
Thoughts on Merging the File System and Virtual Memory System
Design decisions and their ramifications in developing the Osprey kernel

Bruce Jacob
Cyber Science Department

United States Naval Academy
Annapolis, Maryland, USA

bjacob@usna.edu

ABSTRACT
Near-future computer systems will see the integration of non-
volatile memories into main memory, offering superior density
and energy efficiency compared to traditional DRAM. This will
prompt a paradigm shift in operating system memory management,
driven by the potential merger of the disk and main memory subsys-
tems. This paper discusses possible design directions for a merged
memory-management approach in the context of the Osprey ker-
nel, a prototype for exploring the design space. By fusing the file-
system and virtual-memory subsystems, Osprey achieves seamless
memory mapping, encompassing both application workspace and
file-system data, and simplifying kernel code substantially. The
design facilitates protection, relocation, memory-mapped files, ex-
ecutable files, and shared memory, with the potential for further
enhancements.

1 INTRODUCTION
One of the near-future advances in computer architecture is likely
to be the use of nonvolatile memories for main memory, because
nonvolatile memories are both denser and, at least in certain aspects,
lower-power than DRAM. For instance, one can fit a terabyte into
a single nonvolatile package, and the data is retained with zero
energy expended, whereas a terabyte of DRAM is a pocket full of
DIMMs that costs roughly 10x the nonvolatile storage and needs a
constant 10W to 100W just to keep its bits alive [4, 5, 2, 8, 9]. Like
the transition from SRAM to DRAM, the previous main-memory
technology will be available as a cache layer [20], so expect terabyte
main memories in the future with last-level DRAM caches in front
of them [11, 19].

This warrants a re-thinking of how the operating system man-
ages its physical memory, because the merging of the disk sub-
system with the main memory subsystem — the elimination of
maintaining separate physical subsystems — would suggest a paral-
lel merging of the kernel’s file-system and virtual-memory software
subsystems … i.e., the elimination of what would otherwise be su-
perfluous separate and distinct software entities, both managing
the same physical subsystem.

This paper describes several design decisions and their resulting
consequences for a merging of memory and file system and lays
out some of the advantages gained from the design choices. The
proposed design is implemented in a prototype kernel called Osprey,
which was built to explore the ideas of recent and future hardware
advances, such as merging the different memory systems.

The paper is structured as follows, Section 2 presents related
work, Section 3 defines design decisions and how it is implemented
in the kernel and Section 4 concludes the paper.

2 RELATED WORK
In the past, persistent memory technologies like PCM [13, 14], STT-
MRAM [12], FeRAM [21], and RRAM [1] have been proposed as
an alternative for DRAM based memories. Furthermore, hybrid
systems, consisting of persistent memory and DRAM have been
presented [19, 22, 23]. This is also combined with new memory
interface standards like CXL, OpenCAPI, GenZ etc.

Typically, users are presented with the option to either manually
control the allocation across diverse memory regions using soft-
ware or utilize DRAM as a cache for the virtual address range of
the persistent memory. Following the initial concept proposals for
such hybrid architectures, the actual technology has now achieved
commercial availability through products like Intel Optane memory,
leveraging the 3D-Xpoint technology. However, in the meanwhile
this product has been discontinued.

In order to exploit the advantages of such hybrid memory sys-
tems or memory systems that solely consist of persistent memory,
some approaches on the software level have already been presented.
For example, ecoHMEM [10] performs an offline profiling of the
application. The authors of [16] present a kernel-level monitor-
ing module that samples memory patterns and dynamically opti-
mizes the data placement in the memory hierarchy accordingly. A
Linux kernel modification that realizes a dynamic page placement
is shown in [18, 17].

3 MEMORY MANAGEMENT IN OSPREY
Being permanent, main memory should house both the working
space of applications and the long-lived named files and directories;
the kernel should need no additional permanent storage beyond
main memory, other than backup. This much is clear. However, the
quantum leap that merging file system and VM system would pro-
vide is the effective memory-mapping of all storage, meaning that
a shared namespace enables the access of all memory — scratchpad
workspace and file-system contents — via load/store operations.

