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Abstract
Spectra open modification search (OMS) is the critical step in

mass spectrometry (MS) analysis and proteomics to identify pep-
tides underlying protein samples. However, large-scale spectra OMS
is a data-intensive workload that takes hours to days. In this work,
we propose a reconfigurable architecture based on 3D NAND ISP
with heterogeneous integration to accelerate the mass spectrum
data processing. We present two types of encoding designs for op-
timization. Then we design scalable and reconfigurable 3D NAND
ISP tiles to further optimize the performance. The experiments
show that the 3D NAND ISP architecture with proper hardware
configuration achieves 14.3× to 24.2× speedup over the GPU base-
line [10]. The energy consumption is also improved by four orders
of magnitude without data movements. The proposed design is an
energy-efficient and high-performance ISP solution for the emerg-
ing large-scale spectra OMS.

CCS Concepts
• Hardware → Emerging architectures;Memory and dense
storage; Application specific integrated circuits; • Computer
systems organization→ Parallel architectures.

Keywords
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1 Introduction
Proteomics is a key to understanding the molecular processes

of proteins, which are responsible for a variety of activities in cell
life. Proteomics scientists use a powerful technique, called mass
spectrometry (MS), to recognize and measure peptides and proteins
underneath biological samples. Figure 1 illustrates the standard
flow to identify peptide sequences contained in protein digestion.
First, a method called tandemmass spectrometry (MS/MS) produces
a large amount of unknown query spectra data. Second, the key
step here is to compare the experimental query spectra against a
pre-built spectral reference library with known peptides, using the
spectral library searching method [12].

The algorithmic challenge of spectral library search is: a large
amount of acquired query spectra cannot be directly identified
by just using popular similarity metrics (like cosine similarity or
inner product) [5]. This is due to the data mismatch between exper-
imental and reference spectra data. The analyzed protein samples
∗Both authors contributed equally to the paper.
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Figure 1: Overview of spectral library searching [9].

may encounter multiple post-translational modifications (PTMs)
that modify the inherent mass and MS/MS fragmentation patterns.
However, reference spectra in pre-built spectral libraries are mainly
unmodified peptides. So more advanced searching algorithm is
needed to address PTMs. Open modification searching (OMS) is
a promising solution to accurately identify modified spectra [14].
Unlike the standard spectral library search that only queries spectra
to reference with a similar precursor mass, OMS accepts reference
spectra from a much wider range such that modified query spec-
tra are searched against their unmodified reference variants with
different precursor masses.

Spectra OMS enables the study of more complex protein inter-
action in virus-host and proteomics analysis of non-model organ-
isms [8]. However, OMS workloads create three major challenges
in terms of algorithm and data analysis acceleration. 1. OMS is
a memory-intensive workload that exhibits very low searching
speed and efficiency even with careful optimizations [2] since OMS
drastically increases the search space. 2. The increasingly available
spectra data in public databases [15] promote research develop-
ment, but the massive spectral libraries created by repository-scale
MS data [25] further increases the OMS time from hours to days.
For example, UCSD MassIVE contains 5.6 billion spectra, which
corresponds to 448TB in size [25].

Several tools have been presented to shorten the OMS time [3, 10,
13]. These tools use advanced nearest-neighbor search algorithms
with optimized metrics to boost OMS. Among the state-of-the-art
accelerations, HOMS-TC [10] with the aid of hyperdimensional
computing (HD) demonstrates the best runtime performance as
well as memory efficiency because it leverages the HD technique
to simplify the required operations to hardware-friendly Boolean
operations while maintaining good searching quality. Although



Figure 2: Runtime breakdown of HOMS-TC [10] on GPU.

HD-based HOMS-TC significantly speeds up OMS workloads, it
still incurs a large memory footprint due to the memory-intensive
HD primitives. As shown in Figure 2, the HD encoding and database
search dominate the overall runtime even using a NVIDIA RTX
4090 GPU with 1TB/s memory bandwidth.

