
Building Efficient Neural Prefetcher
Yuchen Liu

Princeton University
Princeton, USA

yl16@princeton.edu

Georgios Tziantzioulis
Princeton University

Princeton, USA
georgios.tziantzioulis@pm.me

David Wentzlaff
Princeton University

Princeton, USA
wentzlaf@princeton.edu

ABSTRACT
Data prefetching is a promising approach to mitigate computa-
tion slow down due to the memory wall. While modern workloads
grow more and more complicated, their memory access patterns
become less organized and rule-based prefetchers can no longer
deliver improved performance, which motivates the research of
adopting neural networks for prefetching. However, current neu-
ral prefetchers require high computation costs and large storage
space to obtain good performance, which makes them far from
practical. To this end, we address the efficiency issue in neural
prefetchers and propose an effective approach to build light-weight
models. Specifically, our method is aware of both machine learn-
ing and micro-architecture, where we introduce a novel neural
prefetcher design space with knobs from both aspects. We optimize
these knobs using workload characteristic observations, rigorous
mathematical optimization, and efficient design space traversal,
which provides us with highly-efficient neural prefetchers. Our
approach is evaluated on SPEC CPU 2006, where our models can
provide up to 60% IPC gain compared to no prefetching, outper-
forming non-neural based prefetchers. In comparison with the state
of the art neural prefetcher, our models enjoy an average of 15.4×
multiply-accumulation reduction, 6.7× parameters saving, with
even better IPC gains. Although it is still challenging to provide
implementable neural prefetcher, this order of magnitude compu-
tational and storage reduction, provided by our method, marks an
important milestone towards practical neural prefetchers.

CCS CONCEPTS
• Computer systems organization→ Architectures; Proces-
sors and memory architectures; • Computing methodologies
→ Neural networks.

1 INTRODUCTION
In the post Moore’s Law era, memory accesses become orders of
magnitude slower than processor computation with a large por-
tion of cycles spent waiting for data to arrive from memory. This
issue is widely known as the memory wall [49], which represents a
critical bottleneck for modern computer architecture development.
To combat the memory wall, a hierarchical memory system with
caches is generally adopted, and several predictive caching tech-
niques including data prefetching are introduced for better memory
management.

Data prefetching aims to resolve the memory wall by hiding
the long memory latencies of cache misses. Historically, architects
have developed rule-based prefetching techniques by observations
in memory strides [23, 42], instruction pointers [9, 38], temporal
locality [20, 31, 48], and spatial locality [6, 24]. These methods
implement fixed prefetching rules guided by heuristics, which are

subject to a clear performance drop when applied on larger modern
workloads [12].

Whilemachine state transition provides the basis for data prefetch-
ing algorithms, it also naturally formulates prefetching as a time-
series prediction problem, where deep neural networks (DNNs),
from the machine learning community, have made major headway
in this research domain. In fact, DNNs have shown promising results
in large-scale sequential problems, e.g., text understanding [29],
speech recognition [13], weather forecasting [52], and even stock
market modelling [50]. Another feature of data prefetching, that
an application provides millions to billions of memory access to
feed DNN learning, makes DNN a favorable technique to solve
this big data problem. Moreover, the rapid development of multiple
neural processing units (NPUs) [4] improve the practicality of using
DNN-based predictors for data prefetching from the architectural
perspective.

A few prior works have attempted to use DNNs for data prefetch-
ing [12, 34, 41, 45, 53]. For example, Zeng et al. propose an LSTM
model [53] to perform regression prediction for data prefetching.
In a follow-up work, Hashemi et al. [12] propose a delta-LSTM to
prefetch memory deltas, and they reform the objective to be closed-
set classification rather than open-set regression. Zhan et al. [41]
further address the class explosion problem in classification-based
data prefetching and propose a hierarchical neural prefetcher which
obtains state-of-the-art results. However, most of these worksmiss a
critical aspect in their DNNs, the network efficiency, which is crucial
for practical implementation. For instance, Delta-LSTM [12] and
Voyager [41] require around 40millionmultiply-accumulation
operations (MACs) to make a single prefetch prediction, far
exceeding the computational budget available to run in micro-
architectures.

To this end, we pioneer to build efficient neural prefetchers with
a better tradeoff between computational complexity and system
performance. As shown in Figure 1, our design reduces the inference
cost over an order of magnitude from the state-of-the-art neural
prefetcher [41], achieving an even better IPC improvement for the
system.

We start our investigation by characterizing the inference path
and profiling the computational cost of modern neural prefetchers
to understand where there is opportunity to enhance efficiency.
Specifically, we find that most MACs in a neural prefetcher occur
in three computation phases: embedding, network, and prediction.
Based on that, we develop a novel design space with crucial knobs
from both perspectives ofmachine learningmodel design andmicro-
architectural configuration, where knobs in such space directly
relate to the complexity-performance tradeoff. With a set of design
knobs, the computation graph of a hierarchical neural prefetcher
model is fully specified, and the state-of-the-art model [41] can also
be expressed under our search space.

Prefetcher Design Space

Design knobs from
two perspectives:

(1) machine learning
(2) micro-architecture

Knob Optimization

Optimization strategies:
(1) characteristics observation
(2) mathematical optimization

(3) efficient design space traversal

Efficient Neural Prefetcher

Win-win-win:
(1) less storage

(2) faster inference
(3) better performance

SOTA Comparison

Figure 1: We outline our method to build highly-efficient neural prefetchers and show a sample of our results. Specifically, we
propose a design space with knobs for both ML and micro-architecture and develop multiple strategies to optimize these knobs.
The derived prefetcher is highly efficient with less storage, faster computation, and even better performance. Compared to the
state-of-the-art neural prefetcher [41], we achieve order of magnitude computation reduction (horizontal axis in log scale)
with a higher IPC gain on a memory-intensive benchmark, mcf.

While the vast space contains a total number of 7.2×1011 prefetcher
designs, we present multiple strategies to help us find optimal knobs
for efficient prefetchers. Firstly, we optimize the knobs by charac-
teristic observation, where we analyze the characteristic of compu-
tation workloads as well as neural network topologies and conduct
empirical experiments to understand their effectiveness. With such
strategy, we study two knobs that are ignored in most prior works
but in fact crucially important to its efficiency: (1) the data stream
that the ML model should learn on; (2) the alternative recurrent
neural network (RNN) structure which could be more efficient than
widely-adopted LSTM [14]. Our second strategy is to lay out math-
ematical optimization objectives to rigorously derive the desired
knobs. We adopt this strategy for determining the bit position to
split data memory addresses for hierarchical prediction. While a
page-offset configuration naturally determines a split position for
memory addresses, we find that naively adopting this setting could
yield redundant prefetchers with weaker performance. We thus
propose a novel objective function to find the optimal address split
by considering two quantified metrics: (1) the computational com-
plexity of the prefetcher (2) and distribution randomness of the
split address. Finally, we develop a low-cost design space traversal
strategy to search for efficient knobs. Specifically, we establish a
step-by-step method to optimize the knobs for vector dimensions,
including sizes of embedding vectors, the number of hidden neu-
rons, and the history length to feed into a recurrent network. To
save the search cost, we sub-sample the knob design space and
evaluate a knob’s effectiveness with all other knobs frozen. Our
result show that this intuitive strategy can already provide us with
highly efficient networks.