We will show as an example how the Osprey main memory
system is in a position to provide the following features/functions:

• Protection (just like in existing systems), for instance hav-
ing RWX values on a per-page level and ACL information
at a macro level

• Relocation (just like in existing systems), for instance
by allowing every process to start executing at address
0x00000000, and every process’s stack starts at address
0xFFFFFFFF

• Memory-mapped files as a default mechanism – for both
executables and data files

Jacob

• Live executable files, enabling a simple one-step mecha-
nism to start a process running

• Shared memory, either at a page level or a segment level

All other features of modern systems can also be implemented;
this is simply a fundamental set, showing the possibilities of a
merged system.

3.1 Design Questions & Decisions in Osprey
The following are some of the questions that were asked, and the
corresponding answers arrived at, which guided the design deci-
sions in Osprey’s memory-management system:

• How should a file be accessed? In the traditional oper-
ating system, files are effectively character streams, and
moving between the memory system and the file system is
an act of linearization and de-linearization [3]. This follows
from the nature of disk technology. Consequently, if the
main memory becomes nonvolatile, and separate disks with
their separate namespaces become unnecessary, this lin-
earization requirement disappears. Instead, a more natural
means of accessing file data would be by mapping the file
directly into the address space and supporting a load/store
interface to all file data.

• How should an executable file be invoked? In the tradi-
tional operating system, executable files are unpacked into
main memory before they can be executed. This follows
from the nature of disk technology and is similar to the
concept of de-linearization mentioned above. In a merged
main memory system, given that the storage medium in
which the executables are held is “live”, meaning that it is
part of the main memory system and accessible directly
via load/store instructions, a more natural format would be
that of raw executable, meaning that if one simply jumps
into an executable file (literally jumping, by pointing the
program counter to that address), then the code should
start running. The issue that needs solving with such an ar-
rangement is how to deal with the BSS segment containing
pre-initialized data.

• How should a file be represented? In the traditional
operating system, a file is a collection of pages, and an
inode structure links to those pages. Given the two points
above, a file’s pages can remain the same as before, but the
format of an inode should resemble the kernel’s page table
or portion thereof, so that a file can seamlessly merge into a
process address space. Thus, the kernel’s page-table lookup
mechanism would be used for both address-space access
and file-data access.

• How should data be shared? As is done currently, the
operating system can always choose to duplicate page-level
mappings to share physical pages between address spaces,
or even at different locations within the same address space.
Given the presupposition of our argument, that files are
intended to be incorporated readily into the address space,
it makes sense to work out how that can best be accom-
plished, because file mapping can be thought of as being
similar to shared memory, especially when one considers

Segment Virtual Page Number Page Offset

Segment
Table

Physical Segment Virtual Page Number Page Offset

Page
Table

Physical Page Number Page Offset

Effective
Address

Virtual
Address

Physical
Address

Figure 1: Segmentation creates a large virtual space that can
be shared among all processes

Chapter 31 VIRTUAL MEMORY 899

pages to physical pages is one-to-one, there are no
virtual cache synonym problems.

When the synonym problem is eliminated, there is
no longer a need to fl ush a virtual cache or a TLB for
consistency reasons. The only time fl ushing is required
is when virtual segments are remapped to new physi-
cal pages, such as when the operating system runs
out of unused segment identifi ers and needs to reuse
old ones. If there is any data left in the caches or TLB
tagged by the old virtual address, data inconsistencies
can occur. Direct Memory Access (DMA) also requires
fl ushing of the affected region before a transaction, as
an I/O controller does not know whether the data it
overwrites is currently in a virtual cache.

The issue becomes one of segment granularity. If
segments represent the granularity of sharing and data
placement within an address space (but not the gran-
ularity of data movement between memory and disk),
then segments must be numerous and small. They
should still be larger than the L1 cache to keep the criti-
cal path between address generation and cache access
clear. Therefore, the address space should be divided
into a large number of small segments, for instance,
1024 4-MB segments, 4096 1-MB segments, etc.

