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ABSTRACT

Most scientific and Al applications rely on data that is usually
sparse. Sparsity is sometimes deliberately introduced with pruning
of insignificant and redundant connections in the neural network
layers. This sparse data can efficiently be represented through vari-
ous compression formats, thereby, reducing storage footprint and
eliminating computations with zero values. However, accessing
nonzero values introduces extra computational overhead.

Consider sparse matrix-dense vector multiplication (spMV), where
the sparse matrix data is represented in CSR format. The irregu-
lar memory loads caused by CSR format are particularly vexing
for vectorized computations (e.g., modern CPUs with SVE or AVX
extensions, GPUs) because they do not exploit spatial and tempo-
ral localities. In this work, we propose a memory-side accelerator
known as MAID (Memory-side Acceleration for Irregular Data),
which is a simple integer unit that performs these irregular mem-
ory accesses and streams the aligned data to the primary core. The
primary vectorized CPU focuses on only fetching these aligned val-
ues and computing multiply-accumulate operations concurrently
alongside our MAID accelerator. To accurately evaluate the perfor-
mance effects of our proposed accelerator in a CPU-MAID-memory
system, we used a Gem5 extension that permits simulating near
data processing (NDP) accelerators close to memory devices at var-
ious levels of the memory hierarchy. Our experimental evaluations
show that when MAID is placed close to L2 or LLC, minimizes data
transfer to L1 cache, eliminates cache conflicts, and thus increases
energy savings. We observed performance gains ranging between
2.76 and 3.56 times over in-order SIMD-CPU and an average of 2
times for out-of-order SIMD-CPU for sparse matrix * dense vector
(spMV) algorithm. We also evaluated our MAID with sparse matrix
* sparse vector (spMspV) and observed gains as high as 5.3 times
over SIMD baseline.
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1 INTRODUCTION

Neural networks are being adopted in wide range of domains rang-
ing from day-to-day tasks such as voice-activated assistants to
scientific applications such as predictive models, and even in com-
puter architecture designs such as neural network-based branch
predictors. Neural networks, however, involve complex computa-
tions on large data sets and deploying them on resource-constrained
systems and devices can be challenging. On the other hand, in most
cases the data sets for many of the applications are sparse. Often
the sparsity is further enhanced by sampling and pruning redun-
dant or insignificant connections in weight or activation matri-
ces/tensors. This reduces the arithmetic computational complexity
of the neural networks and increases the ability to handle large data
sets without losing accuracy significantly. Previous studies have
used various sparse data formats to store only the nonzero values
that can improve cache utilization and reduced memory footprint.
However, these compression formats introduce overheads for ac-
cessing nonzero values of the sparse matrices. This is commonly ob-
served in most sparse linear algebraic algorithms including Sparse
Matrix-Matrix multiplication (spMM), Sparse Matrix dense Vector
multiplication (spMV), Sparse Matrix Sparse Vector multiplication
(spMspV), convolutions, transposition and factorization. Domain-
specific libraries and frameworks like GraphBLAS [12] for graph
applications, PETSc [6] for scientific computations and cuSPARSE
[1] for GPU-acceleration provide optimized software for these com-
mon algorithms but the underlying metadata processing overhead
in accessing nonzero data due to compressed representation of the
sparse data still exists. The distribution of nonzero values in input
sparse matrices lead to irregular memory accesses, which limit
the effectiveness of the compile-time optimizations provided by
these libraries. This decompressing overhead shifts the bottleneck
of these algorithms from being computationally intensive tasks to
memory intensive tasks.

For this reason, memory-side hardware accelerators such as
Processing-in-memory (PIM) or Near Data Processing (NDP) have
gained attention. Studies have indicated significant performance
improvements using these accelerators compared to traditional
compute models that rely on frequent data transfers between mem-
ory and processing units [4, 30, 40, 41].These studies, however,
focus on accelerating the entire algorithm or computational kernel
(both memory accessing and arithmetic tasks) which requires the
accelerator to be complex and equipped with parallel floating point
arithmetic units, which may cause issues with power and energy
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requirements for near data or in memory processing, and may lead
to under utilization of primary CPU cores.

Instead, we propose a NDP accelerator called MAID (Memory-
side Acceleration for Irregular Data) that only performs computa-
tions needed to locate required nonzero values and provide them
to primary processing elements for algebraic computations. MAID
can be implemented either as a small in-order processor with only
integer functional units, or customized hardware (ASIC). MAID
can be programmed to perform "gather" operations for different
sparse representations and different access patterns (e.g., row-wise,
column-wise or irregular) based on the algorithm. By offloading
the memory-intensive tasks to MAID, the primary core can focus
on computationally-intensive tasks alone, leveraging the full capa-
bilities of vectorized (SIMD) instructions. This creates an overlap
between the MAID and the primary core resulting in potentially
better cache utilization and reduced power consumption.