Our contributions are three-fold:
(1) We present a study that enhances the efficiency of neural

prefetchers with a novel design space. Specifically, this design space
is derived via a characterization of the inference path and a profil-
ing of the compuatition cost on modern prefetchers, from which
we identify crucial efficiency-impactful knobs for both aspects of
machine learning and micro-architecture.

(2) We propose effective strategies to optimize the design knobs
to help search for efficient prefetchers under the vast space. Our

strategies involve observing the characteristics of the neural net-
works and benchmark workloads, mathematical optimization for
the memory address split, as well as a low-cost algorithm to quickly
traverse the design space. With these effective strategies, we can
discover sets of knobs that build up efficient prefetchers.

(3) On SPECCPU 2006, ourmodels show amaximumof 58.3% IPC
gain compared to no prefetching. On a subset of memory-intensive
benchmarks, libquantum, omnetpp, mcf, and xalancbmk, our mod-
els provide an average IPC gain of 33.7% and 26.3% compared to no
prefetching and generic non-learning based prefetcher. Compared
to the state of the art neural prefetcher, our models enjoy a 15.4×
MAC reduction and a 6.7× parameter saving on all benchmarks,
with an average of 3.2% IPC gain on memory-intensive benchmarks,
leading the state of the art.

2 BACKGROUND
2.1 Neural Network for Micro-Architecture
Applying machine learning to solve micro-architecture problems
has long been attempted. Previously, reinforcement learning (RL)
techniques are used to optimize memory controller scheduling
algorithms [16], as well as performance knobs [7].

Neural networks, a widely-studiedmodel in themachine learning
community, have also been applied to multiple micro-architecture
tasks [10, 21, 30, 40, 46]. They have demonstrated strong prediction
capabilities especifically for tasks of branch prediction [21, 46] and
cache replacement [40]. Jimenez et al. [21] proposes a single-layer
perceptron to learn dynamic branch prediction rules, while Shi et
al. [40] use an LSTM to distill information into a support vector
machine (SVM) classifier for cache replacement.

While branch prediction and cache replacement are binary pre-
diction problems (taken vs. not taken and keep vs. replace), with
light-weight models like one-layer perceptron producing desir-
able results, data prefetching represents a much harder multi-value
prediction challenge, and the state-of-the-art prefetchers [12, 41]
require gigantic DNNs to model more complicated patterns and
larger prediction space. Although DNNs provide significant better
prediction power than prior rule-based approachs [5, 20], it is still

2

(a) Vanilla RNN

(b) Gated Recurrent Unit (GRU)

(c) Long-Short Term Memory (LSTM)

Figure 2: Different RNN structures as shown in a text-
book [54].

hard to incorporate them into a real system. Thus, enhancing the
efficiency of a neural prefetcher is of critical importance.

2.2 Recurrent Neural Network
Recurrent neural networks (RNNs) are a type of modern DNNs
with recurrent connections, which excels in time-series modelling.
Since most micro-architecture prediction tasks incur machine state
transitions which spontaneously form sequences of time steps,
RNNs naturally become the first model to try among different DNNs.
For data prefetching, LSTM [14] has become the dominant RNN
variant to build into a neural prefetcher. However, although LSTMs
show strong modelling capability for the tasks, it may not be the
optimal choice when network efficiency is taken into consideration.

In fact, there are multiple variants of RNNs shown in Figure 2
including (a) vanilla design [35] (b) gated recurrent unit (GRU) [8]
and (c) long short-term memory (LSTM) [14]. These RNN variants
adopt a common structure where the block at time step 𝑡 will
have an input of data embedding X𝑡 and the hidden representation
from the prior block H𝑡−1 to compute its own representation H𝑡

which will be recurrently served as the input of the (𝑡+1)-th block.
However, even if we fix X and H to have the same dimensionality,
these variants will require different amount of computation. This is
because they have different designs and numbers of internal gates
within a block to generate H, and computing the activations for
each gate requires a matrix multiplication transforming the input
vector into the gate vector. Precisely speaking, the vanilla RNN only
has 1 internal gate while GRU has 3 gates and LSTM has 4 gates.
That being said, switching LSTM to a GRU/vanilla design could save
25%/75% of computation cost without affecting the representation
dimensionality. In our work, we find the choice of RNN structure
to be a crucial knob to enhance prefetcher’s efficiency.

2.3 Efficient Neural Networks
Efficiency has become a critical issue in the neural network com-
munity with increasing attempts in building efficient neural models
by structural pruning [25, 27], matrix factorization [19], knowledge
distillation [13, 26], and neural architecture search (NAS) [55, 56].
Among them, structural network pruning and NAS lead the design
of efficient networks as they produce compact and dense models
that are compatible with the Basic Linear Algebra Subprograms
(BLAS) libraries [25]. In general, structural network pruning aims
to remove redundant neurons from a gigantic baseline model, while
NAS defines a network search space and leverage optimization
techniques like reinforcement learning (RL) agents to find good
specifications of models.

Our work bears a similar flavor to pruning and NAS, as it aims
to reduce computation cost with a reference baseline and creates a
design space to traverse by optimizing different knobs. However,
our approach has significant novelties: (1) While these works are
mostly proposed to build efficient DNNs for computer vision prob-
lems, we make the first attempt to incorporate these techniques to
solve the crucial mirco-architecture prediction challenge of data
prefetching, to the best of our knowledge; (2) Prior techniques only
aim to optimize ML metric like prediction accuracy, yet the archi-
tectural performance is more accurately reflected by IPC, and hence
our design space includes architectural knobs in addition to ML
knobs; (3) Instead of using an expensive controller and evaluating
on millions of candidate networks to search for the best one as done
in prior NAS work, our strategy requires much less search cost to
discover an efficient design.

3 PROBLEM FORMULATION
To improve the efficiency of a neural prefetcher in both dimensions
of complexity and performance, we need to first characterize its
inference path and profile how much computation is incurred for
each phase in this path. This characterization and profiling allows
us to analyze which part of the prefetcher is potentially redundant
and reducible as well as where we possibly have a chance to improve
performance.

3.1 Neural Prefetcher Computation Phases
Most modern neural prefetchers share a common inference path
shown in Figure 3, where the inference mainly involves three
phases: embedding, network, and prediction. (1) In embedding,
the prefetcher takes a history stream of read memory accesses

3

Memory
Stream Embedding Neural Network Predictor Prefetch

Address
: Input Scalar

: Vector

: Output Scalar

Figure 3: Overall flowchart of a neural prefetcher. The scalars in the memory stream are first embedded into high dimensional
vectors, which are then fed to a neural network for representation learning. The learned representations will be used for
predicting the prefetch address.

(full/miss memory stream) as input with scalar values of program
counters (PCs) and memory addresses. These scalars are then used
as keys to retrieve their high-dimensional vector embeddings from
a pre-stored lookup table. (2) In network, the prior embeddings
are then fed into a neural network, typically a recurrent neural
network like LSTM, for a series of non-linear operations to output
a vector representation. (3) In prediction, the output representation
is fed into a predictor to predict the prefetch address. The predictor
usually uses a single linear transformation to either approximate
the address value by regression or treat each unique address as a
class and perform class probability prediction.

