
Modeling and Characterizing Shared and Local Memories of the
Ampere GPUs

Hamdy Abdelkhalik1, Yehia Arafa1,3, Nandakishore Santhi2, Nirmal Prajapati2, and Abdel-Hameed
A. Badawy1,2

1 Klipsch School of ECE, New Mexico State University, Las Cruces, NM 80003, USA
{enghamdy, yarafa, badawy}@nmsu.edu

2 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
{nsanthi, prajapati}@lanl.gov

3 Qualcomm Inc, USA

ABSTRACT
The rapid evolution of GPU architectures necessitates advanced
modeling techniques for optimization and understanding their intri-
cate functionalities. The Performance Prediction Toolkit for GPUs
(PPT-GPU) is an innovative modeling tool developed to deliver
detailed modeling of GPU architectures. It allows researchers and
developers to understand, analyze, and predict the behavior of differ-
ent GPU components under various computational loads. PPT-GPU
is invaluable in enabling detailed insights into GPU architectures,
such as memory performance metrics, total active cycles, and uti-
lization of GPU resources.

This paper extends PPT-GPU to model the NVIDIA Ampere
architecture. Specifically, we focus on modeling the shared memory
and the register spilling represented by the local memory operations.
We have used several performance metrics to validate our work
against Nvidia Nsight. Additionally, our refined version of PPT-
GPU offers detailed metrics, capturing active cycles of functional
units, an essential aspect in analyzing application performance
constraints. The enhanced PPT-GPU has an average prediction
error of 14.6% for total active cycles and 13% and 13.3% for the L1
and L2 hit rates, respectively.

CCS CONCEPTS
•Hardware→Hardware accelerators; •General and reference
→ Performance;

KEYWORDS
GPU Modeling, Ampere Architecture, PPT-GPU, GPU shared mem-
ory, GPU local memory

ACM Reference Format:
HamdyAbdelkhalik1, Yehia Arafa1,3, Nandakishore Santhi2, Nirmal Prajapati2,
and Abdel-HameedA. Badawy1,2. 2023. Modeling and Characterizing Shared
and Local Memories of the Ampere GPUs. In The International Symposium on
Memory Systems (MEMSYS ’23), October 2–5, 2023, Alexandria, VA, USA.ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MEMSYS ’23, October 2–5, 2023, Alexandria, VA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The advent of advanced Graphics Processing Units (GPUs) like
Nvidia Ampere [14] architecture has brought forth a new era of
computational power and efficiency. To fully leverage these capa-
bilities and optimize GPU-based applications, there is a need for
precise modeling and understanding of such complex architectures.
In this study, we have significantly enhanced a tool known as PPT-
GPU [4, 6] to facilitate comprehensive modeling of the Ampere
architecture, specifically focusing on shared and local memories.

The A100 GPU [13], as a representation of the cutting-edge Am-
pere architecture, embodies significant innovations in its on-chip
memory systems and computational units. The new design of the
shared memory (Fig. 1) presented in Ampere architecture achieves
high optimization via asynchronous copy operations, which elim-
inate idleness by facilitating simultaneous data transmission and
computations and can bypass the L1 cache to save bandwidth and
time. The A100 GPU also provides local memory as an additional
resource for storing thread-specific data when register capacities
are exhausted, thereby balancing data processing speed and storage
requirements.

Before our enhancements, PPT-GPU was accurately modeling
Volta and Turing architectures [4]. However, accurate modeling
of the Ampere architecture, with its distinctive shared memory
structure, demanded extensions to PPT-GPU.

Initially, the instructions latencies for Ampere were estimated [2].
This was a fundamental step to set the stage for subsequent model-
ing efforts. With these latencies and other specific configurations as
input, we model the new design of the shared and local memories
using our extended PPT-GPU implementation.

We compared our results against Nvidia Nsight [15] to uphold
the integrity and corroborate the efficacy of PPT-GPU. Additionally,
to corroborate the dependability of our tool, we ran a diverse set of
benchmarks, extending from linear algebra (e.g., 2MM, BICG, etc.)
to machine learning applications (e.g., Deepbench).