There are several studies that propose intelligent and programm-
able data prefetchers, particularly for applications that rely on
irregular data structures including linked lists and sparse data rep-
resentations such as CSR. For example, IMP [39] proposes hardware
support for prefetching data items that involve indirect accesses
such as m[v[j]], which represent accessing elements of a vector
based on the location of nonzero values of matrix rows in sparse
matrices using CSR-based format. We would like to point out that
while our MAID has the effect of prefetching data for processing,
MAID should not be considered merely as a prefetcher. In general
IMP [39] and other prefetchers only aid in prefetching data, includ-
ing prefetching data that is not needed or used by the processor
while MAID can be programmed to supply only needed data, includ-
ing intelligence regarding array bounds. MAID can be programmed
to match nonzero values of a sparse matrix with nonzero values of
a sparse vector in sparse matrix - sparse vector (spMspV) computa-
tions, which is very difficult to achieve with conventional prefetch-
ers. Unlike other NDP accelerators, MAID performs equally well
with floating point and quantized data because it solely operates on
integer indices of nonzero data and doesn’t perform computations
on the data itself.

Integrating NDP near main memory of a computing system to
benefit from the large storage capacity of the DRAMs can reduce
the need for frequent data movement across the memory hierarchy.
However, since the decompressed or reformatted data generated
by the NDP is not reused, integrating MAID into the main memory
may not provide significant benefits when compared to placing it
closer to the last level cache (LLC). By placing MAID in or near a
LLC, MAID can take advantage of the cache’s faster access times
and potentially reduce the energy consumption. This close prox-
imity to LLC can reduce cache pollution at L1 cache since MAID
handles metadata (indexes of nonzero values) and they are not
brought into L1 cache. Additionally, the decompressed (or sparse)
data processed by MAID can bypass the intermediate caches and be
pushed directly into the L1 cache of the CPU. This further reduces
the data movement across the cache hierarchy and can improve
performance due to the lower latency and increased data locality
of L1 cache. We feel that different applications and irregular (or
sparse) data representations may benefit from MAID like devices
being placed at L1, LLC or DRAM. The Gemb5 [8] based framework
developed in our research can permit the study of these alternatives.
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Gemb5 provides a flexible platform for modeling and simulating var-

ious configurations of a full-system and permits valuable insights

into the performance improvements such as latency and cache

misses, data movement reduction, and analyze potential trade-offs

associated with introducing MAID in the CPU-memory system.
The contributions of this paper include:

e Our extensions to Gem5 based NDP framework [36] to permit
the inclusion of MAID (or other memory accelerators) along
the memory hierarchy. In the Gem5-NDP framework [36],
the NDP is connected between the processor and the mem-
ory, causing every memory access to pass through the NDP,
and the NDP has to determine whether the response is in-
tended for the CPU or for itself. This can introduce delays
for the CPU if the NDP is occupied with other tasks. To
mitigate these unnecessary delays, we established separate
connections to the L1 cache from CPU and NDP, eliminat-
ing the need for prioritization and preventing unnecessary
delays in memory responses from memory to CPU. While
our MAID can provide aligned data (matching nonzero val-
ues) through scratchpad memories if available, our MAID
can also store the data directly in L1 cache so that the pri-
mary core can use conventional addressing to access this
data. We further extended the Gem5 cache memories to
permit MAID to lock some cache lines to prevent eviction
of the data generated by MAID before being consumed by
the primary core. Such a mechanism can be used when the
processors are not equipped with scratchpad memories.

o Our detailed simulations of MAID as processing hardware
placed along the memory hiearchy near L1, L2/LLC or DRAM
memories. We demonstrated that MAID can aid in handling
sparse and irregular data for Sparse Matrix * Dense Vec-
tor (spMV) and Sparse Matrix * Sparse Vector (spMspV)
computations. We analyzed the impact of MAID in terms
of performance gains with both in-order and out-of-order
processor using vectorized (SIMD) instruction extensions.
We also evaluated the impact of MAID on the number of
cache accesses and cache misses. We show when MAID is
placed at LLC or DRAM, indexing data (or metadata) is not
brought into processor’s L1 cache since the primary core
does not require the metadata.

o Our results show that modern out-of-order processors will
not perform well when dealing with irregular data, partic-
ularly if the data needed depends on other factors, as is the
case with spMspV computations: the nonzero values of sparse
matrices must be matched with the nonzero values of sparse
vectors. While out-of-order execution can hide memory la-
tencies by issuing several load requests, such is not the case
with spMspV. We show that using a simple integer MAID
for aligning data (for both spMV and spMspV) is a better
use of resources than using a powerful out-of-order core
computing indexes and memory addresses.