3.2 Computation Profiling
Following the phase characterization in Figure 3, we profile the
computational cost of the state-of-the-art neural prefetcher, Voy-
ager [41], running on mcf in Figure 4. We observe that there is
large room for efficiency enhancement in each phase. (1) In embed-
ding, Voyager embeds PCs and addresses into vectors with too high
dimensions that some entries of the vectors could be redundant.
Moreover, it uses a number of attention experts [47] for correlation
embedding, where some of the experts are unnecessary and can
be safely removed. (2) In the network, Voyager adopts LSTM as its
network structure which has multiple gates to generate its hidden
representation. While LSTM does have good performance for time-
series modelling, there are other light-weight RNN structures like
Vanilla RNN and GRU that bear similar performance. In addition,
some neurons in the network may not be useful and can thus be
pruned. Moreover, the computation cost of an RNN scales linearly
with the length of input entries, and thus using a shorter history of
PCs/memory accesses would help reduce the network’s cost. (3) For
prediction, the computational cost can actually be as high as the
network phase. A noticeable issue of a classification-based neural
prefetcher is the class explosion problem, where a workload may
have millions of unique addresses and hence unique classes which
requires a gigantic linear predictor. Voyager attempts to solve this
issue by splitting an address into two portions, page and offset,
where the number of unique pages and offsets is orders of magni-
tude less than the unique addresses. However, this default split still
creates a large number of classes to predict on some benchmarks
which is cumbersome and would deteriorate the performance.

Figure 4: Computational cost of Voyager [41] on mcf. The
vertical axis is logarithmic.

4 OUR SOLUTION
4.1 Neural Prefetcher Design Space
Inspired by the inference path characterization and computation
cost profiling in Section 3, we introduce our novel design space for
a neural prefetcher with parameterization knobs shown in Table 1.
Specifically, our design space includes knobs from both perspectives
of micro-architecture and machine learning design, with the types
and ranges of values for each knob included. Being aware of the
computational efficiency, we incorporate what computation phases
(embedding, network, and prediction) these knobs would affect.

With a specification of knobs, we are able to translate the pa-
rameterization into the actual computational graph of a neural
prefetcher shown in Figure 5. Specifically, the prefetcher takes in
a history length of 𝑇 PCs and addresses from a memory stream
𝐷 , where the addresses are split into two portions with the upper
parts containing (64-𝑆)-bit addresses and the lower parts 𝑆-bit. The
scalar values of PCs and two parts of the addresses are embedded
into vectors with knobs of 𝑃 , 𝐴, and 𝐸 specifying their dimensions,
where we adopt the same attention mechanism [47] as in [41] to
obtain the final embedding of lower addresses. The embeddings
of PCs and both parts of the addresses are concatenated and fed
into two identical RNNs of type 𝑁 with the same number of 𝐻 neu-
rons to learn their representations. The learned representations are
later fed into two classifiers to predict the upper prefetch (64-𝑆)-bit
addresses and lower 𝑆-bit prefetch addresses, which can be finally
combined into 64-bit prefetch addresses.

4

Perspective Name Knob Type Range Computation Phase

Architecture stream dataset 𝐷 str {Full, L1DM, L2CM, LLCM} embedding & prediction
address split 𝑆 int [12, 20] embedding & prediction

ML Design

PC embedding 𝑃 int [1, 64] embedding
address embedding 𝐴 int [1, 256] embedding
attention experts 𝐸 int [1, 100] embedding

time steps 𝑇 int [1, 16] embedding & network
hidden neurons 𝐻 int [1, 256] network
RNN structure 𝑁 str {Vanilla, GRU, LSTM} network

Table 1: Our design space for neural prefetcher.

1. All knobs are shown at the position that it will affect the computation graph.
2. The dimensionality of all vectors are notated.
3. 𝑈 & 𝐿 denotes the number of unique upper and lower addresses which are fully determined by 𝐷 and 𝑆.

: Vector

: Output
Scalar

: Input
Scalar

ℝ!

ℝ!×#

ℝ$

ℝ!

ℝ% ℝ&

Pr
ef

et
ch

A
dd

re
ss

Address
Split, 𝑆

ℝ'!($

ℝ%

PC

Address

Upper
Address

Lower
Address

Upper
Prefetch

Lower
Prefetch

Embedding Prediction

Memory
Stream

St
ep

s,
𝑇

St
re

am
, 𝐷

A
tte

nt
io

n Lo
w

er

R
N

N
U

pp
er

R

N
N

ℝ)

Lo
w

er

Pr
ed

ic
to

r
U

pp
er

Pr

ed
ic

to
r

Network

Figure 5: Computational graph of our neural prefetcher specified by the design knobs.

Our design space contains a total of 7.2×1011 unique neural
prefetcher designs, each of which can be determined by a specifica-
tion of 𝐷-𝑆-𝑃-𝐴-𝐸-𝑇 -𝐻 -𝑁 . For example, the state-of-the-art neural
prefetcher Voyager [41] is a candidate network under the design
space with the specification of L2CM-12-64-256-100-12-256-LSTM.
Importantly, our design space includes several unique knobs that
most prior works ignore but are found to be crucial for efficiency:
(1) 𝐷 , on what stream the neural prefetcher should train on and
where the prefetcher should be placed to best integrate the ML
model into the system; (2) 𝑆 , where to split the addresses could be
benchmark dependent and we need a systemic approach to deter-
mine a good splitting point; (3) 𝑁 , while LSTMs are useful, they
are computationally expensive and seeking other variants of RNN
designs could alleviate the computation burden.

From Section 4.2 to Section 4.4, we discuss more details of our
design knobs and lay out our strategy to optimize these knobs for
a much more efficient neural prefetcher.

4.2 Training on the Right Memory Stream 𝐷

A neural prefetcher is a neural network, which naturally uses the
metric of ML accuracy to evaluate its prediction power. A neural
prefetcher is also a data prefetcher, whose ultimate goal is to en-
hance the system performance, typically measured by the IPC gain.
Does a prefetcher with high ML accuracy spontaneously delivers high
IPC gain? The answer is not necessarily yes. While the full memory
stream, including all read memory accesses of misses and hits from
all hierarchies, provides the most amount of data which is the best
from the ML perspective for model learning and indeed gives the
best ML accuracies, the neural prefetcher trained on it may not help
much for the system performance. As shown in Figure 9, a neural
prefetcher that makes 81.6% correct prediction on the full address
stream turns out to have a lower IPC gain compared to another one
that has 52.8% prediction accuracy for the L2 cache miss stream.