In-storage procesing (ISP) [17, 21, 22] is considered an effective
solution to extend available bandwidth and reduce data movement
cost. Meanwhile, the high-density 3D NAND Flash provides a cost-
effective solution that allows the storage of spectra data with over
GB or TB sizes. In this work, we combine the heterogeneous integra-
tion techniques [18] with 3D NAND ISP to develop an architecture
to accelerate HD-based OMS workloads in HOMS-TC [10] that
shows high data parallelism and energy efficiency. To accommo-
date the entire reference datasets, several tiles are required, thus
offering the reconfigurability of the 3D NAND ISP architecture. We
simulate the hardware performance with industry-grade 3D NAND
parameters [21] and implement the encoding and search circuits in
7nm FinFET technology node with ASAP7 PDK [6]. The 3D NAND
peripheral circuits are extracted from NeuroSim [24]. Our in-house
simulator shows the 3D NAND ISP has 14.3× to 24.2× speedup
versus the HOMS-TC. The energy efficientcy is also improved by
four orders of magnitude without massive data movements.

2 Background on MS and ISP
2.1 HD-based Spectra Open Modification Search

Spectra data contain the mass-to-charge ratio (m/z) and ion sig-
nal intensity of proteins. We call them peak intensities and peak in-
dices, respectively. Hyperdimensional computing-based (HD-based)
OMS improves the efficiency of the conventional spectra OMS
pipeline (Figure 1) in two aspects: 1. encoding and 2. Hamming
similarity search. In this work, we use the similar HD-based OMS
in [9, 10] as the OMS algorithms.
HD Encoding for Spectra. Figure 3 shows the encoding step that
transforms the raw spectra data into hyperdimensional space, where
the spectra are expressed as binary vectors with high dimension,
called hypervectors (HVs). To model the peak shifts and intensity
changes due to PTMs, HD encoding [9, 10] considers both spa-
tial locality (for peak shift) and value locality (for peak intensity
change). Each index in the spectrum vector is assigned with the
associative position HV F such that F𝑖 corresponds to index 𝑖 , and
F ∈ {F1, F2, . . . , F𝑓 }, where 𝑓 denotes the spectrum vector dimen-
sion. Likewise, level HVs L are utilized to model the intensity values
in each index. The intensity values are quantized to𝑄 levels and L𝑖
is assigned to the associative level 𝑖 where 𝑖 ∈ [0, 𝑄).

With the two sets of encoding HVs, namely F and L, the prepro-
cessed spectrum vector with multiple pairs of peak intensities and
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(b) Hamming similarity search.

Figure 3: Two major steps: (a) encoding and (b) search in HD-
based OMS [9]. The encoding step converts spectra peaks
into hypervectors. The search step uses Hamming similarity
to efficiently find the matched peptides.

indices are encoded into the HV I format as:

I =
∑︁

(𝑖, 𝑗 ) ∈P
F𝑖 ⊙ L𝑗 , (1)

where P denotes all pairs of peak intensities and indices represent
the element-wise multiplication. Note that the resulting aggregated
HV I is non-binary HV. We binarize it for better computation and
memory efficiency.
Hamming Similarity Search. After the encoding step, HD-based
OMS leverages Hamming similarity search to identify the reference
peptides in HV format most matched to the query HV. Specifically,
Hamming similarity is adopted as the search metric. Therefore, the
search step requires to compute the Hamming similarity between
query and reference HVs. Each spectrum has its own spectrum
charge (+2, +3, . . .) and precursor m/z value. In addition to Ham-
ming similarity, the matched reference HVs also need to satisfy
other constraints including the spectrum charge and precursor m/z
condition. The final search results satisfy both: (1) having the iden-
tical spectrum charge as the query and (2) falling into the valid
range of precursor m/z difference between query and reference.

