
MC-ELMM: Multi-Chip Endurance-Limited Memory Management
Andrew M. Bartolo
Stanford University

USA

Mohamed M. Sabry Aly
Nanyang Technological University

Singapore

George Michelogiannakis
Stanford University

Lawrence Berkeley National Laboratory
USA

Subhasish Mitra
Stanford University

USA

ABSTRACT
Non-volatile memories (NVMs) have become a staple of architec-
tural research. NVMs naturally enable techniques such as crash con-
sistency; persistent snapshots, logs, and heaps; security-enhanced
memories; and even near- or in-memory processing. However, all
current NVM technologies suffer from limited write endurance.
Monolithic 3D integration (M3D), an NVM-enabled, near-memory
technique, drastically increases compute-to-memory connectivity,
improving the energy-delay product (EDP), especially for data-
intensive workloads. However, M3D systems have another con-
straint: scaling M3D memory capacity adds multiple compute-plus-
memory chips in a NUMA arrangement. In response, we first de-
velop a lifetime extension mechanism for endurance-limited memo-
ries (ELMs) that extends chip lifetime from mere minutes to several
years. Our page-based scheme minimizes execution disruption. Sec-
ond, we extend our single-chip scheme to multiple M3D chips. We
show that NUMA policies for DRAM systems are ill-suited for M3D
because they either incur too many costly off-chip accesses or sac-
rifice lifetime. Our technique preserves NUMA locality benefits
while significantly improving overall system lifetime. For homoge-
neous multi-threaded workloads running across multiple NUMA
nodes (chips), our multi-chip scheme increases lifetime over our
single-chip scheme by a geometric mean of 48%. For a heteroge-
neous mixture of workloads running on a multi-monolithic-chip
cluster, we increase cluster lifetime by a factor of 4.7×, bounded by
a 6% energy and 6% runtime overhead (commonly with no runtime
overhead at all).

CCS CONCEPTS
• Hardware→ Analysis and design of emerging devices and
systems; Memory and dense storage; • Computer systems
organization → Architectures.

KEYWORDS
endurance, non-volatile memories, endurance-limited memories,
resistive RAM, phase-change memory, multi-chip, multi-node

1 INTRODUCTION
Recently, non-volatile memories (NVMs) have given rise to a host
of new architectural techniques. Like flash memory, NVMs retain
their contents without power, but add byte-level addressing to
enable techniques such as crash consistency; persistent snapshots,
logs, and heaps; security-enhanced memories; and even near- and
in-memory processing. However, all current NVM technologies

suffer from limited write endurance: they are endurance-limited
memories (“ELMs”).

At the same time, workloads such as machine learning, large-
scale simulations, and graph analytics face a “memory wall” [1] in
keeping compute units fed with data.We therefore need a new archi-
tectural paradigm – one that supports dense connectivity between
compute logic and memory. Monolithic 3D integration (M3D) is one
auspicious approach for increasing compute-to-memory connectiv-
ity. M3D chips integrate multiple layers of memory and compute
logic (directly atop each other), drastically increasing connectiv-
ity over other forms of integration, including “2.5D” die stacking,
bonding, or vertical integration using through-silicon vias (TSVs).
As a result, M3D systems deliver significant energy-delay product
(EDP) benefits [2–15].

Due to fabrication constraints, M3D systems must use ELMs
instead of DRAM. ELMs include phase-change RAM (PCRAM),
resistive RAM (RRAM), and spin-torque transfer magnetic RAM
(STT-MRAM). Bit cells within these memories can be written only
105 − 109 times before failure (see Sec. 3.1). A system that naïvely
attempts to treat ELMs just like unlimited-write-endurance DRAM
will fail within one day’s time (see Sec. 4).

M3D systems achieve large energy and execution time benefits
by keeping memory accesses on-chip whenever possible. However,
in order to scale compute and memory capacity, we must also sup-
port multiple M3D chips in a cluster. Many past papers have looked
at extending ELM lifetime within a single chip. However, we show
that in a multi-chip cluster environment, extending lifetime individ-
ually within chips leaves around 80% of cluster lifetime unrealized
(see Sec. 8.4). This is because different workloads wear the chips
at different rates. Thus, to extend lifetime, we should efficiently
remap workloads across chips. Existing work either (i) assumes
the presence of off-chip DRAM, which penalizes EDP [8–10], (ii)
does not consider multiple chips, or (iii) in a multi-chip system,
assumes that all execution must pause while the entire contents of
chips’ memories are swapped at once. In today’s availability- and
performance-critical datacenters, pausing execution in such a way
is unacceptable.

We are thus tasked with improving lifetime not just on a single
ELM chip, but across an entire cluster comprised of ELM chips,
with minimal execution disruption. To accomplish this, we mod-
ify the virtual memory system to and first-class support for en-
durance tracking in units of pages, instead of entire chip memories.
In Secs. 5 and 6.4, we show that our mechanism increases single-
chip lifetime by hundreds of times for a 1% energy penalty and 1%
runtime penalty, commonly with no runtime penalty at all. Then,

Bartolo, et al.

Fig. 1: Multiplicative lifetime benefits from stacking our tech-
niques.

in Sec. 8, we extend our single-chip scheme to a multi-M3D cluster,
showing that it extends lifetime a further 4.7× over our single-
chip scheme, bounded by an additional 6% energy and 6% runtime
penalty (and commonly with 0% runtime penalty).

2 OBJECTIVE
We define lifetime as the minimum amount of runtime required
to make any single bit in a chip’s memory fail. For simplicity, we
do not consider complementary, compatible techniques such as
backup arrays, error-correcting codes, and ChipKill [16, 17]. We
use the term “frame” to refer to the smallest unit of physical mem-
ory manageable by the operating system (for example, 4 KiB frames,
though we use larger 1 MiB “jumbo” frames to reduce overhead).
Similarly, a “page” denotes a unit of virtual memory which maps
onto a physical frame. A “line”, or “cache line”, denotes the small-
est unit of memory tracked by a cache. In later sections, in our
distributed multi-chip scheme, an individual chip forms a “node”.

In Sec. 4, we use a standard LLC to enhance single-chip lifetime
and show that meeting lifetime goals with an LLC alone quickly
becomes impractical. In Sec. 5, we introduce a new page-level ab-
straction with bit-level rotation and write elimination. In Sec. 6, we
use our new page abstraction and ELMs’ byte-level addressability to
massively enhance single-chip lifetime without interrupting execu-
tion. In Sec. 8, we extend our abstraction further to function across
multiple chips, also while minimizing execution interruption. Fig. 1
shows the cumulative effects of these stacked techniques using
geometric means across workloads.

3 EXPERIMENTAL SETUP
3.1 Bit Cell Write Endurance

Table 1: Array-level bit cell write endurances.

.

Ref. Technology Year Array Size Endurance
[18] PCRAM 2018 1 Mbit 105

[19] PCRAM 2014 Few cells 107

[20] PCRAM 2011 128 Mbit 108

[21] PCRAM 2013 128 Mbit 109

[22] RRAM 2015 2 Mbit 105

[23] RRAM 2017 16 Mbit 106

[24] RRAM 2019 4 Kbit 107

[25] STT-MRAM 2020 8 Mbit 105

[26] STT-MRAM 2020 32 Mbit 106

Table 1 shows array-level bit cell write endurance values for
ELMs from literature. Throughout this work, we conservatively
assume a bit cell write endurance of 106, with which we show
multi-year system lifetimes for CPU-based systems (see Sec. 6.4).
Achieving our lifetime goals even with a pessimistic 106 limit gives
us more freedom to select memory technologies for their other
favorable properties, such as energy and latency. Device advances
beyond 106 allow our technique to meet multi-year lifetimes for
architectures which generate much more write traffic, such as GP-
GPUs (see Sec. 7.2).

3.2 Simulated M3D System
Prior work has shown significant EDP benefits for M3D systems [2–
15]. Using workloads from Table 3, we performed independent sim-
ulations of an M3D system and compared against an off-chip DDR4
baseline, an HBM2 [27] system, and an all-SRAM-main-memory
system, and found EDP benefits in line with prior publications.
With past work having established EDP benefits, this paper focuses
on system lifetime.

Table 2: M3D system specification for lifetime analyses.

Cores
8 cores (MT workloads), 1 core (ST workloads);
2 GHz clock frequency; out-of-order execution;
7nm FinFET; 1.8 nJ/inst.; 80 mW/core leakage

L1d 32 KiB (private); 8-way; 64B lines;
4 cycle access; 0.72 pJ/bit; 1 mW leakage

L1i 32 KiB (private); 4-way; 64B lines;
3 cycle access; 0.61 pJ/bit; 1 mW leakage

L2 256 KiB (private); 8-way; 64B lines;
10 cycle access; 1.8 pJ/bit; 3 mW leakage

L3 1 MiB/core (shared); 16-way; private; 64B lines;
20 cycle access; 2.4 pJ/bit; 100 mW leakage

Swap Buffer 128 KiB (shared), 10 cycle access; 1.8 pJ/bit, 2 mW leakage

Memory:
Monolithic 3D

7nm monolithic RRAM; 8 channels;
28.4 GiB/s/ch. read; 12.8 GiB/s/ch. write;

49 cycle read; 82 cycle write;
2.3 pJ/bit read; 4.7 pJ/bit write;

MD1 queueing model; 100 mW leakage

Network 400 Gbit/s ethernet;
200 pJ/bit (80 W) per direction

1.6 Tbit/s interposer;
50 pJ/bit (80 W) per direction

The M3D system we use for lifetime analyses is shown in Table 2.
We use DESTINY [28, 29] to derive the monolithically-integrated
RRAM [30] memory access characteristics, including wire and in-
terconnect. First, we run DESTINY using 28nm monolithic RRAM
technology parameters from a major manufacturer. These parame-
ters include bit cell area and aspect ratio; bit cell resistances and
capacitances for the low- and high-resistance states; SET and RE-
SET voltages, pulse durations, and energies; access transistor width;
and access transistor voltage drop. We then scale the 28nm results
to 7nm using contacted gate pitch, supply voltage, gate capacitance,
and drive current formulas. DESTINY assumes that all write-verify
logic resides off of the critical path.

Throughout the paper, we simulate workloads using the zsim [31]
architectural simulator, GCC 10 compiler at optimization level -O3,
and Debian 11 operating system. For all workloads, we simulate 50
billion instructions while the workload is running at steady state
(i.e., past any initialization phases).

3.3 Workload Selection
Our evaluations include the SPEC CPU 2017 [32] suite, as it contains
workloads spanning business, scientific, creative, and technical

MC-ELMM: Multi-Chip Endurance-Limited Memory Management

domains. Some SPEC workloads are single-threaded (“spec_st”),
and some are multi-threaded (“spec_mt”).1 All other workloads
are multi-threaded. We also evaluate several machine learning
workloads for both inference and training: the ResNet-152 [34]
convolutional neural network (CNN), a long short-term memory
(LSTM) [35] network, a Transformer attention-mechanism [36]
natural language processing (NLP) network, and a generative ad-
versarial network (GAN) [37].2

For graph analytics, we run breadth-first search (BFS), connected
components (CC), maximal independent subset (MIS), PageRank [40],
and graph radii algorithms using the Ligra [41] suite. For these
workloads, execution characteristics rely heavily not just on the
algorithm being run, but on the dataset being analyzed. For this
reason, we evaluate each graph algorithm on two distinct inputs:
(i) the real-world LiveJournal dataset [42, 43], and (ii) a randomized
R-MAT [44] graph.