In fact, determining which memory streams to use as the dataset
(𝐷) for the neural prefetcher to train on is an open question and is
a critical block for building an efficient neural prefetcher. In this
work, we investigate four memory read streams for knob 𝐷 : full

5

Benchmark Full L1D Miss L2C Miss LLC Miss
astar 29M 0.56M 0.37M 0.31M
bzip2 25M 1.04M 0.32M 0.09M
gcc 20M 0.76M 0.16M 0.05M
gobmk 22M 0.40M 0.15M 0.04M
h264ref 33M 0.27M 0.13M 0.06M
hmmer 44M 0.21M 0.02M 5.74K

libquantum 15M 2.86M 2.86M 2.86M
mcf 29M 12M 8.76M 7.52M

omnetpp 23M 2.71M 2.32M 1.83M
perlbench 22M 0.37M 0.21M 0.17M

sjeng 25M 0.07M 0.05M 0.05M
xalancbmk 22M 3.61M 3.60M 3.32M

Table 2: Number of memory accesses for different streams
over the SPEC06 benchmark suite with the simulator design
in Table 3. The number is shown taken from Pinpoints [32]
of 130M instructions.

stream (Full), L1D miss stream (L1DM), L2C miss stream (L2CM),
and LLCmiss stream (LLCM). We also study two types of prefetcher
placement, in-place prefetching and LLC prefetching. For in-place
prefetching, we train and put the neural prefetcher on the same
level of cache hierarchy. For example, a prefetcher trained on L1DM
is put on the L1D cache (the prefetcher trained on Full is placed at
LLC). For LLC prefetching, we follow the scheme as in ISB [20] and
Voyager [41], where the prefetchers are learned on a lower-level
cache (L1D, L2C) and placed into the LLC. The reason to do LLC
prefetching is that the prefetches would not disrupt the future miss
stream in the lower caches if we treat a prefetch as load. However,
if we maintain a separate prefetch queue for each cache, in-place
prefetching would not have the issue of stream disruption either.

We present the statistics of different 𝐷 in Table 2 for the bench-
mark suite of SPEC2006 prior to training. In general, the lengths
of the miss streams are orders of magnitude less than the their
full counterpart. Moreover, we find two groups of benchmark with
similar cache behavior: (1) the miss streams of each cache hierarchy
are roughly the same or on the same order (e.g., omnetpp, mcf); (2)
the lengths of miss streams reduce by orders of magnitude when
it goes to an upper cache hierarchy (e.g., bzip2, gcc). Preferably,
the choice of 𝐷 should deliver good performance for both cache
behaviors.

4.3 Optimizing Address Split 𝑆 by Complexity
and Randomness

As shown in the computational graph of Figure 4, our prefetcher
is divided into an upper address RNN predictor and one for the
lower addresses. For that, we propose a knob 𝑆 to allow flexibility in
determining where to split the memory address into two portions.

Formally, we denoted the memory address stream𝑀 (fully de-
termined by 𝐷), which is separated into an upper stream𝑀𝑈 and
a lower stream𝑀𝐿 , where each entry in𝑀𝑈 is a (64-𝑆)-bit integer
and𝑀𝐿 contains 𝑆-bit integers. As we are simulating a system with
64-byte cache lines, the last 6 bits for an entry in𝑀𝐿 will not affect
the prefetching performance, and hence we can further alter𝑀𝐿 to
a stream with (𝑆-6)-bit integers. In our design, we use an identical

RNN structure 𝑁 with the same number of hidden neurons 𝐻 for
both 𝑀𝑈 and 𝑀𝐿 prediction. To derive efficient prefetchers, we
optimize 𝑆 based on the principle of computation complexity and
distribution randomness by extracting statistics from𝑀𝑈 and𝑀𝐿 .
Complexity. The numbers of unique sub-addresses in 𝑀𝑈 and
𝑀𝐿 , denoted by𝑈 and 𝐿, are fully defined by 𝑆 . The computational
complexity of the prediction phase (referred to Figure 5) is thus
𝐻 × (𝑈 + 𝐿) MACs. Moreover, we observe that 𝑈 × 𝐿 is close to
a constant across different 𝑆 , for all benchmarks, as 𝑈 and 𝐿 are
sort of uncorrelated. Due to that, if 𝑈 is much larger than 𝐿, we
can simply increase 𝑆 to reduce 𝑈 and raise 𝐿 such that the new
pair of (𝑈 , 𝐿) will have a smaller sum for a smaller computation
complexity cost. When 𝐿 is much larger than 𝑈 , we can decrease 𝑆
following the same notion. In fact, when𝑈 × 𝐿 are constrained to
be a constant, the minimum of𝑈 + 𝐿 is derived when𝑈 = 𝐿 on the
real number space, and thus we would like𝑈 and 𝐿 as close to each
other as possible to minimize their sum. In our design, 𝑈 and 𝐿

are determined by 𝑆 , where we do not have the freedom to choose
𝑈 and 𝐿 to be any number. We therefore introduce a quantitative
metric to evaluate how close𝑈 and 𝐿 are given an 𝑆 as follows:

𝐶 (𝑆) = | log2 (𝑈) − log2 (𝐿) | (1)

where𝐶 is a function of 𝑆 , denoting the discrepancy of computation
complexity between𝑀𝑈 and𝑀𝐿 , and minimizing 𝐶 would give us
an 𝑆 that makes the predictor the most efficient. Note, we add a log2
in front of𝑈 and 𝐿, as𝑈 and 𝐿 generally scale/decay by 2 when 𝑆 is
increase or decrease by 1, and putting them in log2 would facilitate
the incorporation of other terms that do not scale exponentially.
Randomness. A prefetch address is only correct when we make
correct predictions for both its upper (64-𝑆) bits and its lower (𝑆-
6) bits. Because of that, the final prefetch accuracy is bounded
by the more challenging stream to predict between 𝑀𝑈 and 𝑀𝐿 .
Since we use an identical RNN structure (same 𝑁 and 𝐻) for both
representation learning of 𝑀𝑈 and 𝑀𝐿 with the same network
capacity, we would like𝑀𝐿 and𝑀𝑈 to be equally hard to predict,
which would minimize the maximum hardness between them.

The question then becomes how to measure the predictive hard-
ness for 𝑀𝑈 and 𝑀𝐿 without conducting the expensive neural
network training. Our solution is to approximate that by using the
concept of distribution randomness. In fact,𝑀𝑈 and𝑀𝐿 can also
be seen as two data distributions, where the occurring frequency
for each sub-address can be treated as its probability in each distri-
bution. The more random the distribution is, the harder to make
a prediction on the value of it. Drawing from information theory,
the randomness of any data distribution 𝑋 can be quantified by its
entropy, ℎ1:

ℎ(𝑋) =
∑︁
𝑥

𝑝 (𝑥) log𝑝 (𝑥) (2)

where 𝑥 is the possible value that𝑋 can take. With the entropy well
defined, we can then introduce a term to quantitate the discrepancy
between𝑀𝑈 and𝑀𝐿 in their distribution randomness, which is a
good approximation of their predictive hardness:

𝑅(𝑆) = |ℎ(𝑀𝑈) − ℎ(𝑀𝐿) | (3)

1Conventionally, entropy is denoted by 𝐻 . Since we have already use 𝐻 as one of our
design knob, we use ℎ to denote the entropy.

6

where 𝑅 is a function of 𝑆 andminimize 𝑅 would result in a choice of
address split that makes𝑀𝑈 and𝑀𝐿 equally hard for representation
learning.
Optimization Objective. Formally, our joint optimization objec-
tive to choose 𝑆 based on the computation complexity and distribu-
tion randomness can be formulated as:

min
𝑆

𝛼𝐶 (𝑆) + 𝛽𝑅(𝑆) (4)

where 𝛼 and 𝛽 are two positive weights for each term. Although in
theory 𝑆 can be chosen as any integer from 6 to 64, in practice we
find that the optimal 𝑆 for Equation 4 always lies between 12 and
20 which could save a lot of computation costs for 𝑆 optimization.