We apply the cascade search [11] to reduce the misidentification
rate, where a narrow precursor m/z tolerance is firstly used for
the standard search and FDR filtration is applied as Figure 3(b)-•1 .
In the second phase, remaining unidentified spectra are searched
using a larger precursor m/z tolerance as•2 .

The advantages of HD-based OMS lie in: the binary HV rep-
resentation instead of the high-precision format in existing OMS
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tools [3, 13], which only requires simple Hamming similarity oper-
ations during OMS. The simplified data format and computations
dramatically reduce the circuit complexity for ISP implementation.
2.2 3D NAND In-Storage Processing (ISP)

Large datasets beyond several GB in scale often require Solid
State Drives (SSD) to accommodate the entire dataset. While SSDs
offer high read-throughput, accessing the entire dataset can still
incur significant latency and energy consumption. To address this
issue, in-storage-processing (ISP) has been proposed as a promising
paradigm [17, 21, 22] to eliminate the overhead caused by data
movements. Figure 4 illustrates the configuration of 3D NAND ISP.
In this design, an additional set of Analog-to-Digital Converters
(ADCs) is integrated into the separated source line (SL) correspond-
ing to each block in the mature 3D NAND Flash configuration. The
weight matrix or the reference data is stored in the 3D NAND Flash,
while the input vector or the query is sent to the 3D NAND as bit
line (BL) voltages. The results of either the vector-matrix multipli-
cation of the input vector and the weight matrix or the dot product
of the reference data and the query equal to the summed currents
along the sourcelines (SLs). The ADC then converts this current
into the digital domain for post-ISP processing. Without the need
for GB-level data movements, 3D NAND ISP reduces overall latency
and lowers energy consumption. As a result, in-storageprocessing
holds great potential for optimizing the performance of systems
dealing with large datasets on SSDs.
2.3 Heterogeneous Integration

To further boost the performance, heterogeneous integration
techniques are proposed to stack peripheral circuits on top/bottom
of the 3D NAND Flash array. Incorporating with Cu-Cu hybrid
bonding [19] and CMOS under array (CUA) [20], ISP achieves a
compact form factor. CUA enables the overlapping of memory
peripherals under the array, reducing the area of a single tier. Mean-
while, the high-density inter-chip Cu-Cu bonding connects the
processing elements on the CMOS wafer to the 3D NAND wafer,
ensuring seamless integration. The CMOS wafer can be fabricated
in an advanced technology node to yield a smaller area and better
performance. The combination of CIM with heterogeneous integra-
tion [18] offers a compact solution for large-scale data processing
with enhanced performance. This approach opens new possibilities
for the development of low-power, high-performance, and compact
data processing systems applicable to various applications.

3 Proposed 3D NAND ISP Architecture
The datasets for mass spectrometry have reference data in the

number of million-level. In this work, we propose a reconfigurable
architecture based on 3DNAND ISPwith heterogeneous integration
for mass spectrometry applications. The 3D NAND ISP tile pos-
sesses the capability to perform both query encoding and hamming
similarity search in HyperOMS. In this section, the architecture of
3D NAND ISP and reconfigurability are discussed.
3.1 3D NAND ISP Tile with Heterogeneous

Integration
Figure 5 shows the proposed 3D NAND ISP tile with heteroge-

neous integration. The peripheral circuits are folded on the top
and bottom of the 3D NAND tile. Notably, the high-voltage circuits
including word line (WL)/string select line (SSL) switch matrix (SW)
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Figure 4: Overview of 3D NAND in-storage processing (ISP)
architecture: (a) Configuration of 3D NAND ISP. An addi-
tional set of ADCs are deployed after separated SLs, which
converts The VMM results or dot product results into digital
domain. (b) Data mapping scheme of 3D NAND ISP. Taking
OMS for example, the reference dataset is mapped to the 3D
NAND array and the query for hamming similarity calcula-
tion are sent in the array as BL voltage. The summed currents
in the SL represent the dot product results and later sorted
after ADCs.