We use Linux perf to measure last-level cache misses per kilo
instruction (LLC MPKI), as well as memory read and write band-
width. We use GNU time to measure maximum resident set size
(RSS): the maximum amount of physical memory a process has
mapped throughout its runtime. All profiling runs were performed
on a dual-socket, 8-cores-per-socket Intel Haswell systemwith stan-
dard hardware prefetchers enabled. To normalize results across our
single-threaded and multi-threaded workloads, we express mem-
ory traffic in units of bytes per kilo instruction. Our results are in
Table 3.

The SPEC workloads span a wide range of memory intensities.
Themachine learning workloads, while bandwidth-intensive, gener-
ally have low MPKI values. This is likely because modern machine
learning frameworks use batch processing to enhance dataflow
to compute units. The graph analytics workloads are especially
memory-intensive, with both high read/write bandwidths, and high
LLC MPKI values.

In Sec. 7, we analyze general-purpose GPU (GP-GPU) workloads
and in Sec. 8.4 we analyze workloads running across a production
HPC cluster. In these, we observe similar trends.

4 EXTENDING LIFETIME BY BUFFERING
WRITES

4.1 First Line of Defense: The Last-Level Cache
Write-back caches inherently prevent many writes from reaching
main memory. Thus, before considering purpose-built write buffers,
we first explore the effect of last-level cache (LLC) size in aiding
system lifetime.

Fig. 2 shows overall system lifetime as LLC size is increased. All
other specs are as in the M3D system in Table 2, with a 106 cell
write endurance. The LLC’s 16-way set associativity is similar to
our real Haswell system’s 20-way LLC, and its maximum 8-MiB-
per-core size is also similar. Increasing LLC size quickly runs into
diminishing returns. Our workloads’ RSSes (Table 3) are gigabytes
in size; thus, at some point, dirty data must be evicted from the
1spec_mt contains parallel HPC workloads similar to the PARSEC [33] suite. From the
full SPEC suite, we omit the cam4, exchange2, and leela workloads, as their small
write traffic volumes obviate lifetime concerns.
2We evaluate all machine learning workloads on both the Apache MXNet [38] and
Google TensorFlow [39] frameworks, and use whichever implementation produced
the higher LLC miss rate.

Table 3: Workloads and their characteristics.

Workload LLC
MPKI

RSS
(GiB)

Bytes
read

per kInst

Bytes
written
per kInst

1 spec_st.bwaves 0.66 11.14 653.22 95.95
2 spec_st.deepsjeng 0.36 6.72 13.27 28.75
3 spec_st.gcc 2.39 7.47 370.47 10.26
4 spec_st.mcf 9.61 3.87 625.13 88.40
5 spec_st.omnetpp 5.71 0.24 230.53 74.65
6 spec_st.perlbench 0.01 0.20 0.55 0.33
7 spec_st.pop2 0.50 1.45 134.10 75.12
8 spec_st.roms 1.61 10.06 440.31 117.77
9 spec_st.x264 0.20 0.16 21.21 11.78
10 spec_st.xalancbmk 0.21 0.47 22.60 9.85
11 spec_mt.cactubssn 4.04 6.57 187.17 52.68
12 spec_mt.fotonik3d 4.57 9.42 771.36 446.18
13 spec_mt.imagick 0.02 6.91 3.71 2.00
14 spec_mt.lbm 0.50 3.15 1304.26 972.20
15 spec_mt.nab 0.04 0.57 19.35 1.40
16 spec_mt.wrf 0.40 0.19 68.48 46.78
17 spec_mt.xz 0.70 15.04 32.77 29.77
18 ml.gan 0.70 0.40 121.56 68.15
19 ml.lstm_inf 0.86 0.74 56.21 7.99
20 ml.lstm_train 3.14 8.76 431.45 210.84
21 ml.resnet152_inf 1.79 1.12 165.65 35.84
22 ml.resnet152_train 2.29 13.59 194.39 64.86
23 ml.transformer_inf 0.54 3.32 88.22 36.96
24 ml.transformer_train 0.32 10.24 50.05 22.98
25 graph.bfs_lj 7.91 2.74 575.20 101.93
26 graph.bfs_r10m 13.90 4.43 771.30 136.94
27 graph.cc_lj 9.52 2.74 436.49 81.77
28 graph.cc_r10m 24.97 4.43 1023.23 115.63
29 graph.mis_lj 7.35 2.74 364.28 73.79
30 graph.mis_r10m 17.47 4.43 722.32 150.19
31 graph.pagerank_lj 29.13 2.74 1029.43 48.59
32 graph.pagerank_r10m 62.91 4.42 2204.71 102.25
33 graph.radii_lj 12.91 2.74 561.64 75.79
34 graph.radii_r10m 34.28 4.42 1370.11 150.96

4 8 16 32 64
LLC size (MiB)

10−3

10−2

10−1

100

101

102

Lif
et
im

e
(d
ay

s)

Fig. 2: Single-chip lifetime vs. LLC size (higher is better).
Benchmarks from Table 3.

megabytes-large cache. The LLC alone cannot meet a multi-year
system lifetime.

4.2 Aside: An Explicit Write Buffer
We now consider the effect of an explicit write buffer [45–47]. Sim-
ilar to most LLC implementations, we use a single shared write
buffer (and not one per core) to coalesce requests across multiple
cores. We place the write buffer after the LLC to eliminate writes
immediately before they reach memory.

The write buffer allocates lines only upon their eviction from
another cache (here, the LLC); a read will not fault a line into
the write buffer. Like many LLCs, it uses a physically-indexed,
physically-tagged (PIPT) scheme to avoid issues with coherence
and aliasing, and is 16-way set-associative.

Bartolo, et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
0.0

0.1

0.2

0.3

0.4

Pr
 [b
it
ch
an
ge
s u
po
n
wr
ite
]

spec_st spec_mt ml graph

Fig. 3: Bit-toggle probabilities (lower is better).

1 2 4 8 16 32
Write buffer size (MiB)

100

101

Av
er

ag
e

lif
et

im
e

(d
ay

s)

8 MiB LLC + X MiB LFU
8 MiB LLC + X MiB LFW
8 MiB LLC + X MiB LRU
8 MiB LLC + X MiB LRW

8 MiB LLC only
16 MiB LLC only
32 MiB LLC only

Fig. 4: Single-chip lifetime vs. write buffer size (higher is
better).

For the write buffer’s eviction policy, we compare LFU (least
frequently used, which counts both reads and writes as a “use”),
LFW (least frequently written, which counts only writes), LRU
(least recently used), and LRW (least recently written). All four
of the these policies can be implemented efficiently in hardware:
LFU/W, by maintaining a small frequency table within each set,
and LRU/W by maintaining a small timestamp table. The simulated
M3D system is otherwise configured as in Table 2.

Each write buffer configuration is paired with an 8 MiB LLC. For
comparison, we also measure the effect of simply increasing LLC
size with no write buffer. Fig. 4 shows our results. The write buffer’s
effectiveness vs. a similarly-sized LLC drops off substantially at
larger sizes. For this reason, we elect not to include the write buffer
in our simulated system elsewhere in the paper.

5 WEAR-LEVELINGWITHIN A MEMORY
FRAME

5.1 Prequel: Redundant Write Elimination
Our within-the-frame scheme uses redundant write elimination
(RWE) [48] as a subroutine. Before writing a dirty cache line back
to main memory, that cache line’s old data is read in from memory.
Then, circuitry in thememory controller computes a bitmask, where
each mask bit is 1 if that bit differs in the cache line and main
memory, and 0 otherwise; i.e., bitmask = (dirty cache line ⊕
line in memory). Finally, when writing the cache line back to
memory, only bit cells enabled by the bitmask are actually toggled.
Table 2’s write energy and latency are inclusive of the extra read
for RWE.

In Fig. 3, for each workload, we plot the average probability
that a bit will be toggled upon a write. Different workloads are
shown on the x-axis and are numbered as in Table 3. To collect bit
toggle statistics, we use a modified version of DynamoRIO’s [49]
drcachesim [50] tool. In every workload we observe, bit toggle
probability was less than 0.5, with a mean of 0.24.

5.2 A Second Observation about Bit Write
Patterns

We use RWE to only write bits that “actually” changed in memory.
However, some bits may change much more frequently than others;
for example, the low-order bits of a counter change exponentially
more often than high-order bits. We therefore desire to “spread out”
bit writes via rotation, a form of remapping.

[48] rotates the contents of a cache line by randomized byte-
aligned values as they are written back to memory. We propose
a conceptually-similar subroutine, dubbed “randomized rotation”
(RR). Our RR differs from [48] in two ways: (i) We allow shifting
by any number of bits, not just 8-bit (byte)-aligned, for greater
uniformity, and (ii) our RR metadata is compatible with paged
virtual memory, which enables our multi-frame (Sec. 6) and multi-
node (Sec. 8) techniques. The combined efficacy of RWE & RR over
LLC-only is shown in Fig. 1.

5.3 Hardware & OS Support for RWE & RR
Our goal is to support redundant write elimination (RWE) and
randomized rotation (RR) at the page level, to provide an abstrac-
tion to base our single-chip and multi-chip schemes on. RWE and
RR require minor hardware and software modifications. For RWE,
computation and application of the write bitmask can be done with
small modifications to the memory controller (Fig. 5), without any
intervention from processor cores. Existing ELM macros from ma-
jor suppliers already contain the bitmask-enable circuitry. For RR,
page table entries must be modified to support the addition of the
bit-level frame rotation field (“RR value”). The field indicates the
bit-level offset by which the frame’s contents should be shifted
before applying a read or write.

5.3.1 Page Table Entry Size. Fortunately, for RR, the number of
bits required to be added to each page table entry is small. In our
example system, we use 1 MiB pages. 1 MiB falls in between con-
ventional 4 KiB pages and 2 MiB Linux-x86-64 huge pages [51],
which are commonly used to reduce paging overhead. Thus, to
represent a bit-level RR value in [0, frame size in bits), we
require log2(1 MiB * 8 bits/byte) = 23 bits.

Consider the page table entry (PTE) structure for x86-64 [52].
Page table entries in x86-64 are word-aligned (i.e., aligned to a

MC-ELMM: Multi-Chip Endurance-Limited Memory Management

Fig. 5: LLC and memory controller which support RR, RWE, and frame promotion.

multiple of 8 bytes). Thus, many bits in the x86-64 PTE are currently
simply ignored or reserved. Specifically, there are 26 such bits. Thus,
we can fit our 23-bit RR value into just the ignored/reserved bits,
with 3 bits to spare. Our RR metadata therefore does not increase
PTE size at all.

5.3.2 Bootstrapping Page Table Lookups. Recall that each PTE now
stores the RR value of that page as metadata. However, we cannot
look up the RR value of the highest level of the page table (“page
directory”) from the page containing the page directory itself. To
remedy this, for each process, the OS additionally stores the RR
value of the page directory. This enables us to bootstrap the virtual-
to-physical page table walk.

Of course, not all physical frames are guaranteed to be mapped
to a process at any given time. Yet, we still wish to keep track of
their RR metadata. For this, the OS additionally maintains a “null
page table” of unmapped frames, which acts as a sort of free list.
The PTEs within the null page table contain the RR values for all
unmapped frames.