4.4 Neural Architecture Search
After investigating 𝐷 and 𝑆 which are crucial parameters from
the micro-architecture perspectives, we proceed to the rest of the
knobs which are more related to ML design. How to design an
efficient neural network for a task is always an open problem. The
network structure to adopt, the dimension for each of the vectors,
and the number of hidden neurons in a network can all be optimized
for more efficient design. Indeed, searching for an efficient neural
architecture is highly non-trivial.
RNN Structure. LSTM is the most commonly adopted RNN variant
for neural prefetcher [12, 34, 41, 45, 53], due to its strength in
modelling time-series and the existence of multiple gates. However,
while each gate requires 𝐻 hidden neurons, the use of multiple
gates could increase the computational cost. Although the design
of gates in LSTM is theoretically sound, some of the gates could be
redundant and we could be able to reduce them in practice.

In our study, we have an 𝑁 knob (referred to Table 1) for the
structure of RNN. In fact, with the same number of hidden neurons
(𝐻) in the learned representation, the vanilla RNN and GRU only
require 1 and 3 gates, which are both less than 4 gates in LSTM. That
being said, using a vanilla RNN and GRU can have 75% and 25% com-
plexity savings compared to using an LSTM, while maintaining the
dimensionality for the learned representation. As no prior works at-
tempt to address the efficiency issue of the network for prefetching,
we pioneer an empirical study to choose the type of RNN structure
from the standpoint of finding a better performance-complexity
tradeoff.
Dimensionality Search. The rest of the knobs, 𝑃 , 𝐴, 𝐸, 𝑇 , and
𝐻 , decide the dimensionality of input/hidden high-dimensional
embedding vectors. In general, the smaller the values are, the less
computation cost the prefetchers will have. In our design space, the
choice of these values could have 64×256×100×16×256 = 6.7×109
combinations, which is impossible to enumerate.

To traverse such a vast design space, we adopt a straightforward
approach where we gradually search for each knob one by one and
subsample the range of values to reduce the search cost. For exam-
ple, when optimizing the PC embedding dimension 𝑃 , we freeze all
other knobs without tuning them, and sub-sample the design space
from [1, 64] to {32, 64} and evaluate the network performance on
all values in the sub-sampled space. From an efficiency perspective,
we choose the smallest knob that maintains the performance above
a predetermined threshold. The knob optimization loop of 𝑃 is thus
complete and we can proceed to the next unoptimized knob, e.g. 𝐴

Processor
352-entry ROB, 4-wide, 128-entry LQ,
72-entry SQ, 128-entry scheduler

bimodal branch prediction
L1 I-Cache 32KB, 8-way, 4-cycle latency, 8 MSHR
L1 D-Cache 48KB, 12-way, 5-cycle latency, 16 MSHR
L2 Cache 512KB, 8-way, 10-cycle latency, 32 MSHR

LLC per core 2MB, 16-way, 20-cycle latency, 64 MSHR

Memory
tRP=tRCD=tCAS=20

2 channels, 8 ranks, 8 banks
32K rows, 8GB/s bandwidths

Table 3: ChampSim simulator design.

for the next optimization. In practice, we perform the dimension-
ality knob search in the order of 𝑇 → 𝑃 → 𝐴 → 𝐸 → 𝐻 , and
we only need less than 20 evaluations to traverse the vast 6.7×109
possibilities which represents a low-cost search algorithm.

5 EVALUATION
We first discuss our evaluation methodology in Section 5.1. We
then compare our efficient neural prefetcher with various state-
of-the-art prefetchers [6, 18, 24, 41], both neural and rule-based,
in Section 5.2. Specifically, when compared to the state-of-the-art
neural prefetcher [41], we achieve noticeable MAC reduction and
parameter saving with even better performance. Lastly, we describe
howwe reach the efficient design with step-by-step ablation studies
in Section 5.3-5.6.

5.1 Experimental Methodology
Simulator.We use the open-sourced ChampSim simulator [1] to
validate the system performance of our efficient neural prefetchers
in a micro-architecture. ChampSim models a single-core 4-wide
out-of-order processor with an 8-stage pipeline and a three-level
cache hierarchy. We set the parameters specifically to model an Ice
Lake micro-architecture [2] as shown in Table 3 for the workload.
Benchmarks. We conduct our experiment over the full suite of
SPEC CPU 2006 [3] (SPEC06). For reproducibility, we use the set
of open-sourced SPEC06 PinBalls2. For each SPEC06 benchmark,
we simulate all PinPoints [32] and aggregate their performance
statistics based on the methodology introduced in [11]. While each
PinPoint contains 100M warmup instructions and 30M region of
interest (ROI) instructions, this provide us a natural split for the
neural prefetcher learning where we use the 100M warmup instruc-
tions for training and the 30M ROI instructions for testing. Similar
to [41], our method can be adopted for online training where the
prefetchers are trained and tested on a different portion of the
benchmark’s execution.
Training Neural Network. In addition to the design knobs which
specified the inference path of the prefetcher, we adopt the training
recipe in Table 4 to train all the models. In fact, the recipe is the
same as the one in Voyager [41] which reflects that our novelty
and effectiveness stems from the design space instead of the
training hyperparameters.

2http://snipersim.org/w/Pinballs

7

http://snipersim.org/w/Pinballs

Hyperparameters Values
Training epoch 50

Batch size 512
Learning rate 0.001

Number of RNN layers 1
Dropout keep ratio 0.8

Table 4: Recipe for training our neural prefetchers.

Compared Methods.We mainly compare against the state-of-the-
art neural prefetcher, Voyager [41]. In particular, we adopt their
open-sourced implementation3 to reproduce their results on our
trace. We use the same training recipe in Table 4 for Voyager to
ensure the fairness in the comparison.
Evaluation Metrics. Since our prefetcher can be placed on dif-
ferent levels of cache hierarchy than Voyager, we do not use the
common hierarchy-specific metrics like accuracy and coverage.
Moreover, we find that the ML prediction accuracy, unified accu-
racy/coverage, does not help much in identifying the efficacy of a
prefetcher as shown in Section 5.3. Therefore, we solely report the
effectiveness of the prefetcher on the overall system performance
by IPC. To measure computational complexity, we measure the
total MACs for one inference of a prefetcher to evaluate its compu-
tational budget. We also include the number of parameters that a
prefetcher needs in order to evaluate its storage requirement.

5.2 Comparison to the State of the Art
We compare our models with various arts, including Signature
Path Prefetcher (SPP) [24], Access Map Pattern Matching (AMPM)
prefetcher [18], Bingo [6], and Voyager [41], where our method
advances the state-of-the-art IPC. When compared to the state-of-
the-art neural prefetcher, Voyager [41], we outperform it in both
complexity and performance.
Complexity. As shown in Figure 6 and 7, our efficient neural
prefetchers provide an average reduction of 15.4× in multiply-
accumulation operations (MACs) and an average parameter saving
of 6.7× compared to Voyager [41], which represents much more
light-weight models.
Performance. In Figure 8, we show the IPC gain percentages of dif-
ferent prefetchers compared to no prefetching.While all prefetchers
provide similar performance on benchmarks that are not memory-
bounded, our efficient neural prefetcher demonstrates a signif-
icant advantage on a subset of memory-intensive benchmarks:
{libquantum, mcf, omnetpp, xalancbmk}. Specifically, in compar-
ison to generic non-learning based prefetchers of SPP [24] and
AMPM [18], our model provides an average of 16.6% and 26.3%
IPC gain on these memory-intensive benchmarks. Compared to the
state-of-the art neural prefetcher, Voyager [41], our model shows
an average of 3.2% IPC gain on the memory-intensive benchmarks,
advancing the state of the art.