and the pass transistors are fabricated underneath the 3D NAND
array using CUA approach with the transistor size equivalent to 65
nm technology to sustain high-voltage program/erase operations of
3D NAND Flash. On the other hand, the low-voltage circuits includ-
ing digital circuits, buffers, decoders and ADCs are fabricated on a
separate CMOS wafer in an advanced 7 nm technology node and
later face-to-face bonded on top of the 3D NAND wafer using Cu-
Cu hybrid bonding. The inter-tier Cu-Cu bonding has a tight pitch
of 1 `m [23] to guarantee high bandwidth data communication
across tiers. With Heterogeneous integration, the 3D NAND ISP
can accommodate encoding circuits and search circuits, therefore
performing both encoding and OMS in a single compact tile.

3.2 In-Memory Encoding vs. Near-Memory
Encoding

The hardware implementation of XOR encoding can also be
incorporated in an in-storage fashion. Unlike the previous ISP ap-
proach for dot products on SLs, the in-memory encoding performs
bit-wise dot products on each BL. Figure 6 illustrates both the
near-memory and in-memory encoding hardware designs. The
near-memory encoding method deploys a set of XOR gates after
sense amplifiers (SA) in the page buffer. The position HVs are read
from 3D NAND Flash and fed into the XOR gates alongside cached
level HVs. On the other hand, in the in-memory encoding design,
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Figure 5: 3D NAND ISP tile with heterogeneous integration.
The high-voltage circuits are stacked underneath the 3D
NAND array using CUA. The low-voltage circuits and digi-
tal circuits are fabricated on a separated CMOS wafer in an
advanced technology node and. The 3D NAND wafer and
CMOS wafer are bonded using Cu-Cu bonds offering high-
bandwidth inter-tier communication.

Figure 6: Block diagrams of in-memory encoding and near-
memory encoding: (a) In-memory encoding. The positionHVs
and position HVs are stored in the 3D NAND array. The XOR
encoding is achieved by the OR result of two dot products.
(b) Near-memory encoding. The position HVs are read from
the 3D NAND array and complete the XOR encoding with
the cached level HVs.

the position HVs are also stored in the 3D NAND array, while in
need of storing position HVs and the level HVs are sent in as the BL
voltages. The XOR operation can be replaced by the OR operation
of two bit-wise dot products as:

A ⊕ B =
(
Ā · B

)
∨
(
A · B̄

)
. (2)

Integrating a set of AND gates after two sense amplifiers, the in-
memory requires less logic area with respect to the simplicity of the
OR gate compared to the XOR gate. The tradeoff will be discussed
in the Evaluation section.
3.3 Reconfigurability

Since the 3D NAND ISP tile performs encoding and search, mul-
tiple tiles can be partitioned for specific tasks, e.g., encoding and
search tiles. The versatility offers the reconfigurability for the chip
to accelerate specified tasks with optimized tile designs. Figure 7
demonstrates the reconfigurable architecture of the 3D NAND ISP
tiles. The tiles communicate through H-tree routing on the top
CMOS tier with memory controllers. This H-tree routing offers
inter-tile communications including tile-to-tile data transmission
and broadcasting. The reconfigurable architecture design provides

Figure 7: Reconfigurable 3D NAND ISP architecture. The tile
performs encoding and search operation. Combining several
tiles with H-tree routing provides flexibility to assigned en-
coding or search to the specified tile for optimization.
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5
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Figure 8: Data flow in the 3D NAND ISP architecture. The
preprocessed spectra are fetched and encoded by the encod-
ing tiles. The encoded query is broadcast to the search tiles
for the Hamming similarity search in parallel. Finally, the
sorted top-k results are sent out.