5.3.3 Impact on TLB. As in anymodern page table implementation,
we use a (multi-level) TLB to cache page table entries to speed
lookups for virtual-to-physical translations. Each TLB entry must
now additionally include the RR bits. For a 1024-entry TLB, using 1
MiB pages, this is an extra (1024 × 23 bits per entry) = 3 KiB.

5.3.4 An RR Cache for LLC Writebacks. Before performing any
memory access (read or write), the memory controller must have
the RR offset available. For reads, this information is provided via
the aforementioned RR field in the page table or TLB. However,
writebacks require a different approach. When the PIPT LLC ini-
tiates a writeback, the physical frame address of the evicted line
cannot be used for RR lookups on the virtually-addressed page
table or TLB.

For this reason, separately from the LLC, we maintain a small RR
cache (RRC) that maps physical frame addresses to those frames’
RR values. Upon LLC writeback, the RRC is consulted to determine
the frame’s RR value. Upon an RRC miss, the RR value must be
read from memory; specifically, it is read from the frame’s header
region residing at a fixed offset from the start of the frame itself
(see Fig. 8). Besides faulting a fresh RR value into the RRC via a
read of the frame header, we must also support a simple update
operation, where the RR value corresponding to a given frame
address is updated. Sec. 6.2 details the circumstances of this update.

An RRC miss upon LLC writeback incurs an extra memory read,
so the RRCmust be highly effective. Fig. 6 shows the weighted mean
across benchmarks for RRC hit rate. Even at small sizes and low
associativies, the RRC’s hit rate approaches 100%. The effectiveness

256 512 1024 2048 4096 8192
N. entries

92%

94%

96%

98%

100%

Hi
t r
at
e

1-way (direct-mapped)
2-way
4-way
8-way

Fig. 6: RRC hit rate sensitivity to size and associativity.

of the RRC can be attributed to the use of jumbo frames; each
RRC entry “covers” 1 MiB of main memory. 4 KiB pages require
a much larger RRC for an equivalent hit rate; using 4 KiB pages,
the RRC sizes required for a 99% hit rate were between 131,072 and
262,144 entries (at any associativity). Using 1 MiB pages, a 4-way,
1024-entry RRC consumes under 10 KiB of SRAM.

6 WEAR-LEVELING AMONG MULTIPLE
FRAMES

We use RWE and RR to “spread out” bit writes within the frame.
Likewise, a similar phenomenon is present at the page level: some
pages (e.g., those containing the call stack) will be written more
often than others. If we periodically remap these heavily-written
virtual pages throughout physical memory, we can increase the
lifetime of the system. To that end, we devise a hybrid hardware-
software scheme dedicated to managing the wear level of all frames
within a chip’s main memory. To simplify and reduce its hardware
footprint, our scheme leverages standard system main memory
for bookkeeping; yet it accelerates some critical-path management
operations in hardware to reduce overhead. Crucially, our scheme
can extend to multi-chip systems, all while minimally interrupting
execution.

Our wear-leveling system operates via a new metadata structure,
which resides in the ELM itself. This metadata structure is separate
from, and complementary to, our modified page table. In Sec. 6.2,
we demonstrate the low endurance overhead of managing metadata
directly in ELM.

Bartolo, et al.

Fig. 7: Frame descriptor (FD) queue hierarchy.

Fig. 8: Frame descriptor (FD) data structure within a frame.

6.1 New Metadata Structure
The OS maintains a multi-level hierarchy of queues. Each queue
is implemented as a linked list of descriptors of physical frames.
The nodes (frame descriptors) within each queue correspond to
frames with a similar (within a specified margin) level of write
wear. Specifically, “write wear” is the number of bit toggles that
have occurred, anywhere in the frame, since manufacture. Fig. 7
shows the queue hierarchy data structure. F is the number of bits
in a frame, C is the cell write endurance, and N is the number of
levels (queues).

Upon the first power-up of the system after manufacture, all
frames initially reside in the first queue. The queues data structure
persists across reboots per the use of non-volatile memory. To imple-
ment the queues, we use intrusive doubly-linked lists, where each
list node is a “frame descriptor” (see Fig. 8). To improve memory
reference locality, each frame descriptor is stored as a header within
the frame itself, as in Alloy Cache [53] and Unison Cache [54]. Each
frame descriptor contains the following:

(1) A randomized rotation (RR) value, indicating the amount by
which the frame’s non-header contents have been rotated.

(2) A pointer to a PTE, or list of PTEs (for aliased pages), for
the virtual page(s) mapped onto the frame. This enables a
fast inverse mapping.

(3) The index of the queue that this frame descriptor is currently
a member of. This enables the next-highest queue to be
found in constant time.

(4) prev and next pointers for the intrusive linked list.

We also store a “lifetime bit writes” counter for the frame at a
variable (randomly-rotated) offset. Unlike other frame metadata
fields, this counter changes upon every write, so it is important to
spread out its bit writes via RR. Other fields’ writes are bounded by
N, and N < C, so write wear upon them is not problematic. These
fields are therefore stored at fixed offsets within the header.

The objective of the hierarchy of queues is to continuously “bin”
frames by their amount of bit write wear. We progressively “pro-
mote” frames up the hierarchy as they increase in write wear. When
a dirty cache line is evicted from the LLC, the memory controller
does the following:

(1) Write the cache line back to main memory, using the RWE
subroutine. Though we do require the RR value (via the
RR cache) to apply the write, we do not shift/remap the
entire frame contents at this point; only later, upon frame
promotion.

(2) Compute the popcount (Hamming weight) of the bitmask
from the RWE. This value equals the number of bits that
were actually toggled in memory.

(3) Read the previous lifetime bit writes field from the frame
descriptor, and increment it by the new bits-toggled count.

(4) If the frame’s new lifetime bit write count exceeds the
threshold value for its current queue, the memory controller
fires an interrupt for the OS to promote the frame.

Threshold values are calculated as follows. First, the system de-
signer chooses a fixed number of queues (levels of the hierarchy),
which we call N. Then, the threshold value T between each level is
defined as T = F×C

N .
Each level of the hierarchy represents 1

N of the maximum ex-
pected number of bit writes that the frame could sustain with RWE
and RR spreading writes uniformly. N should be chosen to be high
enough to rebalance often for uniformity, yet low enough to not
cause excessive write wear from the swaps themselves. In our ex-
periments, we choose N = 50,000, as this budgets 5% of overall cell
write endurance (C = 106) for swap-instigated writes.

6.2 Frame Promotion Algorithm
Upon frame promotion, the OS does the following:

(1) Remove the descriptor for the to-be-promoted frame from
its current queue.

(2) Append the promoted descriptor to the tail of the next-
higher queue.

(3) Pop the head of the lowest active queue.
(4) Push the descriptor we just popped in (3) onto the tail of

the same (lowest) queue.
(5) Swap the memory contents of the frame from (2) with

the frame from (4). While performing the swap, shift each
frame’s contents to its new RR value.

(6) Update the “current queue” field of both frame descriptors
to reflect their new queues.

(7) Follow the PTE pointer of both frame descriptors to their
PTE(s), and update both frames’ PTE(s) + TLB entries to re-
flect their new virtual-to-physical mappings and RR values.

(8) In the RRC, update the RR values for the two frames.

MC-ELMM: Multi-Chip Endurance-Limited Memory Management

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

10−1
101
103

Lif
et
im
e
(y
ea
rs
)

LLC + RWE & RR only 4 GiB per core 8 GiB per core (1 year)

spec_st spec_mt ml graph

Fig. 9: Single-chip workload lifetimes (higher is better).

Note that we perform steps 3 and 4 (pop and push) to more
uniformly select frames for promotion within the same level. This
is why each level of our hierarchy is a queue.

The promotion process itself does not add significant write wear
to the frames. For the most-written frame, promotion only occurs
once every 1

#
fraction of the expected lifetime of the system, and is

even lower for all other frames. For example, for an expected system
lifetime of 3 years, and N = 50,000 queues, we promote (swap)
the most-written frame once every half an hour. Our simulations
pessimistically assume no special write elision when swapping
“clean” pages.

Neither do the frames representing the page table experience
much additional wear from the updates. spec_mt.lbm induces
frame promotions more frequently than any other workload, at 135
per second, or once every 7.5 ms. Upon promotion, 11 bytes (8 for
virtual-to-physical mapping, and 3 for RR value) must be updated
for each of the two PTEs participating in the swap. At 135 promo-
tions per second, this results in an extra 3 KiB/s of write traffic. The
data written to update the queues structure is only slightly larger:
each of the two frames update their RR (3 bytes), queue index (2
bytes), and 4 × 8-byte pointer fields, for 74 bytes/promotion, which
is 10 KiB/s at 135 promotions/s.

6.3 Asymptotics
Step 1 can be done in constant time, as we just wrote the frame, so
we have its (fixed-offset) descriptor. Step 2 is also constant-time, as
each frame descriptor contains a current queue index. Steps 3 and 4
are constant-time, as we maintain the heads and tails of all queues
in an array. The swap in step 5 is constant-time (all frames are the
same size). Finally, all frame descriptors contain backpointers to
the PTE(s) mapped onto them, with a singly-indirect fast path for
non-aliased frames. Thus, page table metadata can be updated in
constant time (that of a single pointer dereference plus write) for
non-aliased frames, and linear time for aliased frames. The two RRC
updates are constant-time.

6.4 Single-Chip Lifetime
We simulate the combined RWE, RR, and frame-promotion algo-
rithms using a system-level in-house simulator written in C++. This
simulator takes in zsim execution traces from each workload as
input, and outputs frame promotion frequency and lifetime statis-
tics. Lifetimes are shown in Fig. 9. For comparison, the effect of
within-the-frame-only techniques is shown in blue. For the com-
bined techniques, we report lifetime as a function of main memory
gigabytes per core for several reasons. First, server systems found
in datacenters and HPC today commonly have a memory-to-core
ratio of around 2 to 16 gigabytes per physical core. We also do so

to show that lifetime in our endurance scheme scales practically
linearly with the total capacity of main memory. If we have twice
as much memory to spread writes out over, we can expect twice
the lifetime, and our simulations confirm this.

6.5 Simulated Overhead
To simulate the overhead of our frame-promotion scheme, we make
some pessimistic simplifying assumptions. Chief amongst these
is that, upon frame promotion, all execution is paused while the
promotion process is occurring. In reality, this need not be the case:
promotions can be queued and deferred while the main processor
runs uninterrupted.

To support frame promotions, we add a small 128 KiB scratch
buffer alongside the LLC for swaps (see Table 2). All data that is
swapped flows through this buffer only, which eliminates the issue
of caches becoming polluted with swap data upon promotion.

We simulate the time and energy required for each promotion by
summing the following: (i) the round-trip cost to trap in and out of
the kernel to service the promotion-triggered interrupt; (ii) the cost
to update all data structures once in the kernel; and (iii) the cost
required to rotate and swap the contents of the frames (two frame
reads + two frame writes). Using C microbenchmarks, we measure
kernel trap round-trip cost on our real Haswell system at 55 µs, and
measure kernel data structure update cost at 10 µs. Core energy
is calculated per these latencies and energy per instruction; ELM
bandwidth & energy (Table 2) determine the cost for the data swap
itself. For our most promotion-intensive workload, spec_mt.lbm,
we observe a 0.9% runtime and 1.0% energy overhead, with lower
overheads for all other workloads.