2 RELATEDWORK
GPGPU-Sim [7], an early tool, provided cycle-level simulations for
GPUs from Fermi to Pascal, but its slow speed limited its use in
large-scale projects. Barra [8], meanwhile, offered functional CUDA
program simulations but needed more depth in capturing architec-
tural details. Wong et al. presented the Multi2Sim tool [18], focusing
on AMD’s architecture. This tool offered a combined CPU and GPU
simulation. Kerr et al. developed a model primarily for predicting

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


MEMSYS ’23, October 2–5, 2023, Alexandria, VA, USA Abdelkhaliq, Arafa, Prajapati, Santhi, and Badawy

Figure 1: Shared memory in Ampere [13].

CUDA data transfer times without covering broad architectural
behaviors [9]. The introduction of the Accel-Sim framework [10]
marked a significant step forward, catering to contemporary GPU
architecture research, but its coverage halted at the Volta archi-
tectures. Demonstrated on the A100 GPU, this study significantly
pushes the boundaries beyond previous works, uniquely covering
the innovative design of the Ampere architecture, and stands as the
first to provide a comprehensive model for the said architecture.

3 PPT-GPU
The Performance Prediction Toolkit for GPUs (PPT-GPU) is an
integral part of the Performance Prediction Toolkit (PPT), an open-
source project [5] developed at Los Alamos National Laboratory.
PPT-GPU is a specialized tool designed to facilitate in-depth model-
ing of complex GPU architectures and predicts their performance. It
relies on the SASS [12] instruction traces collected using NVBit [19]
to capture the dynamic behavior of the application accurately.

We undertake an expansive enhancement of PPT-GPU in re-
sponse to the need for a more intricate understanding of the Am-
pere architectures. In the extended PPT-GPU, we make significant
adjustments to cater to the new shared memory design (see Fig-
ure 1). The updated model now recognizes that asynchronous copy
operations in shared memory follow two distinct hardware paths,
resulting in different SASS instructions. One path allows the data to
flow from the global memory through the L1 and L2 caches before
going to the shared memory (LDGSTS.E). The other path, identified
by the “Bypass” operator, facilitates direct data movement from the
global memory to the shared memory (LDGSTS.BYPASS.E).

To model these operations, we collect two different memory
traces for L1 and L2 caches (in the same run) and recognize that
certain operations use L2 while bypassing L1. These traces are then
integrated with the traces of other standard memory operations.
Subsequently, we utilize these traces to calculate the hit rates for
both L1 and L2 caches by leveraging existing reuse distance profiling
methods in PPT-GPU. We also estimate the latency of the direct
path from the global to shared memory via L2 to be about 170 cycles,
compared to 300 cycles for the full path. However, this latency is
hidden as memory operations exchange with the computational
operations.

Local memory plays a significant role in influencing application
performance, making its accurate modeling critical for performance
prediction and optimization efforts [11, 16, 20]. Local memory uses
the same data path as normal memory operations. It takes part
of the global memory and can be cached in the L1 and L2 caches.
Local memory has a thread-private scope similar to the register
file [11]. We gather address traces on a per-block granularity for the
normal global memory operations. Whereas for the local memory,
we collect the traces per warp. Moreover, our analysis found that
the local memory addresses differ from those of other memory
operations. For instance, the standard global operations consistently

Table 1: Local memory metrics error percentages for three
applications from the Cutlass benchmark [17].
%Error FP64_Gemm TF32_Symm Gemm_Softmax
Local LD hit rate 0 4 8
Local ST hit rate 0 6 15
Local trans 0 0 3
Local Requests 0 1 5

Figure 2: Prediction results.

possess 12 hexadecimal digits, and the local memory addresses are
represented with only six digits (e.g., 0X7F088EA22000 vs. 0XFFFC44).
We couple this analysis with the traces collected from load and store
operations of local memory reuse distance profiling to estimate
the hit rates for both operations [3]. Furthermore, we accurately
compute the number of requests and transactions throughout the
kernel execution.