Disjunct Page Table
Figure 31.15 illustrates an example mechanism. The

segmentation granularity is 4 MB. The 4-GB address
space is divided into 1024 segments. This simplifi es

the design and should make the discussion clear.
A 4-byte PTE can map a 4-KB page, which can, in turn,
map an entire 4-MB segment. The “disjunct” page
table organization uses a single global table to map
the entire 52-bit segmented virtual-address space yet
gives each process-address space its own addressing
scope. Any single process is mapped onto 4 GB of this
global space, and so it requires 4 MB of the global table
at any given moment (this is easily modifi ed to sup-
port MIPS-style addressing in which the user process
owns only half the 4 GB [Kane & Heinrich 1992]). The
page table organization is pictured in Figure 31.16. It
shows the global table as a 4-TB linear structure at the
top of the global virtual-address space, composed of
230 4-KB PTE pages that each map a 4-MB segment. If
each user process has a 4-MB address space, the user
space can be mapped by 1024 PTE pages in the global
page table. These 1024 PTE pages make up a user
page table, a disjunct set of virtual pages at the top
of the global address space. These 1024 pages can be
mapped by 1024 PTEs—a collective structure small
enough to wire down in physical memory for every
running process (4 KB, if each is 4 bytes). This struc-
ture is termed the per-user root page table in Figure
31.16. In addition, there must be a table for every pro-
cess containing 1024 segment IDs and per-segment
protection information.

Global Virtual Space

Process A Process B Process C

Physical Memory

NULL
(segment only
partially-used)

Paged
Segment

FIGURE 31.14: The use of segments to provide virtual-address
aliasing.

TLB and
Page Table

32-bit Effective Address

Segno (10 bits) Segment & Page Offsets (22 bits)

Segment Registers

Segment & Page Offsets (22 bits)Segment ID (30 bits)

52-bit Virtual Address

Cache

FIGURE 31.15: Segmentation mechanism used in discussion.

ch31_P379751.indd 899ch31_P379751.indd 899 8/8/07 3:30:10 PM8/8/07 3:30:10 PM

Figure 2: Segmentation solves the aliasing problem [6, pp.
897–901]

segmented address spaces. For instance, the PowerPC seg-
mented address space and others like it provide a mapping
mechanism that resembles Figure 1. What this enables is a
shared-memory organization that looks like Figure 2. Be-
cause of its flexibility, as well as the discussion in the next
bullet, Osprey assumes PowerPC-like segmentation at the
hardware level — and note that this means that files will be
represented as segments in the process address space.

• How should a file be extended in size? In the tradi-
tional operating system, files are extendable at will, up to
the largest representable size that the file system accom-
modates. One simply seeks to the address and performs a
read() or write() operation.This is decidedly not how vir-
tual memory works, because seeking to a random address
and performing a load or store operation at that random
address is likely to result in a SIGSEGV and process termina-
tion. However, now that we identify files with segments and
opening a file as mapping that file to the address space (and
this is done at the segment granularity), what we can do is
perhaps say that files must be no larger than a segment in

Thoughts on Merging the File System and Virtual Memory System

ASID

Mapped Pages Process Control Blocksk inode Table

Known address

inode

…

Figure 3: Layout of the large physical nonvolatile memory space in Osprey (regions not to scale)

size, and they can be extended up to that size automatically
by using store instructions. Each such write (i.e., store-word
operation) would cause the operating system to populate
the file’s page table with a mapping down to the written
page, assuming no mapping already existed. Thus, a file in a
merged system can indeed be both sparse and automatically
extended, just as in a traditional file system.

• How should the physical memory space be laid out?
In the traditional operating system, the physical address
space is roughly partitioned into (a) the kernel code occu-
pying the low memory region, where it provides known
locations for important structures such as the interrupt ta-
ble and handlers, (b) the page table, and (c) pages mapped
by the page table. Some OS designs may blur the distinc-
tion between items (b) and (c), but this partition more or
less describes how most kernels think of physical memory.
Given all of the above design points, how can one lay out
the memory space to be managed? Everything can be ac-
complished by simply adding the file system’s metadata,
the inode table. Figure 3 illustrates such an arrangement. As
will be described, the process control blocks represent the
highest levels of Osprey’s system-wide page table (similar
to the global disjunct page table of [6]), and the section
labeled “mapped pages” includes all real mapped data: user-
level main-memory pages, file-system data pages, and PTE
pages that make up the bulk of the actual page table. The
inode table is just below the table of process control blocks,
and can be extended if desired. The mapped pages segment
grows upward, and the inode table grows downward, in a
heap/stack arrangement.

The following sections present some of the Osprey implementation
details.