5.3 Choosing Data Stream 𝐷

We now show howwe derive our efficient design in 5.2 starting with
knob 𝐷 . Our first investigation is shown in Figure 9, where we train

3https://github.com/aleczhanshi/neural_hierarchical_sequence

Figure 6: MACs acceleration compared to Voyager [41]over
the entire suite of SPEC06. On average, our model enjoys a
15.4×MACs acceleration.

Figure 7: Parameters saving compared to Voyager [41]over
the entire suite of SPEC06. On average, our model enjoys a
6.7× parameter saving.

Figure 8: IPC gain compared to no prefetcher on the en-
tire suite of SPEC06 with both methods. On memory inten-
sive benchmarks with more cache misses (libquantum, mcf,
omnetpp, and xalancbmk), our method shows an average of
33.7% IPC gain over no prefetcher, and 3.2% gain compared
to Voyager [41].

with Full and L2CM streams of omnetpp and adopt corresponding
in-place prefetching to evaluate the IPC gain for both settings.
Although the prefetcher produces a much higher ML accuracy on
Full, the one trained on L2CM achieves much higher IPC gain. This
indicates that a good ML metric, like accuracy, does not ensure a

8

https://github.com/aleczhanshi/neural_hierarchical_sequence

Figure 9: Would training on the stream with the most
amount of samples (Full) provide us with the most powerful
prefetcher? The answer is yes from the ML perspective but
probably no from the perspective of architecture CPU per-
formance. We find that achieving a good ML accuracy on the
full stream would give less IPC gain than predicting on the
L2 miss stream with less accuracy, which reflects the impor-
tance of knob 𝐷 for neural prefetcher design. Experiments
conducted on omnetpp.

good system performance, which reinforce that building an efficient
neural prefetcher should not only consider ML factors but also the
micro-architectural design with crucial parameters like 𝐷 .

Next, we conduct a comprehensive study on how we should
choose 𝐷 for a neural prefetcher. According to Table 2, we select
one representative benchmark for each group of cache behavior:
omnetpp for group (1) and bzip and group (2). We first train the
neural prefetcher for in-place prefetching as shown in Figure 10.
Although Full contains the most amount of data which provide
better results for neural network learning accuracy, we find that
the prefetchers trained on it yields the least IPC gain for both types
of benchmarks. Moreover, we find that training on L1DM and then
placing the prefetchers at the L1D cache consistently produces the
best performance for both benchmarks. We further compare in-
place prefetching vs. LLC prefetching for models trained on lower-
level caches and show the results in Figure 11. While Voyager [41]
is trained on L2CM and placed at the LLC (L2CM-LLC), we find that
doing L1DM in-place prefetching (L1DM-IN) can deliver around
1.5% IPC gain without changing the ML components. We thus fix
L1DM in-place prefetching as our design knob of𝐷 in the following
study.

5.4 Optimizing Address Split 𝑆
After 𝐷 , the next knob we investigate is 𝑆 where we use the ob-
jective in Equation 4 to optimize it. Specifically, we use a memory
intensive benchmark, mcf, to perform the study and set 𝛼=𝛽=1. As
shown in Figure 12, the optimization objective shows a nice convex
landspace where it reaches its global optimal when 𝑆=18 for mcf.
In fact, such convexity applies to all benchmarks in SPEC06 suite
and we find the optimal 𝑆 vary between [14, 18] instead of the de-
fault page-offset setting of 𝑆=12. Moreover, as we make our actual
implementation for the neural prefetcher, we find that the optimal
split does provide us with a light-weight model (Figure 13) with

Figure 10: In-place prefetching on different𝐷 . Models trained
on L1DM achieve the best IPC gain.

Figure 11: In-place vs. LLC prefetching for prefetcher trained
on lower level caches. Our choice of in-place prefetching on
L1D (L1DM-IN) delivers around 1.5% IPC gain compared to
state-of-the-art neural prefetcher design [41], L2CM-LLC,
without any the ML components.

top performance (Figure 14), which has higher efficiency than the
default split. This result shows that our formulation from the per-
spective of computation complexity and distribution randomness
is mathematically rigorous and empirically effective.

5.5 Choice of RNN Structure 𝑁
After fixing 𝐷 and 𝑆 , we look into the structural type of RNN, 𝑁 ,
with mcf. As shown in Figure 15, we find that LSTM indeed provides
a good IPC gain due to its strong modelling effectiveness, GRU can
also perform on par with it while having a 25% MAC reduction for
free. This shows that adopting GRU for 𝑁 could be more efficient
while prior works do not consider it. Moreover, using Vanilla RNN
does reduce MACs from LSTM by an order of 3, yet it also exhibits
a noticeable performance drop. Hence, we choose GRU over the
vanilla design in our study.

5.6 Design Space Traversal
Lastly, we present a design space traversal from Voyager [41] to
our prefetcher on mcf with step-by-step knob optimization shown
in Figure 16. Being consistent with the results in Section 5.3, 5.4,
and 5.5, optimizing the knobs of 𝐷 (step 1), 𝑆 (step 2), and 𝑁 (step
3), gives us win-win models with both less complexity and better

9

Figure 12: The objective value of Equation. 4 over different 𝑆
on benchmark mcf. The optimal 𝑆 for the objective value is
18.

Figure 13: Models’ MACs with different 𝑆 on benchmark mcf.
Themost light-weightmodel corresponds to the optimal split
determined by Equation. 4.

Figure 14: Models’ IPC gains with different 𝑆 on benchmark
mcf. The optimal split determined by Equation. 4 delivers a
top IPC gain.

system performance. More specifically, we find that address em-
bedding, 𝐴, is also a crucial knob to optimize (step 6), where less
dimensionality on 𝐴 makes the prefetcher easier to capture the pat-
tern. The conventional pruning of hidden neurons is demonstrated
in step 8 for optimizing𝐻 . While we perform the train from scratch
instead of pruning from large, we think that to identify redundant
nodes by pruning could even better enhance the model efficiency.
With this traversal, we derive a model with 15× fewer MACs while
5% better IPC gain.

6 RELATEDWORK
6.1 Heuristic-Based Prefetchers
Memory accesses usually show some visible patterns which are
exploited to build prefetchers based on the stride difference [17,
23, 28, 36, 42], temporal locality [5, 15, 20, 22, 31, 48], and spatial
locality [6, 24, 39, 43, 44, 51].

Figure 15: The efficiency of adopting different types of RNNs
structure. As adopting GRU provides a 25% MACs reduction
from LSTM while having even better IPC gain, we adopt it
for our prefetcher design. Experiments are conducted with
mcf, and the horizontal axis is logarithmic.

Figure 16: Step-by-step knob optimization design space tra-
versal from Voyager [41] to our 15× efficient design. The
knob adjustments for each step: (1) 𝐷: L2CM → L1DM; (2) 𝑆 :
12→ 18; (3) 𝑁 : LSTM→GRU; (4)𝑇 : 16→ 10; (5) 𝑃 : 64→ 32; (6)
𝐴: 256→ 32; (7) 𝐸: 100→ 30; (8)𝐻 : 256→ 128. Experiments are
conducted with mcf, and the horizontal axis is logarithmic.

