invoke a catch-up remapping. Thus the

proposed architecture can level the 1-LLA writes across the entire

space of 𝑁 PLAs, costing 𝑁 /𝑆 catch-up remappings in total. Each

catch-up remapping costs on average 𝐾/𝑁 internal-copy writes

per PLA, giving on average
𝑁
𝑆
· 𝐾
𝑁

= 𝐾
𝑆
internal-copy writes per

PLA in the device lifetime. When 𝐾/𝑆 is not a large fraction of

𝑤𝑚𝑎𝑥 , the proposed architecture will be able to reach a high value

of utilization.

Calculating the Trigger Threshold
Recall from Section 2.3.1 that 𝜙 is the wear threshold above which

the PLA only serves remapping writes, and no direct host writes.

This immediately gives the criterion by which we need to set 𝜙 : the

remaining endurance of𝑤𝑚𝑎𝑥 −𝜙 writes should suffice for serving

all future remapping writes into this PLA. If 𝜙 is set too high such

that this condition is not met, a remapping operation will cause a

PLA to exceed𝑤𝑚𝑎𝑥 writes, ending the device lifetime prematurely

before claiming all unused endurance. With this condition in mind,

we want to set 𝜙 as high as possible to maximize the number of

host writes served by each PLA.

Deriving the Optimal 𝜙 for the 1-LLAWorkload
We denote 𝛼 ≜ 𝜙/𝑤𝑚𝑎𝑥 as the fractional threshold, and seek to find
the optimal 𝛼 . In the following quantitative discussion we assume

the 1-LLA workload, and consider only the internal-copy writes of

catch-up remappings (the other internal-copywrites, during regular

remappings, are negligible in number). According to the condition

on 𝜙 stated earlier in Section 7, setting a fractional threshold of 𝛼

(1− α) · wmax

α · wmax

(2 · α− 1) · wmax

Host writes

Catch-up
number

Figure 11: Host writes per PLA vs. the catch-up number.

leaves sufficient endurance for (1 − 𝛼)𝑤𝑚𝑎𝑥 catch-up remappings.

Between the 𝑡-th and (𝑡 + 1)-th catch-up remappings, 𝑆 PLAs each

serve 𝛼𝑤𝑚𝑎𝑥 −𝑡 host writes (𝑡 writes are consumed by the previous

catch-up remappings). In other words, the number of host writes

per PLA is decreasing linearly as a function of the catch-up number

with slope −1; this is shown graphically in Figure 11. The total

number of host writes served by the device equals the area of

the trapezoid in the figure, multiplied by the constant 𝑆 . Thus the

optimal 𝛼 maximizes the expression for this area, given by

(𝛼𝑤𝑚𝑎𝑥 + (2𝛼 − 1)𝑤𝑚𝑎𝑥 ) · (1 − 𝛼)𝑤𝑚𝑎𝑥
2

. (5)

Taking the derivative and equating to zero, we get 𝛼∗ = 2/3. Note
that this optimal 𝛼∗ applies so long that (1 − 𝛼∗)𝑤𝑚𝑎𝑥 ≤ 𝑁 /𝑆 ,
because the right-hand side is an upper bound on the number of

catch-up remappings until utilizing the entire device. This is equiv-

alent to the condition 𝑁 /(𝑆𝑤𝑚𝑎𝑥 ) ≥ 1/3. For the complement case

𝑁 /(𝑆𝑤𝑚𝑎𝑥 ) < 1/3, the x-axis of Figure 11 can reach the maximal

number of catch-up remappings 𝑁 /𝑆 with 𝛼 ≤ 1 − 𝑁 /(𝑆𝑤𝑚𝑎𝑥 ), so
setting 𝛼 = 1 − 𝑁 /(𝑆𝑤𝑚𝑎𝑥 ) maximizes the total number of host

writes. We summarize the optimal values of 𝛼 in the following

equation:

𝛼opt =

{
1 − 𝑁

𝑆𝑤𝑚𝑎𝑥
, 𝑁

𝑤𝑚𝑎𝑥
< 𝑆

3

2

3
, otherwise

(6)

We use this 𝛼opt to set the trigger threshold in our evaluations in

Section 4. Note that the first case of (6) is the more favourable one

that fully utilizes the 𝑁 PLAs of the device. As we increase 𝑆 , we

remain in this favourable case for larger 𝑁 /𝑤𝑚𝑎𝑥 ratios.

Proof of Property 2
If both 𝑖 and 𝑗 are in the range [0, . . . , 𝑁 − 1], all the non-zeros

in their binary representations are confined to the 𝑚 = log
2
𝑁

right-most bits of the index field. If both 𝑖, 𝑗 map the same 𝐿𝐿𝐴 to

the same 𝑃𝐿𝐴, then both [𝐿𝐿𝐴|𝑖 |𝑃𝐿𝐴] and [𝐿𝐿𝐴| 𝑗 |𝑃𝐿𝐴] must be

codewords. When subtracting (modulo 2) these codewords, we get

a third codeword all of whose non-zeros are confined to𝑚 or less

consecutive coordinates, which is a contradiction when the code is

cyclic with redundancy 𝑟 =𝑚.
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