3.2 The Segmented Process Address Space
As discussed above, the memory-management system tightly inte-
grates both process address spaces and files. A process address space
has a fixed number of equal-sized segments. Files are not opened
in the traditional sense but are instead mapped into the address
space at the segment granularity — and this includes the executable
binary file of the running process. Figure 4 shows the segments
into which a process address space is divided, using 256 segments
as an example. The number of segments is a design decision, and
this will be discussed in more detail in the next section.

The segment assignments indicate hard limits: in particular, as
suggested by the appearance of a singluar Code segment at the
bottom of the address space, an executable file is not allowed to
exceed the size of a single segment, and for symmetry, we extend
that to include any file in the file system. Thus, when a file is

Stack
General-purpose
General-purpose
General-purpose

Code
Data & BSS
General-purpose

…

0x00
0x01
0x02

0xFD
0xFE
0xFF

0xFC

Figure 4: A process address space is a set of fixed-size seg-
ments

opened it is actually mapped into one of the unused general-purpose
segments of the process’s address space.

Software can ask for an unused segment to become mapped,
similar to a malloc() system call; this causes the kernel to allocate
space in physical memory for both data and the mapping informa-
tion. The data segment and stack segment are allowed to exceed the
size of a single segment, because each can extend upward/down-
ward into the general-purpose segments adjacent to them. Both of
these segments begin at known locations, to ensure simple code-
generation, and they are extended automatically as references are
made to adjacent segments.

Due to the extremely large extent of a 64-bit address space, the
fixed-file-size limitation is not actually limiting in a significant way.
For instance, we have the following:

• A 64-bit address space divided into 256 segments (an 8-bit
segment ID) would impose a limit of 64 petabytes per file
or code segment.

• A 64-bit address space divided into 4,096 segments (a 12-bit
segment ID) would impose a limit of 4 petabytes per file or
code segment.

• A 64-bit address space divided into 65,536 segments (a 16-
bit segment ID) would impose a limit of 256 terabytes per
file or code segment.

• A 64-bit address space divided into 16 million segments (a
24-bit segment ID) would impose a limit of 1 terabyte per
file or code segment.

• A 64-bit address space divided into 4 billion segments (a
32-bit segment ID) would impose a limit of 4 gigabytes per
file or code segment.

All file systems have de facto maximum file sizes, and this is no
different … in particular, individual files in the terabyte range would
be larger than many physical disk systems in use today.

In contrast, consider a 32-bit address space that is divided into,
say, 16 segments (a 4-bit segment ID) … such a design would impose
a maximum file or executable size of 256 MB, which may or may

Jacob

ctxt etc 32 PTEs 32 PTEs 32 PTEs• • • 32 PTEs

maps the
data/BSS
segment

maps the
stack

segment

corresponds
to code
segment

maps all of the “general purpose” segments

one or more physical pages

Segment No. x 32 words

Figure 5: An Osprey process control block is the process context (register set and PC), additional space rounded up to power-of-
two, and a number of regions each the size of context + etc, totaling one or more physical pages

not be unacceptably limiting, depending on one’s target application
for the operating system.

3.3 The Page Table and Process Control Block
The Process Control Block (PCB) is a data structure that contains
information about the process, including the process context, its
register-file contents and program counter value. The PCB can be
held within the user address space, at a known virtual address
as in the BSD u. struct [15], but we place it at a known physical
address to form the topmost level of the global page table. The
Osprey page table is formed around the PCB, in a manner that is
reminiscent of the Mach page table [7] and the disjunct page table
[6], in that a global table is formed from concatenating together the
individual user-process page tables… in this case, the collected PCBs
of all user processes. Because a process address space comprises
a number of segments, and the first segment belongs to a known
file within the file system (a raw executable), we structure the PCB
as a collection of the most important immediately-accessible data
items: the process context, a few pointers, and the top level of the
page table, and we place these in a known location so that kernel
handlers can easily find them. Other components of a traditional
process control block are maintained in a structure homed within
the address space.