6.6 Promotions Without Interrupting Execution
Frame promotions may be performed in the background. For this, a
small interrupt-handling core/unit should be included in the system,
so that the main cores can run uninterrupted. Across all workloads,
the highest steady-state promotion rate we observe is 135 promo-
tions per second, or once every 7.5 ms. One frame promotion, inclu-
sive of all data transfer and metadata updates, takes around 70 µs.
Thus, promotion requests can be serviced in the background, with a
bounded queue depth, at steady-state. Though multiple promotions
may be triggered within 70 µs of each other, they can be queued to
be serviced sequentially, in the background, by the hardware. We
perform another experiment measuring the maximum promotion
queue depth at any point in the workload’s execution under these
assumptions. The highest maximum queue depth we observe for
any workload is 15, and the mean maximum queue depth is 5. A
system designer can thus pick a relatively small fixed size for such
a queue, with execution pausing only if the queue becomes full.

Bartolo, et al.

CPU
avg.

CPU
max.

GPU
polybench

max.

GPU
cutlass
max.

GPU
deepbench

max.

GPU
parboil
max.

GPU
rodinia-3.1

max.

GPU
ubench
max.

102

103

104

105

W
rit
e
Ba

nd
wi
dt
h
(M

iB
/s
)

0.0

0.2

0.4

0.6

0.8

1.0

Bi
t T

og
gl
e
Pr
ob

.

Fig. 10: CPU- and GP-GPU-based write bandwidths and bit
toggle probabilities (lower is better).

For these simulations, we use N = 50,000 queues, with a bit cell
write endurance of C = 106. The full system specifications are per
the M3D system in Table 2. We use a 1-MiB-per-core, 16-way LLC
only, with no explicit write buffer.

7 ALTERNATE ARCHITECTURE: GP-GPU
7.1 Workload Characteristics
GP-GPUs, with thousands of simple parallel cores coupled with
wide memory buses, make for an interesting point of comparison
with CPU-based systems. We measure write bandwidth (in MiB/s),
as well as bit toggle probability, as these, along with overall system
memory capacity, are the primary determinants of memory lifetime.
CPU workloads are from Table 2, with write bandwidth measured
on our Intel Haswell system at 2.0 GHz (as in Sec. 3.3), and bit
toggle probability simulated as in Sec. 5.1. For the GP-GPU, we
use Accel-Sim [55–58] to simulate an NVIDIA Quadro GV100 GP-
GPU [59, 60], featuring 5120 CUDA cores running at 1132 MHz
and 32 GB of HBM2 memory with 870 GB/s of combined memory
bandwidth.

For GP-GPU, we simulate the CUTLASS [61], DeepBench [62],
Parboil [63], Rodinia 3.1 [64, 65], and Accel-Sim “µbench” [58]
suites, and plot the maximum write bandwidth observed in any
kernel within each suite. We were unable to find an easy way to
gather bit-toggle statistics for GP-GPU execution. As a remedy, we
additionally simulate the Polybench [66] suite, which contains both
CPU C and GP-GPU CUDA kernel implementations, and simulate
its bit-toggle probability on a CPU (as in Sec. 5.1), and its write
bandwidth on the GP-GPU.

Fig. 10 shows our results. The GP-GPU workloads’ write band-
widths exceed the largest CPU write bandwidth we observe by
around 500×. The absolute-highest GP-GPU write bandwidth we
observe, 661 GB/s, represents around 76% of the GV100’s 870 GB/s
peak combined memory bandwidth. Bit-toggle probability was also
higher for the Polybench GP-GPU workload. The GP-GPU’s archi-
tecture is capable of generating much more write traffic than a
typical CPU.

7.2 Lifetime
We now quantify the effect of the GP-GPU’s massively higher
write bandwidth on system lifetime. We simulate all previous CPU
and GP-GPU workloads, using our endurance techniques from

106 107 108 109

Bit cell write endurance
10 3

10 2

10 1

100

101

102

103

104

Lif
et

im
e

(y
ea

rs
)

CPU
GPU
1 year

Fig. 11: CPU- andGP-GPU-based lifetimes, using 64GiBmem-
ory (higher is better).

Sec. 5 and 6. The simulated CPU-based system is the M3D one
from Table 2. The GP-GPU simulated is the GV100 with endurance-
limited memory. To make the comparison more straightforward,
the CPU and GP-GPU systems both have the same main memory
capacity (64 GiB). For the CPU system, this is equivalent to 8 GiB
per core on multithreaded workloads from Sec. 6.4; for the GP-GPU,
it is 2× the GV100’s memory capacity.

Fig. 11 shows our results. The dashed line indicates a 3-year
lifetime. In summary, because GP-GPUs generate massively-higher
write traffic, they require bit cell write endurances around 109 to
achieve multi-year lifetimes, even using our techniques (and are
well under one year without them). Because our techniques from
Secs. 5 and 6 support general-purpose CPU-facing virtual memory,
they can be applied to GP-GPUs as well, with the addition of a small
management core (which many GP-GPUs already contain).

8 MULTI-CHIP
8.1 Multi-Node Execution: Defining the

Problem
Traditional DRAM systems are commonly arranged in a non-uniform
memory access (NUMA) fashion. For any given compute core, some
regions of memory can be accessedwith lower overhead than others.
Typically, this involves different regions of memory being “man-
aged” by different groups of cores (“sockets”), with inter-socket
links providing connectivity between sockets. When using multiple
M3D chips networked together, we similarly have a NUMA setup.

When running workloads on a NUMA system, we must choose
which NUMA pool of memory to allocate pages from. There are
two common policies for doing so: 1. First-touch, and 2. Interleave.
In the first-touch policy, the page is mapped to the NUMA node of
the first core that touches it. This is the default allocation policy
of many systems, including the Linux kernel. First-touch is often
advantageous because it assumes subsequent accesses to the same
page of memory will be primarily made by the same core that first
accessed them. If this is indeed the case, then the first-touch policy
minimizes off-NUMA-node accesses, which is usually advantageous
for execution time and energy.

On the other hand, interleaving seeks to do the opposite: it
distributes new page requests across all possible NUMA nodes in

MC-ELMM: Multi-Chip Endurance-Limited Memory Management

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
0%

20%

40%

60%

On
-c

hi
p

re
ad

s +
 w

rit
es First-touch Interleave

spec_mt ml graph

Fig. 12: NUMA on-chip memory access percentage, first-touch vs. interleave (higher is better).

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
1.0

1.5

2.0

2.5

W
rit
e
im
ba
la
nc
e First-touch

Interleave

spec_mt ml graph

Fig. 13: NUMA write imbalance factor: most-written chip vs. average (lower is better).

the system, usually in a basic round-robin fashion. While this is
often bad for locality, resulting in many off-chip accesses, it can
sometimes lead to more-even utilization of memory interconnects.

In Fig. 12, we select every multi-threaded workload from our set
and simulate them in a NUMA setting. Each workload runs across
8 cores, and each of those 8 cores is assigned to a separate NUMA
domain. For each workload, we simulate both a first-touch and an
interleave policy. Across the board, we see that first-touch is indeed
better at minimizing off-chip accesses. This is particularly crucial
in our M3D setting, where off-chip accesses are much costlier than
on-chip.

In Fig. 13, we now measure the amount of “write imbalance” in-
curred by the first-touch and interleave policies. “Write imbalance”
is defined as the number of bytes written to the most-written chip,
divided by the average number of bytes written across chips. A
write imbalance of 1 indicates perfectly-balanced writes.

Here, first-touch loses substantially to interleave. Consider that
multi-threaded workloads commonly have one “master” thread,
with all other threads being worker threads. Suppose, for example,
that the master thread does much more writing than the worker
threads. In this case, the chip hosting the master thread will incur
higher write wear than the others. This imbalance presents an
opportunity for further extending system lifetime.

8.2 Multi-Chip Wear Leveling
Most of the time, to wear-level, we prefer to move pages within
the same chip. This lets us avoid the large off-chip bandwidth,
latency, and energy penalties. However, as we saw, many multi-
node workloads produce an uneven amount of write wear across
chips. Therefore, we desire a way to balance the amount of write
wear evenly among multiple chips. We combine our insights from
Secs. 5, 6, and 6.4 to offer a lightweight scheme for multi-chip wear
leveling, featuring the locality benefits of a first-touch policy, but
with a lower write imbalance.

Our solution is to adopt a first-touch allocation policy, but to
periodically swap the entire contents of one node’s memory with
another node (while performing process migration [67–69] as well).
Because each node has paged memory, the swap may proceed in

the background, in units of individual pages, as in VM live migra-
tion [70–79]. However, in our later overhead analysis in Sec. 8.5,
we pessimistically assume that all execution stops during the swap.

We must now determine how often to swap nodes’ memories
and which nodes’ memories should be swapped. In our single-chip
setup, we mapped virtual pages onto physical frames. Here, we
likewise perform a mapping of “jobs” onto physical M3D chips. For
this, we use a scheme extremely similar to our single-chip one: a
hierarchical system of queues (Fig. 7). Instead of frame descriptors,
we now have node descriptors; instead of F, the number of bits
in a frame, we now use M, the number of bits in memory for an
entire node. We again choose T = 50,000 as 5% of our 106 cell write
endurance C; this means a swap will be initiated after every 1

50,000
of the node’s overall write endurance.

Each node’smemory controllersmaintain a counter, which counts
the total number of bits written (after RWE) to that node’s mem-
ory, for its entire lifetime (since manufacture). Whenever a frame
is written anywhere on that node, we increment the counter by
the number of bits toggled by that frame write. When the counter
exceeds its threshold value, the memory controller fires an OS in-
terrupt to promote the node in the queue hierarchy. Similarly to
our single-chip scheme, promotion involves a swap of memory
contents.

All nodes’ OSes maintain a coherent copy of the node descriptor
hierarchy. Promotions happen infrequently enough that coherence
overhead is not a concern (Sec. 8.5). When a promotion is triggered,
the triggered node’s OS does the following:

(1) Remove its own node descriptor from its current queue.
(2) Append that descriptor to the tail of the next-higher queue.
(3) Pop the head of the lowest active queue. This chooses the

“target” node.
(4) Push the target node descriptor onto the tail of the same

(lowest) queue.
(5) Broadcast to all other nodes that the triggered node and

target node will swap.
(6) Swap the triggered and target nodes’ memory contents.
(7) Update the “current queue” field of both node descriptors

to reflect their new queues.

Bartolo, et al.

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
100

101

102

Lif
et

im
e

(y
ea

rs
)

Single-chip only Single- and multi-chip

spec_mt ml graph

Fig. 14: System lifetimes, with multi-chip wear leveling disabled vs. enabled (higher is better).

(8) Broadcast to all other nodes that the swap is complete.
Each node descriptor contains the following:
(1) The index of the node it represents.
(2) The index of the queue that this node descriptor is currently

a member of.
(3) prev and next pointers for the intrusive linked list.

Because each node maintains its own lifetime bit write counter,
this value need not be included in the node descriptors.

Since the number of nodes in a system is generally assumed to
be significantly fewer than the number of pages on a single node,
each node can maintain a copy of the node descriptor hierarchy in
memory with low overhead compared to the single-chip scheme.
Alternately, a centralized controller (or consensus-elected leader)
and single canonical database can be used to store the hierarchy. In
this case, nodes must still message the controller/leader (which is
responsible for serializing those requests).