Table 1: Datasets and spectrum preprocessing configurtions.
Dataset

Parameter Name iPRG2012 [4] HEK293 [5]
Max peaks in spectra 50

Min / max m/z 101 / 1500
Bin size 0.05 0.04

Precursor m/z tolerance (narrow) 20ppm 5ppm
Precursor m/z tolerance (wide) 500Da 500Da

a design space for optimization when dealing with various datasets
with different parameters.
3.4 Data Flow

Figure 8 illustrates the data flow of the architecture. First, the
pre-processed spectral data is fetched through the IO sequentially.
The specified encoding tiles encode the pre-processed spectral data
into query hypervectors, which are subsequently broadcasted to
the search tiles for simultaneous parallel searching. Finally, the
hamming similarities are sorted after exploring all the search spaces,
and the top-k results are sent out serially through the IO interface.

4 Evaluation
4.1 Methodology
Datasets. We use two real-world datasets, including: 1. small-scale
iPRG2012 dataset [4] (total spectra: 15, 867) as query while yeast
spectral dataset [16] with the human HCD spectral library (total
spectra: 1, 162, 392) as reference. 2. large-scale HEK293 (Human
Embryonic Kidney 293) dataset [5] (total spectra per query: 46, 665
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Table 2: Hardware Simulation Parameters
Paramters Values

Advanced Technology 7 nm FinFET Process
CMOS VDD1 0.7 V
Tier ADC Type 6-bit SAR ADC

Encoder Dimension 8192
3D NAND Equivalent Feature Size F 13 nm
Physical SSL Pitch 220 nm

Parameter[21] BL Pitch 100 nm
No. of WL 32
No. of SSL 16
No. of BL 1/2/4/8 KB

No. of Block 128
Tile Size 0.379/0.757/1.51/3.03 mm2

WL Staircase Pitch 500 nm
3D NAND WL Read Voltage 1V/4.5 V
Electrical (𝑉𝑠𝑒𝑙𝑒𝑐𝑡 /𝑉𝑝𝑎𝑠𝑠 )

Parameter[21] SSL Read Voltage 4.5 V (activated)
BL Read Voltage 0.2V

𝐼𝑜𝑛 /𝐼𝑜𝑓 𝑓 2 nA/1 pA
CMOS Technology 65 nm Process

under Array VDD2 1V

on average) as query while the human spectral library [1, 26] (total
spectra: 2, 992, 672) as reference. The query and reference spectra
follow the preprocessing flow of existing works [2, 3, 10]. The
preprocessing configurations for query and reference spectra are
listed in Table 1. The low-quality spectra with less than ten peaks
and a 250m/zmass range or peaks within a 0.05m/zwindow around
the precursor m/z were removed. All MS data, spectral libraries,
preprocessed spectra, and identification results are available on the
MassIVE repository with the dataset identifier MSV000091183.
Benchmarking. The evaluation of software baselines is run on
Intel i7-11700K CPU with 64GB of RAM, and NVIDIA Geforce RTX
4090 with 24GB of VRAM. We measure the energy consumption
of the CPU and GPU using Intel Power Gadget and nvidia-smi,
respectively. We count the number of identifications to compare
the search quality. All search results are evaluated at fixed 1% FDR
threshold, using Pyteomics [7].
Hardware Modeling. The hardware parameters of the proposed
3D NAND are listed in Table 2. The HD encoder and search cir-
cuits are implemented using Verilog and synthesized on ASAP 7nm
PDK[6]. The peripheral circuits of the 3D NAND array are extracted
fromNeuroSim [24]. The clock frequency is set to 1GHz. To estimate
the performance and energy efficiency of proposed ISP designs, we
develop an in-house simulator to run the trace extracted from the
HOMS-TC [10] software.