An Osprey process control block is shown in Figure 5 and as-
sumes that the process’s register-file context is sixteen 64-bit words.
Following that is another 16 words, which include hint PTEs and
other data items that kernel handlers such as context_switch might
need. Following that is the top level of the user page table … for
each segment in the address space, there is a set of 32 8-byte PTEs
that ultimately map the segment. The segment number is used to in-
dex into this structure, where the segment number is multiplied by
128 bytes (32 times an 8B word). The first segment, corresponding
to the executable, is not held in the user page table but is instead
mapped by the inode structure, and for references to segment 0 in
each address space, the kernel goes to the inode instead of the user
page table. An example

The user PCB structure forms the backbone of the mapping
structure for all of physical memory. The user PCBs are organized
into a linear table that is based at a known location within the
physical address space and is indexed by the address-space identifier
(ASID). When a PTE needs to be found, the running process’s ASID
indexes into the table of PCBs, and the segment ID is used to index
into the mapping structures held within that process’s control block.

Note that, while the description focuses on linear page tables, in
many cases a more efficient and less sparse design can be obtained
with inverted page tables.

Figure 6 illustrates the mapping of a segment, using as an ex-
ample the process control block segment map of 32 PTEs plus an
additional 2 levels of mapping tables, with 16KB pages. This is a
design choice for reducing the cost of mapping at the expense of a
smaller virtual address space size. Given a 16KB page size, it yields
a terabyte-scale segment size and a petabyte-scale per-process ad-
dress space.

Figure 7 illustrates the mapping of a segment, using as an ex-
ample the process control block segment map of 32 PTEs plus an
additional 3 levels of mapping tables, with 16KB pages. This is a
design choice for maximizing the per-process virtual address space
size, at the expense of an additional memory lookup in page-table
lookup procedure. Given a 16KB page size, it yields a petabyte-scale
segment size and an exabyte-scale address space.

Because many, if not most process address spaces use very little
memory — for example, a few KB of stack and a few MB of data —
our process control block has “shortcut” PTEs that link directly to
the top of the stack segment and the bottom of the data segment.
Depicted in Figures 6 and 7 is the stack’s shortcut PTE. If the data
and/or stack are no larger than 32MB (assumes a 16KB page size),
then this is all that is needed to map the data and stack regions:
two words in the etc portion of the PCB, and two PTE pages. If the
process requests any address outside this range, the kernel must
go through the full mapping step of reading the 1st-level table to
get to the 2nd-level table and so on, ultimately reaching the page
in the desired segment.

As mentioned earlier, requests to the code segment go directly
to the inode structure: because the executable is a known file and
has its own mapping, the code segment needs no mapping at the
process level and is instead mapped in the inode structure. The
inode structure maps the address space in the same way as shown
in Figures 6 and 7.

As shown in Figure 3, the table of process control blocks is at a
known location in the top of the physical address space. Starting at
this known location, the kernel indexes upward into the PCB table
using the address space identifier (equivalent to a process ID). This
takes the kernel to the process’s control block, which has shortcut
PTEs and links to the full page table if necessary. As an example,
say we have the following:

• A physical space of 256 TB (48 bits)

Thoughts on Merging the File System and Virtual Memory System

1st-Level Table512KB: 64k PTEs
(32 pages)

Segment or File2TB Segment
(128 million pages)

…

…

segmap256B: 32 PTEs
maps

PTE8 bytes
(one word) “shortcut PTE”

1page

32MB region

2nd-Level Table1GB: 128m PTEs
(64k pages)

Figure 6: Example segment mapping with 16KB page size and three levels of mapping

1st-Level Table512KB: 64k PTEs
(32 pages)

3rd-Level Table2TB: 256b PTEs
(128m pages)

Segment or File4PB Segment
(256 billion pages)

…

…

segmap256B: 32 PTEs
maps

PTE8 bytes
(one word) “shortcut PTE”

1page

32MB region

2nd-Level Table1GB: 128m PTEs
(64k pages) …

Figure 7: Example segment mapping with 16KB page size and four levels of mapping

• An ASID of size 18 bits (256K processes)
• A PCB of size 16KB (14 bits)

Given the above assumptions, then the PCB array would require
four gigabytes (18 bits + 14 bits), and the known address at which
the array begins would be 0xFFFF 0000 0000 at the top of the
physical space.

At this address, and indexing downward is found the inode array.
Each of the inodes contains mapping information just like the
process control block. If each inode is 1KB, then one can support
four million files in a table of four gigabytes, putting the combined
size of the two fixed tables at a total of 8GB. One can adjust the size
of each of these tables, resulting in moving the fixed address point.