8.3 Multi-Node Lifetime Benefits
Fig. 14 shows the benefits of our multi-node wear-leveling scheme.
Here, we select every multi-threaded workload from our set and
simulate them in NUMA mode on our simulator from Sec. 6.4. Each
workload is configured to run with 8 cores, and each of those 8
cores is assigned to a separate NUMA domain. Each NUMA domain
(chip) has 8 GiB of main memory and uses a first-touch alloca-
tion policy. We simulate expected lifetime with our multi-node
endurance mechanism disabled, and again with it enabled. For
homogeneous multi-threaded workloads running across multiple
NUMA domains, our multi-chip scheme increases lifetime over our
single- chip scheme by a geometric mean of 48%.

8.4 Heterogeneous Mixture of Applications
Finally, we simulate our multi-chip endurance scheme using data
from a real HPC cluster. We collected memory read and write sta-
tistics for jobs running on NERSC’s “Cori” Intel Haswell nodes over
the span of ten days [80, 81]. The CDF in Fig. 15 shows the read and
write bandwidths across all Cori’s Haswell nodes, sampled every
one second. These write bandwidth statistics are a key input to our
multi-node endurance simulation. We simulate using 8 nodes with
write bandwidth values drawn uniformly from the CDF.

The other two inputs to our multi-node simulation (besides write
bandwidth) are memory capacity per node, and bit toggle proba-
bility (using redundant write elimination as in Sec. 5.1). Each Cori
Haswell node has 32 physical cores and 128 GiB RAM. Because
measuring bit toggles requires intensive dynamic binary instrumen-
tation and is not supported by built-in architectural performance
counters, we were not able to gather bit toggle probabilities on Cori.

0 2 4 6 8 10
Memory Bandwidth (GB/s)

0%

20%

40%

60%

80%

100%

CD
F

Read
Write

Fig. 15: CDF of node-wide memory read/write bandwidth
from NERSC’s Cori Haswell nodes over ten days.

In this experiment, we therefore assume a bit toggle probability
of 0.5. We justify this conservative assumption by noting that 0.5
is higher than any probability we observe for any workload from
Sec. 3.3, and, furthermore, that an average bit toggle probability of
0.5 can be achieved for arbitrary data, by passing the contents to
be written through a pseudorandom function (PRF) such as a block
or stream cipher before they are physically written.

With multi-node wear leveling disabled, the simulated cluster
achieved a 2.5 year lifetime.With wear leveling enabled, it achieved
a 11.7 year lifetime, a 4.7× gain.

8.5 Simulated Overhead
To simplify our overhead analyses, we again pessimistically assume
that application execution on all nodes stops during a node pro-
motion. To swap node contents, the swap buffer (Table 2) is again
used for temporary space. As in our single-chip scheme, promotion
delay is simulated as interrupt, plus data structure update, plus
data transfer cost. We use the same 55 µs round-trip interrupt cost,
with added 50 µs data structure update cost. For multi-node swaps,
off-chip bandwidth (not intra-chip memory bandwidth) is the bot-
tleneck for data transfer. For this reason, we simulate using two
different node-to-node interconnects: 400 Gbit/s ethernet at 200
pJ/bit, and a 1.6 Tbit/s silicon interposer at 50 pJ/bit (see Table 2).

Swap energy is modeled by summing several quantities across
the two participating nodes. For both nodes, we pessimistically
assume that during swap kernel bookkeeping (105 µs trap + data
structure update, as above), all cores are spinning at IPC = 1. (In
reality, only one core/thread need perform the update.) To calculate
data energy, each node (i) reads its entire 128 GiB memory and
(ii) transmits that data over the wire, where it is (iii) received into

MC-ELMM: Multi-Chip Endurance-Limited Memory Management

Table 4: Comparison with related work. Our hardware & algorithms enablemultiplicative lifetime benefits from the techniques
below, with low runtime and energy cost.

Redundant
Write

Elimination

Intra-
(line, page)

Inter-
(line, page)

Physical-
virtual

remapping

Full paged
virtual memory

SRAM/DRAM
buffer/cache

Beyond CPU
(e.g., systolic,
GP-GPU)

Multi-node

[82]
[83]
[84]
[85]
[86]
[48]
[87]
[88]
[89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]
[97]
[98]
[99]
[100]
[101]
[102]
[24]
[103]
[10]
[104]
[105]

This Work

the other node’s swap buffer and then (iv) written into that node’s
memory. Thus, each of (i-iv) occurs twice, and all these energies are
added to the total. Finally, leakage energies for the duration of the
swap (bookkeeping latency plus data transfer latency) are added in.

We simulate multiple independent copies of our most swap-
intensive application (spec_mt.lbm) running on Cori. The applica-
tion invokes a node-to-node swap every 71 seconds. For the 400
Gbit/s interconnect, we observe a 5.4% runtime and 5.4% energy
overhead, and for the 1.6 Tbit/s interconnect, a 2.7% runtime and
2.8% energy overhead, inclusive of all overheads for our single-chip
scheme.

8.6 Promotions Without Interrupting Execution
As with single-chip frame promotions, multi-chip cross-node pro-
motions (memory swaps) can be performed in the background. As
in VM live migration, we recommend (but do not require) that each
node participating in the swap has around half of its memory free,
to enable concurrent buffering of the other node’s sent memory
contents and any updates. For two nodes with 128 GiB of memory
each, connected by 400 Gbit ethernet, the swap delay is around 2.5
seconds. On the cluster, we observe a swap every 71 seconds, so
swaps can be performed in the background at steady-state, with
a bounded promotion queue depth. In simulation, the promotion
queue depth never exceeded the number of nodes (eight).

9 RELATEDWORK
Many works have investigated the use of alternative memory tech-
nologies as a supplement to, or a substitute for, DRAM. [48, 84, 85,
89, 91, 94, 96–98, 100, 103, 106–109] propose PCRAM or RRAM as

either partial or total replacements for DRAM, but do not consider
multi-node NUMA systems. [110] analyzes ELM-NUMA systems
at the filesystem, rather than the main memory, level. [101] takes
an alternate approach to ELM-NUMA lifetime via node bandwidth
sharing and mellow writes [99]. [10] and [106] detail wear-leveling
schemes that use a very small amount of metadata, but require that
every single byte in main memory be shifted periodically. [108]
maintains a hierarchy of frames, but does not integrate RWE and
RR, and is single-node only.

Flash-based systems also employ wear-leveling schemes [111].
These can be broadly categorized as either static [112–116] or dy-
namic [117–122]. Static schemes attempt to move cold data to more-
worn blocks, whereas dynamic schemes repeatedly reuse blocks
with lesser erase counts, but do not attempt to move cold data.
Our technique encompasses all frames in memory, and thus incor-
porates benefits of both static and dynamic wear-leveling. Unlike
flash, ELMs such as PCRAM, RRAM, and STT-MRAM do not re-
quire high-overhead erase cycles before data can be reused (and
consequently do not require garbage-collection routines).

[123] thoroughly analyzes non-ELM NUMA systems and draws
the conclusion that, in comparison to then-current wisdom, con-
tention and queueing delays, not wire delays, were responsible
for the bulk of NUMA performance degradation. M3D is a drastic-
enough paradigm change to warrant revisiting these assumptions,
since, in M3D, on-chip communication is vastly more efficient
than off-chip. Hardware-assisted page placement [124, 125], Car-
refour [123], and AutoNUMA [126] can be thought of as first-
touch/interleave hybrids, but both consider DRAM systems only,

Bartolo, et al.

and do not attempt to co-optimize NUMA locality with ELM en-
durance.

Past work on M3D memory endurance has primarily focused
on special-purpose machine learning accelerators, and not general-
purpose CPU cores [105]. CPU-focused M3D work has thus far
not deeply investigated the NUMA locality effect, and how best
to preserve lifetime within that constraint. In contrast, our added
hardware and software (Sec. 5.3) are structured to multiplicatively
“stack” (Fig. 1) all techniques from Table 4, providing millions-
of-times higher lifetime over naïve execution, while preserving
runtime and energy benefits (Sec. 6.5, Sec. 8.5).

10 CONCLUSION
All NVM-enabled techniques, including monolithic 3D integra-
tion, must respect the issue of write endurance. M3D significantly
improves upon the energy-delay product, but imposes the addi-
tional NUMA scaling constraint. Our single-chip scheme deliv-
ers hundreds-of-times-higher endurance, achieving multi-year life-
times even with a small bit cell write endurance of 106. Our multi-
chip scheme ensures that the performance-favorable first-touch
allocation policy does not result in degraded lifetime. In fact, we
see the opposite – that the use of multiple chips can enhance over-
all system lifetime, because they provide more “surface area” over
which to wear-level writes. Our combined schemes, with runtime
and energy overheads bounded in the single digits, thereby pre-
serve the EDP benefits of monolithic 3D while addressing some of
its most challenging limitations.

11 ACKNOWLEDGMENTS
We thank Prof. Heiner Litz and Prof. Sara Achour for their advice
and feedback during the early stages of this work.This research was
funded in part by the United States Defense Advanced Research
Projects Agency (DARPA) 3 Dimensional Monolithic System on a
Chip (3DSoC) program, and by the United States Department of
Defense (DOD) and Department of Energy (DOE). Any opinions,
findings, conclusions, or recommendations expressed in this ma-
terial are those of the authors, and do not necessarily reflect the
views of the aforementioned funding agencies.

REFERENCES
[1] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An In-

sightful Visual Performance Model for Multicore Architectures. Commun. ACM,
52(4):65–76, apr 2009.

[2] Feihui Li, C. Nicopoulos, T. Richardson, Yuan Xie, V. Narayanan, and M. Kan-
demir. Design and Management of 3D Chip Multiprocessors Using Network-in-
Memory. In 33rd International Symposium on Computer Architecture (ISCA’06),
pages 130–141, https://ieeexplore.ieee.org/document/1635947, 2006. IEEE.

[3] Jongman Kim, Chrysostomos Nicopoulos, Dongkook Park, Reetuparna Das,
Yuan Xie, Vijaykrishnan Narayanan, Mazin S. Yousif, and Chita R. Das. A
Novel Dimensionally-Decomposed Router for on-Chip Communication in 3D
Architectures. SIGARCH Comput. Archit. News, 35(2):138–149, jun 2007.

[4] Gabriel H. Loh, Yuan Xie, and Bryan Black. Processor Design in 3D Die-Stacking
Technologies. IEEE Micro, 27(3):31–48, 2007.

[5] Gabriel H. Loh. 3D-Stacked Memory Architectures for Multi-Core Proces-
sors. In Proceedings of the 35th Annual International Symposium on Computer
Architecture, ISCA ’08, page 453–464, USA, 2008. IEEE Computer Society.

[6] Gabriel H. Loh and Yuan Xie. 3D Stacked Microprocessor: Are We There Yet?
IEEE Micro, 30(3):60–64, 2010.

[7] Yuan Xie. Processor Architecture Design Using 3D Integration Technology. In
2010 23rd International Conference on VLSI Design, pages 446–451, https://ieeex-
plore.ieee.org/document/5401205, 2010. IEEE.