In stride prefetching, a stream buffer [23] is adopted to observe
if a constant stride occurs over a sequence of consecutive requested
memory addresses. The earliest prefetcher of this type is the classic
next-line prefetcher [42] which is used for concept introduction in
most textbooks. Recently, stride prefetchers are led by Sandbox [36]
and best-offset prefetcher [28], which determine the optimal stride
based on the coverage after testing a few candidates.

Researchers later develop prefetch schemes based on the tempo-
ral locality of memory addresses with an original work formulating
the prefetcher problem as a Markov decision process [22]. This
direction is further enhanced by the GHB [31] prefetcher, which
uses a sequence of non-repeating access history as a lookup table
for decision. STMS [48] further sample the memory stream to re-
duce the overhead of the meta-data, and a more recent work of
Domino prefetcher [5] uses the two past addresses in the global
stream instead of only looking at the last one to make the prefetch.

In addition to temporal locality of absolute addresses, spatial pat-
terns such as locally-repeated address deltas or address offsets are

10

incorporated as a factor to determine the prefetch address. A typical
work is SMS [44] prefetcher, which applies spatial patterns seen
in the old pages to new pages. The VLDP [39] prefetcher records
the history of address deltas for varied-length memory accesses.
This work is followed up by SSP [24], which defines a signature
function based on address deltas to output the next address delta.
The Bingo [6] prefetcher further extends the address contexts to
increase the precision of regional pattern matching.

Compared to these methods, our work allows the prefetcher to
automatically discover and flexibly adjust the temporal and spatial
patterns by showing them historic examples to a learnable neural
network, rather than by adopting fixed rules.

6.2 Learning-Based Prefetchers
Another line of prefetcher designs adopts machine learning ap-
proaches to learn the rules. Early work in [37] leverage logistic
regression and decision tree models for prefetch prediction, and a
reinforcement learning table-based approach is introduced in [33].

More recently, DNN prefetchers [12, 34, 41, 45, 53] show more
promising results as the large network capacity allows the prefetcher
to capture more complicated and diverse memory behaviors. Specif-
ically, Zeng et al. [53] and Peled et al. [34] adopt LSTM networks
to perform regression tasks for prefetch prediction. While training
regression LSTMs allows prefetchers to approximate the values
of prefetch addresses, it is less desired since a prefetch line that
even only differs by a small amount from the ground truth would
not be useful. In contrast, we adopt classification LSTMs for our
prefetcher for more precise prediction. In this line, an expensive
delta-based classification LSTM prefetcher [12] is previously pro-
posed and a follow-up work [45] claims to reduce the complexity
of final prediction layers from O(𝑛) to O(log𝑛) at the best case.
However, these prefetchers still bear a high inference cost and they
do not incorporate their prefetchers into a simulator that can report
the overall system performance gain in IPC. On the contrary, our
prefetcher is orders of magnitude smaller and we provide a study
with practical simulation on system performance to demonstrate
our effectiveness.

Our work is most related to Voyager [41] which uses a hierarchi-
cal neural prefetcher that reduces the final predictor complexity to
O(𝑛/64) based on a page-offset address split, and achieves state-of-
the-art performance-compelxity tradeoff. Different from that, we
present multiple design knobs that are ignored in Voyager. With
effective knob optimization strategies, our neural prefetchers are
15.4× less costly with even better performance compared to Voy-
ager, leading the state of the art.

7 CONCLUSION
In this work, we propose a novel mechanism to build efficient
neural prefetchers. Specifically, we introduce a design space with
efficiency-impactful knobs after characterizing the inference path
and profiling the computation cost of modern neural prefetchers.
These knobs include both perspectives of machine learning design
and architectural configuration. Then, we introduce strategies to
optimize these knobs via characteristic observation, mathematical
optimization, and low-cost design space traversal algorithm. These

strategies allow us to quickly derive efficient models. When evalu-
ating on SPEC CPU 2006, our method provides up to 60% IPC gain
compared to the no prefetcher setting, outperforming non-neural
based prefetchers. In comparison with the state-of-the-art neural
prefetcher, we achieves 15.4× computation acceleration, 6.7× pa-
rameter saving with better IPC. With the growing power of on chip
neural-accelerator, our method could lead to more practical neural
prefetcher with the state-of-the-art efficiency.

REFERENCES
[1] [n. d.]. ChampSim. https://github.com/ChampSim/ChampSim.
[2] [n. d.]. Ice Lake Microprocessor. https://en.wikipedia.org/wiki/Ice_Lake_

(microprocessor).
[3] [n. d.]. SPEC CPU 2006. https://www.spec.org/cpu2006/.
[4] [n. d.]. WikiChip. https://en.wikichip.org/wiki/neural_processor.
[5] Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad.

2018. Domino temporal data prefetcher. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 131–142.

[6] Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-Kamran, and
Hamid Sarbazi-Azad. 2019. Bingo spatial data prefetcher. In 2019 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA). IEEE,
399–411.

[7] Ronald D Blanton, Xin Li, Ken Mai, Diana Marculescu, Radu Marculescu,
Jeyanandh Paramesh, Jeff Schneider, and Donald E Thomas. 2015. Statistical
learning in chip (SLIC). In 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 664–669.

[8] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[9] Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. 2002. A stateless, content-
directed data prefetching mechanism. ACM SIGPLAN Notices 37, 10 (2002),
279–290.

[10] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neural
acceleration for general-purpose approximate programs. In 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE, 449–460.

[11] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. 2005. Simpoint 3.0:
Faster and more flexible program phase analysis. Journal of Instruction Level
Parallelism 7, 4 (2005), 1–28.

[12] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner Litz, Jichuan
Chang, Christos Kozyrakis, and Parthasarathy Ranganathan. 2018. Learning
memory access patterns. In International Conference on Machine Learning. PMLR,
1919–1928.

[13] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, and Brian Kingsbury. 2012. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups. IEEE Signal
processing magazine 29, 6 (2012), 82–97.

[14] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[15] Zhigang Hu, Margaret Martonosi, and Stefanos Kaxiras. 2003. TCP: Tag corre-
lating prefetchers. In The Ninth International Symposium on High-Performance
Computer Architecture, 2003. HPCA-9 2003. Proceedings. IEEE, 317–326.

[16] Engin Ipek, OnurMutlu, José FMartínez, and Rich Caruana. 2008. Self-optimizing
memory controllers: A reinforcement learning approach. ACM SIGARCH Com-
puter Architecture News 36, 3 (2008), 39–50.

[17] Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2009. Access map pattern matching
for data cache prefetch. In Proceedings of the 23rd international conference on
Supercomputing. 499–500.

[18] Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2011. Access map pattern matching for
high performance data cache prefetch. Journal of Instruction-Level Parallelism
13, 2011 (2011), 1–24.

[19] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. 2014. Speeding up
convolutional neural networks with low rank expansions. arXiv preprint
arXiv:1405.3866 (2014).

[20] Akanksha Jain and Calvin Lin. 2013. Linearizing irregular memory accesses for
improved correlated prefetching. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture. 247–259.

[21] Daniel A Jiménez and Calvin Lin. 2001. Dynamic branch prediction with percep-
trons. In Proceedings HPCA Seventh International Symposium on High-Performance
Computer Architecture. IEEE, 197–206.