3.4 Process Invocation from a Raw Executable
To start a process, one need only specify the desired inode number.
The operating system assigns an ASID and creates the necessary
data structures. The pseudocode shown in Listing 1 gives an idea
of the process.

[assume a process has 1024 segments]
[assume executable is file number inode_no]
choose an address space ID, named ASID
allocate page for data
at PTE_array[ASID] set up mapping for data page
allocate page for stack
at PTE_array[ASID] set up mapping for stack page
put ASID and inode_no into hardware registers
set PC=0

Listing 1: Pseudocode which explains the idea

That is all that is required to invoke a process: one need only jump
into an executable file to start running it.What such an arrangement
requires is that either the BSS segment is handled by init code in
the _start() routine, or a second data segment is maintained in
parallel with the code segment for each executable, which then
could be mapped into the address space in a copy-on-write form. So
far, we have done the former, out of simplicty.

The C code shown in Listing 3 provides slightly more detail.

// kernel runs in physical-address mode
PCB_t *PCB_table = 0xFFFF 0000 0000;
int ASID = new_ASID();
char *page = allocate_page();
int *PTEpage = allocate_page();
PTEpage[0] = VALID | page; // set PTE valid bit
PCB_table[ASID].data_shortcut = PTEpage;
page = allocate_page();
PTEpage = allocate_page();
PTEpage[1023] = VALID | page; // set valid bit
PCB_table[ASID].stack_shortcut = PTEpage;
PCB_table[ASID].executable = inode;
init_context(ASID);

Listing 2: Actual code which demonstrates the idea

The call to init_context() zeroes out the register values of the
context data structure, inits hardware registers to support the pro-
cess and its code mapping, sets the stack pointer to 0xFFF…F, and
sets the program counter to zero. After this, the operating system
performs a return-from-exception, which reads from the PCB con-
text identified, filling the register file with those newly-initialized

Jacob

values, and when the program counter gets the value 0, the process
jumps to the referenced inode and begins execution.

In our experimental version of the operating system, we have
kept the data segments zero by convention, initializing them from
the code, as opposed to storing a populated BSS section. However,
one could certainly maintain two separate segments for a given
executable: one for the code, and one for the BSS.

3.5 File Access
As mentioned, file access is memory-mapped. Thus, when opening
a file, the operating system maps the file into an unused segment
in the process address space and returns a pointer to the segment
mapped. The mapping information is not copied into the user’s
page table, but instead, at the segment level, the PCB indicates that
the segment is being provided by an inode.

In Osprey, the UNIX copy() utility could be implemented as
shown in Listing 3.

char *in, *out;
int i, size;
in = open_file(file1);
size = file_size(file1)
out = malloc_segment();
for (i=0; i<size; i++) {

out[i] = in[i];
}
unlink(in);
permanentify(out, size, filename, perms);

Listing 3: Implementation of copy

Opening a file maps the file’s contents into the process’s address
space and returns a pointer to the mapped region, which is aligned
on a segment boundary.

Allocating a region of memory returns a pointer to a segment-
aligned region of memory, and it can be extended at will by software.

Making a segment-sized region of memory into a permanent file
is done with the permanentify() system call, which creates a page
table for the specified extent of memory … note that the mapping
information is taken directly from the user’s page table, and so it
may be sparse (may contain empty spaces in between valid data).
This is perfectly acceptable.

At the end of the call to permanentify(), the operating system
removes the mapping information from the process’s page table
and points the process’s segment table at the newly created inode.

Thus, the process still maintains access to the file contents, but
when the process exits and its pages are reclaimed, the file contents
are not reclaimed and garbage-collected.

4 CONCLUSION
Themain ideas explored in the Osprey experiment are those of code
simplicity and code reduction. Making kernel code simpler and
making the kernel smaller are both reasonable goals for operating
systems design: as the current experiment shows, future trends in
memory-system design will enable both these goals.

Combining the main memory system with the nonvolatile disk
system enables a direct load/store access paradigm for all of a
system’s data, which simplifies things tremendously:

• The need for separate virtual memory and file-system ker-
nel subsystems goes away

• The need to linearize and de-linearize file contents, during
file writing and reading, respectively, goes away

• The need to access files one buffer-full at a time goes away
• Raw executables become possible — meaning that one can

simply jump into an executable file directly without the
need to first unpack it into main memory

While it is admittedly an objective measure, this simplification is
significant, reducing both lines of code and code complexity in a
substantial way. The 16-bit version of Osprey is operational now,
and the 64-bit version will be released to the public domain next
year.