[8] Mohamed M. Sabry Aly, Mingyu Gao, Gage Hills, Chi-Shuen Lee, Greg Pitner,
Max M. Shulaker, Tony F. Wu, Mehdi Asheghi, Jeff Bokor, Franz Franchetti,
Kenneth E. Goodson, Christos Kozyrakis, Igor Markov, Kunle Olukotun, Larry
Pileggi, Eric Pop, Jan Rabaey, Christopher Ré, H.-S. Philip Wong, and Subha-
sish Mitra. Energy-Efficient Abundant-Data Computing: The N3XT 1,000x.
Computer, 48(12):24–33, 2015.

[9] William Hwang, Mohamed M. Sabry Aly, Yash H. Malviya, Mingyu Gao, Tony F.
Wu, Christos Kozyrakis, H.-S. Philip Wong, and Subhasish Mitra. 3D Nanosys-
tems Enable Embedded Abundant-Data Computing: Special Session Paper. In
Proceedings of the Twelfth IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis Companion, CODES ’17, New
York, NY, USA, 2017. Association for Computing Machinery.

[10] Mohamed M. Sabry Aly, Tony F. Wu, Andrew Bartolo, Yash H. Malviya, William
Hwang, Gage Hills, Igor Markov, Mary Wootters, Max M. Shulaker, H.-S.
Philip Wong, and Subhasish Mitra. The N3XT Approach to Energy-Efficient
Abundant-Data Computing. Proceedings of the IEEE, 107(1):19–48, January 2019.

[11] Itir Akgun, Dylan Stow, and Yuan Xie. Network-on-Chip Design Guidelines for
Monolithic 3-D Integration. IEEE Micro, 39(6):46–53, 2019.

[12] Bhargava Gopireddy and Josep Torrellas. Designing Vertical Processors in
Monolithic 3D. In 2019 ACM/IEEE 46th Annual International Symposium on
Computer Architecture (ISCA), pages 643–656, https://ieeexplore.ieee.org/docu-
ment/8980321, 2019. IEEE.

[13] Meenatchi Jagasivamani, Candace Walden, Devesh Singh, Luyi Kang, Shang Li,
Mehdi Asnaashari, Sylvain Dubois, Donald Yeung, and Bruce Jacob. Design for
ReRAM-Based Main-Memory Architectures. In Proceedings of the International
Symposium on Memory Systems, MEMSYS ’19, page 342–350, New York, NY,
USA, 2019. Association for Computing Machinery.

[14] Dylan Stow, Itir Akgun, Wenqin Huangfu, Yuan Xie, Xueqi Li, and Gabriel H.
Loh. Invited: Efficient SystemArchitecture in the Era ofMonolithic 3D: Dynamic
Inter-Tier Interconnect and Processing-in-Memory. In 2019 56th ACM/IEEE
Design Automation Conference (DAC), pages 1–4, https://ieeexplore.ieee.org/doc-
ument/8807061, 2019. IEEE.

[15] Candace Walden, Devesh Singh, Meenatchi Jagasivamani, Shang Li, Luyi Kang,
Mehdi Asnaashari, Sylvain Dubois, Bruce Jacob, and Donald Yeung. Monolithi-
cally Integrating Non-Volatile Main Memory over the Last-Level Cache. ACM
Trans. Archit. Code Optim., 18(4), jul 2021.

[16] Timothy J Dell. A white paper on the benefits of chipkill-correct ECC for PC
server main memory. IBM Microelectronics division, 11(1-23):5–7, 1997.

[17] Da Zhang, Vilas Sridharan, and Xun Jian. Exploring and Optimizing Chipkill-
Correct for Persistent Memory Based on High-Density NVRAMs. In 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
710–723, https://ieeexplore.ieee.org/document/8574580, 2018. IEEE.

[18] J.Y. Wu, Y.S. Chen, W. S. Khwa, S. M. Yu, T. Y. Wang, J.C. Tseng, Y.D.
Chih, and Carlos H. Diaz. A 40nm Low-Power Logic Compatible Phase
Change Memory Technology. In 2018 IEEE International Electron Devices
Meeting (IEDM), pages 27.6.1–27.6.4, https://ieeexplore.ieee.org/abstract/docu-
ment/8614513, 2018. IEEE.

[19] Sanghyeon Lee, Gwihyun Kim, Seungwoo Hong, Seung Jae Baik, Hideki Hori,
and Dong-ho Ahn. Enhanced cycling endurance in phase change memory via
electrical control of switching induced atomic migration. In 2014 14th Annual
Non-Volatile Memory Technology Symposium (NVMTS), pages 1–3, https://ieeex-
plore.ieee.org/document/7060866, 2014. IEEE.

[20] H. Y. Cheng, T. H. Hsu, S. Raoux, J.Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K.
Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam.
A high performance phase change memory with fast switching speed and high
temperature retention by engineering the GexSbyTez phase change material.
In 2011 International Electron Devices Meeting, pages 3.4.1–3.4.4, https://ieeex-
plore.ieee.org/document/6131481, 2011. IEEE.

[21] H. Y. Cheng, M. BrightSky, S. Raoux, C. F. Chen, P. Y. Du, J. Y. Wu, Y. Y. Lin,
T. H. Hsu, Y. Zhu, S. Kim, C. M. Lin, A. Ray, H. L. Lung, and C. Lam. Atomic-
level engineering of phase change material for novel fast-switching and high-
endurance PCM for storage class memory application. In 2013 IEEE International
Electron Devices Meeting, pages 30.6.1–30.6.4, https://ieeexplore.ieee.org/docu-
ment/6724726, 2013. IEEE.

[22] Y. Hayakawa, A. Himeno, R. Yasuhara, W. Boullart, E. Vecchio, T. Vandeweyer,
T. Witters, D. Crotti, M. Jurczak, S. Fujii, S. Ito, Y. Kawashima, Y. Ikeda, A. Kawa-
hara, K. Kawai, Z. Wei, S. Muraoka, K. Shimakawa, T. Mikawa, and S. Yoneda.
Highly reliable TaOx ReRAM with centralized filament for 28-nm embedded
application. In 2015 Symposium on VLSI Circuits (VLSI Circuits), pages T14–T15,
https://ieeexplore.ieee.org/document/7231381, 2015. IEEE.

[23] Zixuan Chen, Huaqiang Wu, Bin Gao, Dong Wu, Ning Deng, He Qian, Zhichao
Lu, Brent Haukness, M. Kellam, and Gary Bronner. Performance Improvements
by SL-Current Limiter and Novel Programming Methods on 16MB RRAM Chip.
In 2017 IEEE International Memory Workshop (IMW), pages 1–4, https://ieeex-
plore.ieee.org/document/7939097, 2017. IEEE.

[24] Alessandro Grossi, Elisa Vianello, Mohamed M. Sabry, Marios Barlas, Lau-
rent Grenouillet, Jean Coignus, Edith Beigne, Tony Wu, Binh Q. Le, Mary K.
Wootters, Cristian Zambelli, Etienne Nowak, and Subhasish Mitra. Resistive

MC-ELMM: Multi-Chip Endurance-Limited Memory Management

RAM Endurance: Array-Level Characterization and Correction Techniques
Targeting Deep Learning Applications. IEEE Transactions on Electron Devices,
66(3):1281–1288, March 2019.

[25] Yi-Chun Shih, Chia-Fu Lee, Yen-An Chang, Po-Hao Lee, Hon-Jarn Lin, Yu-
Lin Chen, Chieh-Pu Lo, Ku-Feng Lin, Tien-Wei Chiang, Yuan-Jen Lee, Kuei-
Hung Shen, Roger Wang, Wayne Wang, Harry Chuang, Eric Wang, Yu-Der
Chih, and Jonathan Chang. A Reflow-capable, Embedded 8Mb STT-MRAM
Macro with 9nS Read Access Time in 16nm FinFET Logic CMOS Process. In
2020 IEEE International Electron Devices Meeting (IEDM), pages 11.4.1–11.4.4,
https://ieeexplore.ieee.org/document/9372115, 2020. IEEE.

[26] Yu-Der Chih, Yi-Chun Shih, Chia-Fu Lee, Yen-An Chang, Po-Hao Lee, Hon-
Jarn Lin, Yu-Lin Chen, Chieh-Pu Lo, Meng-Chun Shih, Kuei-Hung Shen, Harry
Chuang, and Tsung-Yung Jonathan Chang. 13.3 A 22nm 32Mb Embedded
STT-MRAM with 10ns Read Speed, 1M Cycle Write Endurance, 10 Years Re-
tention at 150℃ and High Immunity to Magnetic Field Interference. In 2020
IEEE International Solid- State Circuits Conference - (ISSCC), pages 222–224,
https://ieeexplore.ieee.org/document/9062955, 2020. IEEE.

[27] Intel. High Bandwidth Memory (HBM2) DRAM Bandwidth, 2023.
[28] Matt Poremba, Sparsh Mittal, Dong Li, Jeffrey S. Vetter, and Yuan Xie. DESTINY:

A tool for modeling emerging 3D NVM and eDRAM caches. In 2015 Design,
Automation, & Test in Europe Conference Exhibition (DATE), pages 1543–1546,
https://ieeexplore.ieee.org/document/7092634, 2015. IEEE.

[29] Sparsh Mittal, Matt Poremba, Jeffrey Vetter, and Yuan Xie. Exploring Design
Space of 3D NVM and eDRAM Caches Using DESTINY Tool, 01 2015.

[30] Meenatchi Jagasivamani, Candace Walden, Devesh Singh, Luyi Kang, Shang Li,
Mehdi Asnaashari, Sylvain Dubois, Bruce Jacob, and Donald Yeung. Memory-
Systems Challenges in Realizing Monolithic Computers. In Proceedings of the
International Symposium on Memory Systems, MEMSYS ’18, page 98–104, New
York, NY, USA, 2018. Association for Computing Machinery.

[31] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and Accurate Microar-
chitectural Simulation of Thousand-Core Systems. In 2013 ACM/IEEE 40th
Annual International Symposium on Computer Architecture (ISCA), ISCA ’13,
page 475–486, New York, NY, USA, 2013. Association for Computing Machinery.

[32] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. SPEC CPU2017:
Next-Generation Compute Benchmark. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, ICPE ’18, page 41–42, New
York, NY, USA, 2018. Association for Computing Machinery.

[33] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, January 2011.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, https://arxiv.org/abs/1512.03385,
2016. IEEE.

[35] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Comput., 9(8):1735–1780, nov 1997.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need,
2017.

[37] Ian Goodfellow, Jean Pouget-Abadie, MehdiMirza, Bing Xu, DavidWarde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
nets. In Advances in Neural Information Processing Systems, pages 2672–2680,
https://arxiv.org/pdf/1406.2661.pdf, 2014. ACM.

[38] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient
machine learning library for heterogeneous distributed systems, 2015.

[39] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System for Large-Scale Ma-
chine Learning. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI’16, page 265–283, USA, 2016. USENIX
Association.

[40] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageR-
ank citation ranking: Bringing order to the web. Technical report, Stanford
InfoLab, 1999.

[41] Julian Shun and Guy E. Blelloch. Ligra: A Lightweight Graph Processing
Framework for Shared Memory. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, page
135–146, New York, NY, USA, 2013. Association for Computing Machinery.

[42] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group
Formation in Large Social Networks: Membership, Growth, and Evolution. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’06, page 44–54, New York, NY, USA, 2006.
Association for Computing Machinery.

[43] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney.
Community Structure in Large Networks: Natural Cluster Sizes and the Absence
of Large Well-Defined Clusters. Internet Mathematics, 6(1):29 – 123, 2009.