The enhanced PPT-GPU now integrates a wider range of addi-
tional metrics. Among these are local hit rates, transactions, re-
quests, and the measurement of active cycles for Tensor Cores
and various other compute units. Such details aid in providing an
in-depth understanding of the inner workings of the GPU. This ul-
timately assists in pinpointing performance bottlenecks and paves
the way for more efficient optimization of code specific to the Am-
pere architecture.

4 EXPERIMENTAL EVALUATION
We ran experiments using Cuda 11.7.0 on an A100 GPU. We ex-
perimented with a wide range of benchmarks, from simple kernels
like matrix multiplication to large kernels from Deepbench [1], a
machine learning application leveraging tensor cores and shared
memory. We also cross-verified our results against Nvidia Nsight.

Figure 2 highlights three pivotal performance metrics: total ac-
tive cycles and hit rates for L1 and L2 caches. The first six appli-
cations incorporate the updated operations and structure of the
shared memory. For instance, FP64_Gemm instructions bypass the
L1 cache, while instructions in TF32_Gemm access it. The rest use
a combination of these operations.

Finally, we have three applications that use register spilling,
which results in localmemory operations (FP64_Gemm, TF32_Symm,
and Gemm_Softmax). These observations highlight that these ap-
plications effectively leverage the two principal components we
integrated into PPT-GPU.

Figure 2 shows the percentage error in prediction for active cy-
cles, L1 hit rate, and L2 hit rate. The average error in the prediction
of hit rates for L1 and L2 caches are 13% and 13.3%, respectively.
Furthermore, in our evaluation of PPT-GPU, the error in total active
cycles across all applications ranges from a minimum of 3% to a



Modeling and Characterizing Shared and Local Memories of the Ampere GPUs MEMSYS ’23, October 2–5, 2023, Alexandria, VA, USA

maximum of 42%, with an average of 14.6% error. Table 1 summa-
rizes the local memory results. The accuracy of all metrics for the
FP64_Gemm is 100%. For the other two applications, the prediction
error in hit rates of LD and ST operations ranges from 4% to 15%.

5 CONCLUSIONS
In this paper, we modeled the Nvidia Ampere shared and local
memories in-depth and substantially enhanced the PPT-GPU to
depict its local memory and the novel design of its shared mem-
ory. We used a broad set of benchmarks to validate PPT-GPU and
compared the results against Nvidia Nsight. The active cycles, a
primary performance metric, have an average error rate of 14.6%,
while the L1 and L2 cache memories hit rates stand at 13% and
13.3%, respectively.

REFERENCES
[1] DeepBench. https://svail.github.io/DeepBench/.
[2] Hamdy Abdelkhalik, Yehia Arafa, Nandakishore Santhi, and Abdel-Hameed A.

Badawy. 2022. Demystifying the Nvidia Ampere Architecture through Mi-
crobenchmarking and Instruction-level Analysis. In 2022 IEEE High Performance
Extreme Computing Conference (HPEC). 1–8. https://doi.org/10.1109/HPEC55821.
2022.9926299

[3] Yehia Arafa, Abdel-Hameed Badawy, Gopinath Chennupati, Atanu Barai, Nan-
dakishore Santhi, and Stephan Eidenbenz. 2020. Fast, Accurate, and Scal-
able Memory Modeling of GPGPUs Using Reuse Profiles. In Proceedings of
the 34th ACM International Conference on Supercomputing (ICS ’20). Associ-
ation for Computing Machinery, New York, NY, USA, Article 31, 12 pages.
https://doi.org/10.1145/3392717.3392761

[4] Yehia Arafa, Abdel-Hameed Badawy, Ammar ElWazir, Atanu Barai, Ali Eker,
Gopinath Chennupati, Nandakishore Santhi, and Stephan Eidenbenz. 2021. Hy-
brid, scalable, trace-driven performance modeling of GPGPUs. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis. 1–15.