REFERENCES
[1] Hiroyuki Akinaga and Hisashi Shima. 2010. Resistive random access memory

(reram) based on metal oxides. Proceedings of the IEEE, 98, 12, 2237–2251. doi:
10.1109/JPROC.2010.2070830.

[2] Paolo Cappelletti. 2015. Non volatile memory evolution and revolution. In
2015 IEEE International Electron Devices Meeting (IEDM), 10.1.1–10.1.4. doi:
10.1109/IEDM.2015.7409666.

[3] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. Lazowska.
1994. Sharing and protection in a single-address-space operating system. ACM
Trans. Comput. Syst., 12, 4, (Nov. 1994), 271–307. doi: 10.1145/195792.195795.

[4] Yangyin Chen and Chris Petti. 2016. Reram technology evolution for storage
class memory application. In 2016 46th European Solid-State Device Research
Conference (ESSDERC), 432–435. doi: 10.1109/ESSDERC.2016.7599678.

[5] Scott W. Fong, Christopher M. Neumann, and H.-S. Philip Wong. 2017. Phase-
change memory—towards a storage-class memory. IEEE Transactions on Elec-
tron Devices, 64, 11, 4374–4385. doi: 10.1109/TED.2017.2746342.

[6] Bruce Jacob, S. Ng, and D. Wang. 2010. Memory Systems: Cache, DRAM, Disk.
Elsevier Science. isbn: 9780080553849.

[7] Bruce L. Jacob and Trevor N. Mudge. 1998. A look at several memory manage-
ment units, tlb-refill mechanisms, and page table organizations. In Proceedings
of the Eighth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VIII). Association for Comput-
ing Machinery, San Jose, California, USA, 295–306. isbn: 1581131070. doi:
10.1145/291069.291065.

[8] Meenatchi Jagasivamani, Candace Walden, Devesh Singh, Luyi Kang, Mehdi
Asnaashari, Sylvain Dubois, Bruce Jacob, and Donald Yeung. 2020. Tileable
monolithic reram memory design. In 2020 IEEE Symposium in Low-Power and
High-Speed Chips (COOL CHIPS), 1–3. doi: 10.1109/COOLCHIPS49199.2020.90
97632.

[9] Meenatchi Jagasivamani, Candace Walden, Devesh Singh, Luyi Kang, Shang
Li, Mehdi Asnaashari, Sylvain Dubois, Donald Yeung, and Bruce Jacob. 2019.
Design for reram-based main-memory architectures. In Proceedings of the
International Symposium on Memory Systems (MEMSYS ’19). Association for
Computing Machinery, Washington, District of Columbia, USA, 342–350. isbn:
9781450372060. doi: 10.1145/3357526.3357561.

[10] Marc Jordà, Siddharth Rai, Eduard Ayguadé, Jesús Labarta, and Antonio J. Peña.
2022. Ecohmem: improving object placement methodology for hybrid memory
systems in hpc. In 2022 IEEE International Conference on Cluster Computing
(CLUSTER), 278–288. doi: 10.1109/CLUSTER51413.2022.00040.

[11] Minjae Kim, Bryan S. Kim, Eunji Lee, and Sungjin Lee. 2022. A case study of
a dram-nvm hybrid memory allocator for key-value stores. IEEE Computer
Architecture Letters, 21, 2, 81–84. doi: 10.1109/LCA.2022.3197654.

[12] Emre Kültürsay, Mahmut Kandemir, Anand Sivasubramaniam, and Onur Mutlu.
2013. Evaluating stt-ram as an energy-efficient main memory alternative. In
2013 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 256–267. doi: 10.1109/ISPASS.2013.6557176.