[44] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-
MAT: A recursive model for graph mining. In Proceedings of the
2004 SIAM International Conference on Data Mining, pages 442–446,
https://epubs.siam.org/doi/10.1137/1.9781611972740.43, 2004. SIAM, SIAM.

[45] P.P. Chu and R. Gottipati. Write buffer design for on-chip cache. In Proceedings
1994 IEEE International Conference on Computer Design: VLSI in Computers and
Processors, pages 311–316, https://ieeexplore.ieee.org/document/331913, 1994.
IEEE.

[46] Pierre Guironnet de Massas and Frederic Petrot. Comparison of memory write
policies for NoC based Multicore Cache Coherent Systems. In 2008 Design,
Automation and Test in Europe, pages 997–1002, https://ieeexplore.ieee.org/ab-
stract/document/4484811, 2008. IEEE.

[47] Wenlei Bao, Sriram Krishnamoorthy, Louis-Noel Pouchet, and P. Sadayappan.
Analytical Modeling of Cache Behavior for Affine Programs. Proc. ACM Program.
Lang., 2(POPL), dec 2017.

[48] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy
efficient main memory using phase change memory technology. In Proceedings
of the 36th annual international symposium on Computer architecture, pages
14–23, Austin TX USA, June 2009. ACM.

[49] Derek Bruening and Saman Amarasinghe. Efficient, transparent, and compre-
hensive runtime code manipulation. PhD thesis, Massachusetts Institute of
Technology, Department of Electrical Engineering and Computer Science, 2004.

[50] DynamoRIO. drcachesim: Tracing and analysis framework, 2023.
[51] Red Hat. 5.2. Huge Pages and Transparent Huge Pages, 2023.
[52] TU Graz. Paging on Intel x86-64, 2023.
[53] Moinuddin K. Qureshi and Gabe H. Loh. Fundamental Latency Trade-off in Ar-

chitecting DRAMCaches: Outperforming Impractical SRAM-Tags with a Simple
and Practical Design. In 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 235–246, https://ieeexplore.ieee.org/document/6493623,
2012. IEEE.

[54] Djordje Jevdjic, Gabriel H. Loh, Cansu Kaynak, and Babak Falsafi. Unison
Cache: A Scalable and Effective Die-Stacked DRAM Cache. In 2014 47th An-
nual IEEE/ACM International Symposium on Microarchitecture, pages 25–37,
https://ieeexplore.ieee.org/document/7011375, 2014. IEEE.

[55] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.
Aamodt. Analyzing cuda workloads using a detailed gpu simulator. In 2009
IEEE International Symposium on Performance Analysis of Systems and Software,
pages 163–174, https://ieeexplore.ieee.org/document/4919648, 2009. IEEE.

[56] Akshay Jain, Mahmoud Khairy, and Timothy G. Rogers. A Quantitative Evalua-
tion of Contemporary GPU Simulation Methodology. Proc. ACM Meas. Anal.
Comput. Syst., 2(2), jun 2018.

[57] Md Aamir Raihan, Negar Goli, and Tor Aamodt. Modeling deep learning
accelerator enabled gpus, 2019.

[58] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers.
Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architec-
ture (ISCA), pages 473–486, https://ieeexplore.ieee.org/document/9138922, 2020.
IEEE.

[59] NVIDIA. Data Sheet: Quadro GV100, 2022.
[60] TechPowerUp. NVIDIA Tesla V100 PCIe 16 GB specs, 2023.
[61] NVIDIA. nvidia/cutlass: CUDA Templates for Linear Algebra Subroutines, 2022.
[62] Baidu. baidu-research/DeepBench: Benchmarking Deep Learning operations

on different hardware, 2023.
[63] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,

Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. Parboil: A revised
benchmark suite for scientific and commercial throughput computing. Center
for Reliable and High-Performance Computing, 127:29, 2012.

[64] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE International Symposium on Workload Characterization
(IISWC), pages 44–54, https://ieeexplore.ieee.org/document/5306797, 2009. IEEE.

[65] Shuai Che, Jeremy W. Sheaffer, Michael Boyer, Lukasz G. Szafaryn, Liang Wang,
and Kevin Skadron. A characterization of the Rodinia benchmark suite with
comparison to contemporary CMP workloads. In IEEE International Sym-
posium on Workload Characterization (IISWC’10), pages 1–11, https://ieeex-
plore.ieee.org/document/5650274, 2010. IEEE.

[66] Louis-Noël Pouchet. PolyBench/C: the Polyhedral Benchmark suite, 2023.
[67] Jonathan M. Smith. A Survey of Process Migration Mechanisms. SIGOPS Oper.

Syst. Rev., 22(3):28–40, jul 1988.
[68] Dejan S. Milojičić, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Song-

nian Zhou. Process Migration. ACM Comput. Surv., 32(3):241–299, sep 2000.
[69] Hiroyuki Takizawa, Kentaro Koyama, Katsuto Sato, Kazuhiko Komatsu, and Hi-

roaki Kobayashi. CheCL: Transparent Checkpointing and Process Migration of
OpenCL Applications. In 2011 IEEE International Parallel & Distributed Process-
ing Symposium, pages 864–876, https://ieeexplore.ieee.org/document/6012895,
2011. IEEE.

[70] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew Warfield. Live Migration of Virtual

Bartolo, et al.

Machines. In Proceedings of the 2nd Conference on Symposium on Networked
Systems Design & Implementation - Volume 2, NSDI’05, pages 273–286, USA,
2005. USENIX Association.

[71] Chao Wang, F. Mueller, C. Engelmann, and S.L. Scott. Proactive process-level
live migration in HPC environments. In 2008 SC - International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1–12,
Austin, TX, November 2008. IEEE.

[72] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. Live migration of
virtual machine based on full system trace and replay. In Proceedings of the
18th ACM international symposium on High performance distributed computing -
HPDC ’09, page 101, Garching, Germany, 2009. ACM Press.

[73] Yuyang Du, Hongliang Yu, Guangyu Shi, Jian Chen, and Weimin Zheng. Mi-
crowiper: Efficient Memory Propagation in Live Migration of Virtual Machines.
In 2010 39th International Conference on Parallel Processing, pages 141–149, San
Diego, CA, USA, September 2010. IEEE.

[74] Bolin Hu, Zhou Lei, Yu Lei, Dong Xu, and Jiandun Li. A Time-Series Based
Precopy Approach for Live Migration of Virtual Machines. In 2011 IEEE 17th
International Conference on Parallel and Distributed Systems, pages 947–952,
Tainan, Taiwan, December 2011. IEEE.

[75] Haikun Liu, Cheng-Zhong Xu, Hai Jin, Jiayu Gong, and Xiaofei Liao. Per-
formance and energy modeling for live migration of virtual machines. In
Proceedings of the 20th international symposium on High performance distributed
computing - HPDC ’11, page 171, San Jose, California, USA, 2011. ACM Press.

[76] Yangyang Wu and Ming Zhao. Performance Modeling of Virtual Machine Live
Migration. In 2011 IEEE 4th International Conference on Cloud Computing, pages
492–499, Washington, DC, USA, July 2011. IEEE.

[77] Akane Koto, Hiroshi Yamada, Kei Ohmura, and Kenji Kono. Towards unobtru-
sive VM live migration for cloud computing platforms. In Proceedings of the
Asia-Pacific Workshop on Systems - APSYS ’12, pages 1–6, Seoul, Republic of
Korea, 2012. ACM Press.

[78] Wenjin Hu, Andrew Hicks, Long Zhang, Eli M. Dow, Vinay Soni, Hao Jiang,
Ronny Bull, and Jeanna N. Matthews. A quantitative study of virtual machine
live migration. In Proceedings of the 2013 ACM Cloud and Autonomic Computing
Conference on - CAC ’13, page 1, Miami, Florida, 2013. ACM Press.

[79] Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, Maya Spivak,
Michael Krebs, Miche Baker-Harvey, and Tyler Sanderson. VM Live Migration
At Scale. ACM SIGPLAN Notices, 53(3):45–56, December 2018.

[80] George Michelogiannakis, Madeleine Glick, John Shalf, and Keren Bergman.
Photonics as a means to implement intra-rack resource disaggregation. In
Atul K. Srivastava, Madeleine Glick, and Youichi Akasaka, editors, Metro and
Data Center Optical Networks and Short-Reach Links V, volume 12027, pages 64
– 73, https://doi.org/10.1117/12.2607317, 2022. International Society for Optics
and Photonics, SPIE.

[81] George Michelogiannakis, Benjamin Klenk, Brandon Cook, Min Yee Teh,
Madeleine Glick, Larry Dennison, Keren Bergman, and John Shalf. A Case
For Intra-Rack Resource Disaggregation in HPC. ACM Trans. Archit. Code
Optim., 19(2), mar 2022.

[82] Byung-Do Yang, Jae-Eun Lee, Jang-Su Kim, Junghyun Cho, Seung-Yun Lee, and
Byoung-Gon Yu. A Low Power Phase-Change Random Access Memory using
a Data-Comparison Write Scheme. In 2007 IEEE International Symposium on
Circuits and Systems, pages 3014–3017, New Orleans, LA, May 2007. IEEE.

[83] Sangyeun Cho and Hyunjin Lee. Flip-N-Write: a simple deterministic technique
to improve PRAM write performance, energy and endurance. In Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 347–357, New York New York, December 2009. ACM.

[84] Gaurav Dhiman, Raid Ayoub, and Tajana Rosing. PDRAM: a hybrid PRAM
and DRAM main memory system. In Proceedings of the 46th Annual Design
Automation Conference, pages 664–469, San Francisco California, July 2009.
ACM.

[85] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase
change memory as a scalable dram alternative. In Proceedings of the 36th annual
international symposium on Computer architecture, pages 2–13, Austin TX USA,
June 2009. ACM.

[86] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-
vasan, Luis Lastras, and Bulent Abali. Enhancing lifetime and security of
PCM-based main memory with start-gap wear leveling. In Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture, pages
14–23, New York New York, December 2009. ACM.

[87] Alexandre P Ferreira, Miao Zhou, Santiago Bock, Bruce Childers, Rami Melhem,
and Daniel Mosse. Increasing PCM main memory lifetime. In 2010 Design,
Automation & Test in Europe Conference & Exhibition (DATE 2010), pages 914–919,
Dresden, March 2010. IEEE.

[88] Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee. Security refresh:
prevent malicious wear-out and increase durability for phase-change memory
with dynamically randomized address mapping. In Proceedings of the 37th
annual international symposium on Computer architecture - ISCA ’10, page 383,
Saint-Malo, France, 2010. ACM Press.

[89] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page placement
in hybrid memory systems. In Proceedings of the international conference on
Supercomputing, pages 85–95, Tucson Arizona USA, May 2011. ACM.

[90] Chi-Hao Chen, Pi-Cheng Hsiu, Tei-Wei Kuo, Chia-Lin Yang, and Cheng-
Yuan Michael Wang. Age-based PCM wear leveling with nearly zero search
cost. In Proceedings of the 49th Annual Design Automation Conference, pages
453–458, San Francisco California, June 2012. ACM.

[91] Inhwan Choi and Dongkun Shin. Wear Leveling for PCM Using Hot Data
Identification. In Kuinam J. Kim and Seong Jin Ahn, editors, Proceedings of the
International Conference on IT Convergence and Security 2011, pages 145–149,
Dordrecht, 2012. Springer Netherlands.