[5] Yehia Arafa, Abdel-Hameed A. Badawy, Gopinath Chennupati, Nandakishore
Santhi, and Stephan Eidenbenz. PPT-GPU Tool. https://github.com/lanl/PPT

[6] Yehia Arafa, Abdel-Hameed A. Badawy, Gopinath Chennupati, Nandakishore
Santhi, and Stephan Eidenbenz. 2019. IEEE Computer Architecture Letters 18, 1
(2019), 55–58. https://doi.org/10.1109/LCA.2019.2904497

[7] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. 2009.
Analyzing CUDA workloads using a detailed GPU simulator. In 2009 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software. 163–174.
https://doi.org/10.1109/ISPASS.2009.4919648

[8] Caroline Collange, Marc Daumas, David Defour, and David Parello. 2010. Barra: A
parallel functional simulator for gpgpu. In 2010 IEEE International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems.
IEEE, 351–360.

[9] Andrew Kerr, Gregory Diamos, and Sudhakar Yalamanchili. 2010. Modeling GPU-
CPUworkloads and systems. In Proceedings of the 3rd workshop on general-purpose
computation on graphics processing units. 31–42.

[10] Mahmoud Khairy, Zhesheng Shen, Tor M Aamodt, and Timothy G Rogers. 2020.
Accel-Sim: An extensible simulation framework for validated GPU modeling. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 473–486.

[11] Ang Li, Shuaiwen Leon Song, Akash Kumar, Eddy Z. Zhang, Daniel Chavarría-
Miranda, and Henk Corporaal. 2016. Critical points based register-concurrency
autotuning for GPUs. In 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE). 1273–1278.

[12] NVIDIA. CUDA Binary Utilities. https://docs.nvidia.com/cuda/
cuda-binary-utilities/

[13] NVIDIA. NVIDIA A100 whitepaper. https://images.nvidia.com/aem-dam/en-zz/
Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

[14] NVIDIA. NVIDIA Ampere Architecture In-Depth | NVIDIA Developer Blog.
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

[15] NVIDIA. NVIDIA Nsight Systems. https://developer.nvidia.com/nsight-systems
[16] Putt Sakdhnagool, Amit Sabne, and Rudolf Eigenmann. 2019. arXiv preprint

arXiv:1907.02894 (2019).
[17] Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam, Honghao Lu, Ethan

Yan, Jack Kosaian, Mark Hoemmen, Haicheng Wu, Andrew Kerr, Matt Nicely,
Duane Merrill, Dustyn Blasig, Fengqi Qiao, Piotr Majcher, Paul Springer, Markus
Hohnerbach, Jin Wang, and Manish Gupta. 2023. CUTLASS. https://github.com/
NVIDIA/cutlass.

[18] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.
2012. Multi2Sim: A simulation framework for CPU-GPU computing. In Proceed-
ings of the 21st international conference on Parallel architectures and compilation
techniques. 335–344.

[19] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W Keckler. 2019.
Nvbit: A dynamic binary instrumentation framework for nvidia gpus. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
372–383.

[20] Xiaolong Xie, Yun Liang, Xiuhong Li, Yudong Wu, Guangyu Sun, Tao Wang, and
Dongrui Fan. 2015. Enabling Coordinated Register Allocation and Thread-Level
Parallelism Optimization for GPUs. In Proceedings of the 48th International Sym-
posium on Microarchitecture (MICRO-48). Association for Computing Machinery,
New York, NY, USA, 395–406. https://doi.org/10.1145/2830772.2830813

https://svail.github.io/DeepBench/
https://doi.org/10.1109/HPEC55821.2022.9926299
https://doi.org/10.1109/HPEC55821.2022.9926299
https://doi.org/10.1145/3392717.3392761
https://github.com/lanl/PPT
https://doi.org/10.1109/LCA.2019.2904497
https://doi.org/10.1109/ISPASS.2009.4919648
https://docs.nvidia.com/cuda/cuda-binary-utilities/
https://docs.nvidia.com/cuda/cuda-binary-utilities/
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/nsight-systems
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://doi.org/10.1145/2830772.2830813

	Abstract
	1 Introduction
	2 Related work
	3 PPT-GPU
	4 Experimental Evaluation
	5 Conclusions
	References