[13] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
phase change memory as a scalable dram alternative. In Proceedings of the 36th
Annual International Symposium on Computer Architecture (ISCA ’09). Associa-
tion for Computing Machinery, Austin, TX, USA, 2–13. isbn: 9781605585260.
doi: 10.1145/1555754.1555758.

https://doi.org/10.1109/JPROC.2010.2070830
https://doi.org/10.1109/IEDM.2015.7409666
https://doi.org/10.1145/195792.195795
https://doi.org/10.1109/ESSDERC.2016.7599678
https://doi.org/10.1109/TED.2017.2746342
https://doi.org/10.1145/291069.291065
https://doi.org/10.1109/COOLCHIPS49199.2020.9097632
https://doi.org/10.1109/COOLCHIPS49199.2020.9097632
https://doi.org/10.1145/3357526.3357561
https://doi.org/10.1109/CLUSTER51413.2022.00040
https://doi.org/10.1109/LCA.2022.3197654
https://doi.org/10.1109/ISPASS.2013.6557176
https://doi.org/10.1145/1555754.1555758

Thoughts on Merging the File System and Virtual Memory System

[14] Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek,
Onur Mutlu, and Doug Burger. 2010. Phase-change technology and the future
of main memory. IEEE Micro, 30, 1, 143–143. doi: 10.1109/MM.2010.24.

[15] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quar-
terman. 1989. The Design and Implementation of the 4.3BSD UNIX Operating
System. Addison Wesley Publishing Company, USA. isbn: 0-201-06196-1.

[16] Lei Liu, Shengjie Yang, Lu Peng, and Xinyu Li. 2019. Hierarchical hybrid mem-
ory management in os for tiered memory systems. IEEE Transactions on Parallel
and Distributed Systems, 30, 10, 2223–2236. doi: 10.1109/TPDS.2019.2908175.

[17] Miguel Marques. 2021. Ambix: Rethinking Linux’s Page Management to Support
the New Intel Optane DC Persistent Memory.

[18] Miguel Marques, Ilia Kuzmin, João Barreto, José Monteiro, and Rodrigo Ro-
drigues. 2021. Dynamic page placement on real persistent memory systems.
(2021). arXiv: 2112.12685 [cs.DC].

[19] Deepak M. Mathew, Felipe S. Prado, Éder. F. Zulian, Christian Weis, Muham-
mad Mohsin Ghaffar, Matthias Jung, and Norbert Wehn. 2020. An Energy
Efficient 3D-Heterogeneous Main Memory Architecture for Mobile Devices. In
International Symposium on Memory Systems (MEMSYS 2020). ACM/IEEE, (Oct.
2020).

[20] Sparsh Mittal and Jeffrey S. Vetter. 2016. A survey of techniques for architecting
dram caches. IEEE Transactions on Parallel and Distributed Systems, 27, 6, 1852–
1863. doi: 10.1109/TPDS.2015.2461155.

[21] J. Müller et al. 2013. Ferroelectric hafnium oxide: a cmos-compatible and highly
scalable approach to future ferroelectric memories. In 2013 IEEE International
Electron Devices Meeting, 10.8.1–10.8.4. doi: 10.1109/IEDM.2013.6724605.

[22] Ivy Bo Peng, Roberto Gioiosa, Gokcen Kestor, Pietro Cicotti, Erwin Laure, and
Stefano Markidis. 2017. Exploring the performance benefit of hybrid memory
system on hpc environments. In 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 683–692. doi: 10.1109/IPDPSW.20
17.115.

[23] Subisha V, Varun Gohil, Nisarg Ujjainkar, and Manu Awasthi. 2020. Prefetching
in hybrid main memory systems. In Proceedings of the 12th USENIX Conference
on Hot Topics in Storage and File Systems (HotStorage’20) Article 11. USENIX
Association, USA, 1 pages.

https://doi.org/10.1109/MM.2010.24
https://doi.org/10.1109/TPDS.2019.2908175
https://arxiv.org/abs/2112.12685
https://doi.org/10.1109/TPDS.2015.2461155
https://doi.org/10.1109/IEDM.2013.6724605
https://doi.org/10.1109/IPDPSW.2017.115
https://doi.org/10.1109/IPDPSW.2017.115

	Abstract
	1 Introduction
	2 Related Work
	3 Memory Management in Osprey
	3.1 Design Questions & Decisions in Osprey
	3.2 The Segmented Process Address Space
	3.3 The Page Table and Process Control Block
	3.4 Process Invocation from a Raw Executable
	3.5 File Access

	4 Conclusion
	Leere Seite