[92] Duo Liu, Tianzheng Wang, Yi Wang, Zhiwei Qin, and Zili Shao. A block-level
flash memory management scheme for reducing write activities in PCM-based
embedded systems. In 2012 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1447–1450, Dresden, March 2012. IEEE.

[93] Joosung Yun, Sunggu Lee, and Sungjoo Yoo. Bloom filter-based dynamic wear
leveling for phase-change RAM. In 2012 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1513–1518, Dresden, March 2012. IEEE.

[94] Dongki Kim, Sungkwang Lee, Jaewoong Chung, Dae Hyun Kim, Dong Hyuk
Woo, Sungjoo Yoo, and Sunggu Lee. Hybrid DRAM/PRAM-based main memory
for single-chip CPU/GPU. In Proceedings of the 49th Annual Design Automation
Conference, pages 888–896, San Francisco California, June 2012. ACM.

[95] Tianzheng Wang, Duo Liu, Zili Shao, and Chengmo Yang. Write-activity-aware
page table management for PCM-based embedded systems. In 17th Asia and
South Pacific Design Automation Conference, pages 317–322, Sydney, Australia,
January 2012. IEEE.

[96] Duo Liu, Tianzheng Wang, Yi Wang, Zili Shao, Qingfeng Zhuge, and E. Sha.
Curling-PCM: Application-specific wear leveling for phase change memory
based embedded systems. In 2013 18th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 279–284, Yokohama, January 2013. IEEE.

[97] Hoda Aghaei Khouzani, Chengmo Yang, and Jingtong Hu. Improving perfor-
mance and lifetime of DRAM-PCM hybrid main memory through a proactive
page allocation strategy. In The 20th Asia and South Pacific Design Automation
Conference, pages 508–513, Chiba, Japan, January 2015. IEEE.

[98] Joosung Yun, Sunggu Lee, and Sungjoo Yoo. Dynamic Wear Leveling for Phase-
Change Memories With Endurance Variations. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 23(9):1604–1615, September 2015.

[99] Lunkai Zhang, Brian Neely, Diana Franklin, Dmitri Strukov, Yuan Xie, and
Frederic T. Chong. Mellow Writes: Extending Lifetime in Resistive Memories
through Selective SlowWrite Backs. In 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), pages 519–531, Seoul, South Korea,
June 2016. IEEE.

[100] Andrés Amaya García, René de Jong, William Wang, and Stephan Diestelhorst.
Composing lifetime enhancing techniques for non-volatile main memories. In
Proceedings of the International Symposium on Memory Systems, pages 363–373,
Alexandria Virginia, October 2017. ACM.

[101] Mohammad Reza Jokar, Lunkai Zhang, and Frederic T. Chong. Cooperative NV-
NUMA: prolonging non-volatile memory lifetime through bandwidth sharing.
In Proceedings of the International Symposium on Memory Systems, pages 67–78,
Alexandria Virginia USA, October 2018. ACM.

[102] Jie Xu, Dan Feng, Yu Hua, Wei Tong, Jingning Liu, Chunyan Li, and Zheng
Li. An efficient PCM-based main memory system via exploiting fine-grained
dirtiness of cachelines. In 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 1616–1621, Dresden, Germany, March 2018. IEEE.

[103] Wei Li, Ziqi Shuai, Chun Jason Xue, Mengting Yuan, and Qingan Li. A Wear
Leveling Aware Memory Allocator for Both Stack and Heap Management in
PCM-based Main Memory Systems. In 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 228–233, Florence, Italy, March 2019.
IEEE.

[104] Yifu Deng, Jianhui Yue, Zhiyuan Lu, and Yifeng Zhu. Efficient Hardware-
assisted Out-place Update for Persistent Memory. In 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 507–512, Grenoble, France,
February 2021. IEEE.

[105] Robert M. Radway, Andrew Bartolo, Paul C. Jolly, Zainab F. Khan, Binh Q. Le,
Pulkit Tandon, Tony F. Wu, Yunfeng Xin, Elisa Vianello, Pascal Vivet, Etienne
Nowak, H.-S. Philip Wong, Mohamed M. Sabry Aly, Edith Beigne, Mary Woot-
ters, and Subhasish Mitra. Illusion of large on-chip memory by networked
computing chips for neural network inference. Nature Electronics, 4(1):71–80,
January 2021.

[106] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-
vasan, Luis Lastras, and Bulent Abali. Enhancing lifetime and security of
PCM-based Main Memory with Start-Gap Wear Leveling. In 2009 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 14–23,
https://ieeexplore.ieee.org/document/5375309, 2009. IEEE.

[107] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable
High Performance Main Memory System Using Phase-Change Memory Tech-
nology. In Proceedings of the 36th Annual International Symposium on Computer
Architecture, ISCA ’09, page 24–33, New York, NY, USA, 2009. Association for

MC-ELMM: Multi-Chip Endurance-Limited Memory Management

Computing Machinery.
[108] Chi-Hao Chen, Pi-Cheng Hsiu, Tei-Wei Kuo, Chia-Lin Yang, and Cheng-

Yuan Michael Wang. Age-Based PCM Wear Leveling with Nearly Zero Search
Cost. In Proceedings of the 49th Annual Design Automation Conference, DAC ’12,
page 453–458, New York, NY, USA, 2012. Association for Computing Machinery.

[109] Jishen Zhao and Yuan Xie. Optimizing bandwidth and power of graphics
memory with hybrid memory technologies and adaptive data migration. In
2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 81–87, https://ieeexplore.ieee.org/document/6386592, 2012. IEEE.

[110] Jangwoong Kim, Youngjae Kim, Awais Khan, and Sungyong Park. Under-
standing the performance of storage class memory file systems in the NUMA
architecture. Cluster Computing, 22:347–360, 2018.

[111] Rino Micheloni, Alessia Marelli, and Kam Eshghi. Inside Solid State Drives (SSDs).
Springer, https://link.springer.com/book/10.1007/978-981-13-0599-3, 2013.

[112] Song-He Liu, Xiang-Mo Zhao, Jun Zhang, and Ya-Nan Huang. A Static Trig-
ger Wear-Leveling Strategy for Flash Memory In Embedded System. In 2008
Fifth IEEE International Symposium on Embedded Computing, pages 255–259,
https://ieeexplore.ieee.org/document/4690758, 2008. IEEE.

[113] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo. Improving Flash Wear-
Leveling by Proactively Moving Static Data. IEEE Transactions on Computers,
59(1):53–65, 2010.

[114] Muthukumar Murugan and David.H.C. Du. Rejuvenator: A static wear leveling
algorithm for NAND flash memory with minimized overhead. In 2011 IEEE
27th Symposium on Mass Storage Systems and Technologies (MSST), pages 1–12,
https://ieeexplore.ieee.org/document/5937225, 2011. IEEE.

[115] Li-Pin Chang, Tung-Yang Chou, and Li-Chun Huang. An Adaptive, Low-Cost
Wear-Leveling Algorithm for Multichannel Solid-State Disks. ACM Trans.
Embed. Comput. Syst., 13(3), dec 2013.

[116] Fu-Hsin Chen, Ming-Chang Yang, Yuan-Hao Chang, and Tei-Wei Kuo. PWL: A
progressive wear leveling to minimize data migration overheads for NAND flash
devices. In 2015 Design, Automation, & Test in Europe Conference & Exhibition
(DATE), pages 1209–1212, https://ieeexplore.ieee.org/document/7092571, 2015.
IEEE.

[117] Li-Pin Chang. On EfficientWear Leveling for Large-Scale Flash-Memory Storage
Systems. In Proceedings of the 2007 ACM Symposium on Applied Computing,
SAC ’07, page 1126–1130, New York, NY, USA, 2007. Association for Computing
Machinery.

[118] Dawoon Jung, Yoon-Hee Chae, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee.
A Group-Based Wear-Leveling Algorithm for Large-Capacity Flash Memory
Storage Systems. In Proceedings of the 2007 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, CASES ’07, page 160–164,
New York, NY, USA, 2007. Association for Computing Machinery.

[119] Li-Pin Chang and Chun-Da Du. Design and Implementation of an Efficient
Wear-Leveling Algorithm for Solid-State-Disk Microcontrollers. ACM Trans.
Des. Autom. Electron. Syst., 15(1), dec 2010.

[120] Li-Pin Chang and Li-Chun Huang. A Low-Cost Wear-Leveling Algorithm for
Block-Mapping Solid-State Disks. In Proceedings of the 2011 SIGPLAN/SIGBED
Conference on Languages, Compilers and Tools for Embedded Systems, LCTES ’11,
page 31–40, New York, NY, USA, 2011. Association for Computing Machinery.

[121] Surafel Teshome and Tae-Sun Chung. A Tri-Pool Dynamic Wear-Leveling
Algorithm for Large Scale Flash Memory Storage Systems. In 2011 International
Conference on Information Science and Applications, pages 1–6, https://ieeex-
plore.ieee.org/document/5772379, 2011. IEEE.

[122] Jianwei Liao, Fengxiang Zhang, Li Li, and Guoqiang Xiao. Adaptive Wear-
Leveling in Flash-Based Memory. IEEE Computer Architecture Letters, 14(1):1–4,
2015.

[123] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud
Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. Traffic Management:
A Holistic Approach toMemory Placement on NUMA Systems. In Proceedings of
the Eighteenth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, page 381–394, New York, NY,
USA, 2013. Association for Computing Machinery.

[124] Jaydeep Marathe and Frank Mueller. Hardware Profile-Guided Automatic Page
Placement for ccNUMA Systems. In Proceedings of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’06, page
90–99, New York, NY, USA, 2006. Association for Computing Machinery.

[125] David Gureya, Joao Neto, Reza Karimi, Joao Barreto, Pramod Bhatotia, Vivien
Quema, Rodrigo Rodrigues, Paolo Romano, and Vladimir Vlassov. Bandwidth-
Aware Page Placement in NUMA. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 546–556, New Orleans, LA,
USA, May 2020. IEEE.

[126] Jonathan Corbet. AutoNUMA: the other approach to NUMA scheduling, 2012.

	Abstract
	1 Introduction
	2 Objective
	3 Experimental Setup
	3.1 Bit Cell Write Endurance
	3.2 Simulated M3D System
	3.3 Workload Selection

	4 Extending Lifetime by Buffering Writes
	4.1 First Line of Defense: The Last-Level Cache
	4.2 Aside: An Explicit Write Buffer

	5 Wear-Leveling Within a Memory Frame
	5.1 Prequel: Redundant Write Elimination
	5.2 A Second Observation about Bit Write Patterns
	5.3 Hardware & OS Support for RWE & RR

	6 Wear-Leveling Among Multiple Frames
	6.1 New Metadata Structure
	6.2 Frame Promotion Algorithm
	6.3 Asymptotics
	6.4 Single-Chip Lifetime
	6.5 Simulated Overhead
	6.6 Promotions Without Interrupting Execution

	7 Alternate Architecture: GP-GPU
	7.1 Workload Characteristics
	7.2 Lifetime

	8 Multi-Chip
	8.1 Multi-Node Execution: Defining the Problem
	8.2 Multi-Chip Wear Leveling
	8.3 Multi-Node Lifetime Benefits
	8.4 Heterogeneous Mixture of Applications
	8.5 Simulated Overhead
	8.6 Promotions Without Interrupting Execution

	9 Related Work
	10 Conclusion
	11 Acknowledgments
	References