[22] Doug Joseph and Dirk Grunwald. 1997. Prefetching using markov predictors. In
Proceedings of the 24th annual international symposium on Computer architecture.
252–263.

11

https://github.com/ChampSim/ChampSim
https://en.wikipedia.org/wiki/Ice_Lake_(microprocessor)
https://en.wikipedia.org/wiki/Ice_Lake_(microprocessor)
https://www.spec.org/cpu2006/
https://en.wikichip.org/wiki/neural_processor

[23] Norman P Jouppi. 1990. Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers. ACM SIGARCH
Computer Architecture News 18, 2SI (1990), 364–373.

[24] Jinchun Kim, Seth H Pugsley, Paul V Gratz, AL Narasimha Reddy, Chris Wilker-
son, and Zeshan Chishti. 2016. Path confidence based lookahead prefetching.
In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 1–12.

[25] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016.
Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016).

[26] Yuchen Liu, Zhixin Shu, Yijun Li, Zhe Lin, Federico Perazzi, and Sun-Yuan Kung.
2021. Content-aware gan compression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 12156–12166.

[27] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Chang-
shui Zhang. 2017. Learning efficient convolutional networks through network
slimming. In Proceedings of the IEEE international conference on computer vision.
2736–2744.

[28] PierreMichaud. 2016. Best-offset hardware prefetching. In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 469–480.

[29] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model.. In Interspeech,
Vol. 2. Makuhari, 1045–1048.

[30] Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-Li
Zhang. 2018. Deepcache: A deep learning based framework for content caching.
In Proceedings of the 2018 Workshop on Network Meets AI & ML. 48–53.

[31] Kyle J Nesbit and James E Smith. 2004. Data cache prefetching using a global
history buffer. In 10th International Symposium on High Performance Computer
Architecture (HPCA’04). IEEE, 96–96.

[32] Harish Patil and Mack Stallcup. 2014. PinPoints: Simulation Region Selection
with PinPlay and Sniper. ISCA tutorial (2014).

[33] Leeor Peled, Shie Mannor, Uri Weiser, and Yoav Etsion. 2015. Semantic locality
and context-based prefetching using reinforcement learning. In 2015 ACM/IEEE
42nd Annual International Symposium on Computer Architecture (ISCA). IEEE,
285–297.

[34] Leeor Peled, Uri Weiser, and Yoav Etsion. 2019. A neural network prefetcher for
arbitrary memory access patterns. ACM Transactions on Architecture and Code
Optimization (TACO) 16, 4 (2019), 1–27.

[35] Fernando J Pineda. 1987. Generalization of back-propagation to recurrent neural
networks. Physical review letters 59, 19 (1987), 2229.

[36] Seth H Pugsley, Zeshan Chishti, Chris Wilkerson, Peng-fei Chuang, Robert L
Scott, Aamer Jaleel, Shih-Lien Lu, Kingsum Chow, and Rajeev Balasubramonian.
2014. Sandbox prefetching: Safe run-time evaluation of aggressive prefetch-
ers. In 2014 IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 626–637.

[37] Saami Rahman, Martin Burtscher, Ziliang Zong, and Apan Qasem. 2015. Maxi-
mizing hardware prefetch effectiveness with machine learning. In 2015 IEEE 17th
International Conference on High Performance Computing and Communications,
2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and
2015 IEEE 12th International Conference on Embedded Software and Systems. IEEE,
383–389.

[38] Amir Roth and Gurindar S Sohi. 1999. Effective jump-pointer prefetching for
linked data structures. In Proceedings of the 26th annual international symposium
on Computer architecture. 111–121.

[39] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilkerson,
Seth H Pugsley, and Zeshan Chishti. 2015. Efficiently prefetching complex
address patterns. In 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 141–152.

[40] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. 2019. Applying deep
learning to the cache replacement problem. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 413–425.

[41] Zhan Shi, Akanksha Jain, Kevin Swersky, Milad Hashemi, Parthasarathy Ran-
ganathan, and Calvin Lin. 2021. A hierarchical neural model of data prefetching.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. 861–873.

[42] Alan Jay Smith. 1978. Sequential program prefetching in memory hierarchies.
Computer 11, 12 (1978), 7–21.

[43] Stephen Somogyi, Thomas F Wenisch, Anastasia Ailamaki, and Babak Falsafi.
2009. Spatio-temporal memory streaming. ACM SIGARCH Computer Architecture
News 37, 3 (2009), 69–80.

[44] Stephen Somogyi, Thomas F Wenisch, Anastassia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2006. Spatial memory streaming. ACM SIGARCH Computer
Architecture News 34, 2 (2006), 252–263.

[45] Ajitesh Srivastava, Angelos Lazaris, Benjamin Brooks, Rajgopal Kannan, and
Viktor K Prasanna. 2019. Predicting memory accesses: the road to compact
ML-driven prefetcher. In Proceedings of the International Symposium on Memory
Systems. 461–470.

[46] Elvira Teran, Zhe Wang, and Daniel A Jiménez. 2016. Perceptron learning for
reuse prediction. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 1–12.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[48] Thomas F Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2009. Practical off-chip meta-data for temporal memory
streaming. In 2009 IEEE 15th International Symposium on High Performance Com-
puter Architecture. IEEE, 79–90.

[49] Wm A Wulf and Sally A McKee. 1995. Hitting the memory wall: Implications of
the obvious. ACM SIGARCH computer architecture news 23, 1 (1995), 20–24.

[50] Pengfei Yu and Xuesong Yan. 2020. Stock price prediction based on deep neural
networks. Neural Computing and Applications 32, 6 (2020), 1609–1628.

[51] Xiangyao Yu, Christopher J Hughes, Nadathur Satish, and Srinivas Devadas.
2015. IMP: Indirect memory prefetcher. In Proceedings of the 48th International
Symposium on Microarchitecture. 178–190.

[52] Mohamed Akram Zaytar and Chaker El Amrani. 2016. Sequence to sequence
weather forecasting with long short-term memory recurrent neural networks.
International Journal of Computer Applications 143, 11 (2016), 7–11.

[53] Yuan Zeng and Xiaochen Guo. 2017. Long short term memory based hardware
prefetcher: a case study. In Proceedings of the International Symposium on Memory
Systems. 305–311.

[54] Aston Zhang, Zachary C Lipton, Mu Li, and Alexander J Smola. 2021. Dive into
deep learning. arXiv preprint arXiv:2106.11342 (2021).

[55] Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578 (2016).

[56] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 8697–8710.

12

	Abstract
	1 Introduction
	2 Background
	2.1 Neural Network for Micro-Architecture
	2.2 Recurrent Neural Network
	2.3 Efficient Neural Networks

	3 Problem Formulation
	3.1 Neural Prefetcher Computation Phases
	3.2 Computation Profiling

	4 Our Solution
	4.1 Neural Prefetcher Design Space
	4.2 Training on the Right Memory Stream D
	4.3 Optimizing Address Split S by Complexity and Randomness
	4.4 Neural Architecture Search

	5 Evaluation
	5.1 Experimental Methodology
	5.2 Comparison to the State of the Art
	5.3 Choosing Data Stream D
	5.4 Optimizing Address Split S
	5.5 Choice of RNN Structure N
	5.6 Design Space Traversal

	6 Related Work
	6.1 Heuristic-Based Prefetchers
	6.2 Learning-Based Prefetchers

	7 Conclusion
	References