2 BACKGROUND

Sparse compression formats. Many real-world data sets are very
large but sparse while other data-intensive applications like neu-
ral networks introduce sparsity through pruning. Traditional or
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dense representation of data can result in wasted memory space
and computations involving zero values. Several compression rep-
resentations have been proposed for compact representation of
only nonzero data. Compressed Sparse Row (CSR) format is widely
employed in many domains and applications. In CSR format, sparse
matrix M is represented using three arrays: M_cols stores the col-
umn indexes of the nonzero values in each row, M_vals stores all
the nonzero values of M ordered by rows, and M_rows stores the
starting position of first nonzero element of each row of the matrix
M in M_cols and M_vals arrays as shown in Figure 1.

Sparse matrix CSR

3 B o M_rows
o 3 o0 M_cols [0[1]1]0][2]
¢ o s ) was A2

Figure 1: A 3x3 sparse matrix in CSR Format

Sparse Linear Algebra. Two fundamental operations that are com-
monly used in most neural networks, graph analytics and scientific
applications are spMV (sparse matrix - dense vector) and spMspV
(sparse matrix - sparse vector) multiplications. spMV algorithm
exploits the sparsity of the matrix to reduce the number of multi-
plications while spMspV exploits the sparsity of both matrix and
vector (this can be a component of a sparse matrix - sparse matrix
multiplications). Both algorithms compute pairwise multiplications
of elements from matching columns (of rows of one matrix), with
the corresponding (nonzero) elements of the vector. Consider the
spMV algorithm on a sparse matrix M and a dense vector v that
produces a resulting dense vector y. Since M is sparse, it is usually
represented in one of the above discussed compression formats.
We use CSR format here for illustration where the location of each
nonzero in the matrix is determined using the M_cols array and
the M_rows array is used to determine the number of nonzeros
(nnzs) in each row. As shown in Algorithm 1, the algorithm iterates
row by row over the matrix M, calculating the nnzs for each row
and performing multiply-accumulate (MAC) of the nonzeros. The
indirect accesses to vector v are introduced to eliminate the com-
putations over non significant data as shown in line 8 of Algorithm
1.

Algorithm 1 CSR Version of spMV

1: procedure sPMV(M_rows, M_cols, M_vals, n, v)
2 s« 0

3 k—0

4 fori=0;i<ni=i+1do

5: nnzs < M_rows[i+1] — M_rows[i]

6 s 0

7 for j=0;j <nnzs;j=j+1do

8 s < s+ M_vals[k+j] = v[M_cols[k+j]]
9: k « k+ nnzs

10: y[i] « s

In the spMspV algorithm, the vector is also sparse and can be
represented in memory by storing only the nonzero vector val-
ues (V_vals) and their indexes (V_cols). However, this results in
an additional computation step to check that both the matrix and
vector values are nonzeros before each multiply-accumulate (MAC)
operation. Using compressed data for spMV and spMspV can signif-
icantly reduce the number of MACs compared to a dense algorithm
and achieve storage compression. But the overhead of irregular
accesses due to the compression format increase the number of
load instructions per iteration resulting in achieving lower than
expected performance gains [2].

Vectorized or SIMD Instructions. Modern processors like ARM
Cortex-M series [32], Intel Skylake [13] and AMD Zen 3 architec-
tures [15] incorporate SIMD or vector instructions through Scalable
Vector Extensions (SVE) or Advanced Vector Extensions (AVX) to
enable simultaneous execution of the single instruction on mul-
tiple data elements, often packed into vector registers. Typically
ARM processors provide support for vector registers with vary-
ing lengths ranging from 128 to 2048 bits (can be viewed as 2 to
32 SIMD lanes). When performing repetitive operations of linear
algebraic computations on dense arrays, SIMD instructions excel
at exploiting data parallelism. This leads to faster execution and
improved throughput. To further optimize the irregular data han-
dling and reduce power consumption, SIMD instructions utilize
predicates to selectively turn on/off the SIMD lanes for a particular
computation based on the data pattern. ARM (and x86) processors
also support SIMD Scatter/ Gather instructions to improve irregu-
lar read/write accesses to non-contiguous memory locations. This
may be done efficiently for spMV computations where the column
indexes of nonzero matrix values can directly be used to obtain
the required vector values. However, it should be noted that the
Gather instructions still need to access several cache lines to assem-
ble (or distribute) data needed to pack for SIMD operations. Since
these instructions are executed by the primary processing cores,
these memory accesses may pollute L1 data caches. Moreover, it
is unclear how Gather operations work if the vector is also sparse
(for spMspV computations). Our MAID can eliminate many of these
deficiencies of Gather instructions. We will show that since MAID
is a separate unit, all memory accesses needed for "Gather" are not
brought into CPU L1 data caches. We will also show that MAID is
also very effective in "Gathering" data when both matrix and vector
are sparse.