4.2 Performance and Energy Evaluation
ADC precision. To simulate the performance, the ADC precision
for the 3D NAND ISP is needed to be determined. ADC introduces
additional quantization errors, which degrades the accuracy. Fig-
ure 9 demonstrates the impact of ADC precision on the OMS search
quality. The quantization error is negligible when ADC is 6-bit.
Therefore, we design the ADCs with 6-bit SAR ADC.
In-memory encoding vs near-memory encoding. For the 3D
NAND ISP hardware evaluation, we first compare the performance
of the two hardware implementation methods for encoding. Fig-
ure 10 shows the simulation results of in-memory encoding and
near-memory encoding. Note that the BL number is set to 1KB
(8192) for fair comparison. Although in-memory encoding can re-
duce the circuit complexity, the doubled read operations for position
HVs yield longer latency and larger energy consumption for the

Figure 9: Impact of ADC precision on the OMS search quality
in terms of identified peptides.

Figure 10: Hardware simulation results of in-memory encod-
ing versus near-memory encoding. Note that BL number is
8192.

specific XOR encoding approach. In-memory encoding will out-
perform near-memory encoding in the more complex encoding
methods. Later simulations are based on near-memory encoding.
Page size scaling. The latency and energy consumption of a 3D
NANDmemory array is dominated by theWL charging/discharging.
Therefore, a sizable page offers a degree of freedom to further
optimize the performance. Figure 11 shows the hardware simulation
results of various page sizes, i.e., numbers of BL. We selectively
simulate 1KB(8192), 2KB(16384), 4KB(32768) and 8KB (65536). With
respect to the dimension of hypervectors is 8192, the minimum
number of BL is set to 8192 to avoid additional partial sum overhead.
The simulation results show a larger number of BL yields worse
performance. This is because the latency and energy consumption
of WL operations are scaled accordingly. We propose to design the
3D NAND ISP with a minimum page size that equals the dimension
of hypervectors for agile operations.
Tile scaling. The reconfigurable design also provides the scalability
for further speedup. Figure 12 shows the hardware simulation re-
sults of scaled tile numbers. As the number of tile scales, the latency
is decreased. However, the scaling of latency is not inversely linear
due to the digital processing overhead. We propose to scale the tile
number by 2× to obtain an optimized result with a reasonable area
of 14.4 and 35.6 mm2 for iPRG2012 and HEK293, respectively.
Speedup versus GPU. With the optimized configuration of 3D
NAND ISP, we compare the performance versus CPU and GPU.
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Figure 11: Hardware simulation results of various page sizes
(1KB/2KB/4KB/8KB) for near-memory encoding implemen-
tation.

Figure 12: Hardware simulation results of scaled tile numbers
for near-memory encoding implementation.. Note that BL
number is 8192.

Table 3: Speedup over the state-of-the-art OMS library on
GPU, HOMS-TC [10]. The HEK293 runtime is the average
runtime for each query file.

Workload Spectra OMS
Dataset iPRG2012 HEK293

HOMS-TC [10] 2.08s (1×) 10.4s (1×)
This work 0.145s (14.3×) 0.429s (24.2×)

Table 3 compares the latency for HOMS-TC which accelerates Hy-
perOMS on GPU and HyperOMS on 3D NAND ISP. The proposed
3D NAND ISP has 14.3× and 24.2× speedup on respective datasets.
The simulated energy consumptions are 0.067 J and 0.491 J. Consid-
ering the average power of GPU 450 W, 3D NAND ISP improves
the energy efficiency by four orders of magnitude.

5 Conclusion

In this work, we propose the 3D NAND ISP architecture to accel-
erate memory-intensive spectral open modification search (OMS)
workloads. We also present two types of encoding design and deter-
mine the near-memory encoding for the state-of-the-art HD-based
OMS algorithm [9, 10]. The proposed 3D NAND ISP provides recon-
figurability and scalability for further optimization. Without the
need to move massive data from SSD and memory, the energy con-
sumption is significantly reduced by four orders of magnitude and
14.3× to 24.2× speedup is achieved over the GPU baseline [10]. Our
design is an energy-efficient and high-performance ISP solution for
the emerging large-scale spectra OMS.
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