3 FRAMEWORK

In this work, we propose a small in-order core or integer-only
ASIC memory-side accelerator called MAID that operates near the
LLCL. Since the main objective of MAID is to handle memory index
operations for the primary core, it does not require floating-point
capabilities like a full-fledged processor. By solely focusing on this
data gathering task, MAID can effectively work with even modern
out-of-order processors with vector (SIMD) instructions, thereby
enhancing overall performance of applications using irregular data.
Due to its reduced hardware requirements, as the number of cores

'We explored MAID placed near L1 cache as well as near DRAM. Our experiments
show that MAID for spMV and spMspV computations works best when placed near
LLC.



increases, we can achieve scalability by equipping each processor
with its own MAID. We evaluated the performance of our MAID
accelerator alongside both in-order and out-of-order (O3) super-
scalar primary cores for spMV and spMspV computations.

3.1 MAID Design

MAID is designed as a programmable hardware (either as a simple
core or as a coarse-grained reconfigurable hardware) to support
different algorithms with only integer units and a small local mem-
ory, working alongside and concurrently with the primary CPU
cores, aligning data needed for the SIMD (or vectorized) execution.
The aligned values are communicated to the CPU using buffers,
scratchpad memory or L1 data cache (L1 Dcache). MAID fills the
buffer with aligned values and sets a flag associated with the buffer,
notifying the primary CPU that the aligned data is ready for con-
sumption. The CPU can then start reading the values from the
buffer using vector load instructions and process these values using
vector arithmetic operations. Concurrently, MAID aligns the next
set of values and updates the second buffer and so on. Once the CPU
consumes all the values in a buffer it resets the buffer flag, releasing
the buffer to MAID. In spMV algorithm, MAID only provides the
aligned vector values for the CPU (V_vals[.]) as shown in Algorithm
2. CPU fetches the nonzero matrix values (M_vals) and the V_vals
provided by MAID using vector loads as shown in Algorithm 3.
In the case of spMspV, where the sparse matrix and sparse vector
are represented using CSR format, MAID has to find the matching
indexes for nonzero values in sparse matrix and nonzero values of
sparse vector. Only when both of them are nonzeros, MAID fetches
the corresponding matrix and vector values and supplies them to

the CPU through buffers.

Algorithm 2 MAID code for CSR Version of spMV

1: procedure sPMV MAID (M_rows, M_cols, v, num_rows)
2: k0

3 fori=0;i < num_rows;i=i+1do

4: nnzs < M_rows[i+1] — M_rows[i]

5 for j=0;j <nnzs;j=j+1do

6 V_wvals[k] < v[M_cols[k]]

7 ke—k+1

Algorithm 3 CPU code for CSR Version of spMV

1: procedure sPMV CPU (M_rows, M_vals, V_vals, num_rows)
2 k—o0

3 fori=0;i < num _rows;i=i+1do

4: nnzs < M_rows[i+1] — M_rows[i]

5 y[i] <0

6 for j =0;j < nnzs;j=j+1do

7 y[i] < y[i] + M_vals[k+j] = V_vals[k+j]

8: ke—k+1

In our previous works [2, 3, 34, 37], we proposed hardware archi-
tecture for our MAID-like accelerator called HHT (Hardware Helper
Thread) to perform indexing, similar to this research. However, the
focus there was on micro controllers where the primary core is a
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very simple in-order RISC V-like processors; which makes it easier
for the helper thread to meet the demands of the primary core. The
hardware helper was placed close to the processor, possibly at L1
cache (if one is available). The study reported here assumes the
MAID hardware similar to that of HHT [2, 3, 34, 37] but is much
broader in its scope and explores near data processing hardware
that can be placed at any level in the memory hierarchy. Addition-
ally, we explore the use of the hardware accelerator with modern
out-of-order superscalar processor. We also show the benefits of
our programmable accelerator for both spMV (dense vector) and
spMspV (sparse vector) computations.

3.2 Gem5-NDP Framework

We used a cycle accurate Gem5-NDP simulator [36] in Gem5 Sys-
tem Emulation (SE) mode to perform detailed architectural explo-
ration and performance analysis of our MAID accelerator in a CPU-
memory system. Gem5-NDP permits a NDP device to be connected
to any memory level (including L1, L2, LLC caches or DRAM) in
the system through a high-level Python configuration script. NDP
is connected in between CPU and memory hierarchy and CPU uses
Programmable IO interface that consists of register banks to man-
age NDP device. Hence NDP should always be connected to the
CPU through the dcache_port on the CPU as shown in Figure 2a.
NDP device in this framework has 3 ports namely; cpu_side port
that connects to the CPU through its dcache_port, mem_side port
which connects to the CPU’s L1 Dcache and dma_port which is used
to connect NDP to various memory levels. NDP uses DMA port
to perform memory read and write operations and the mem_side
port to establish a connection between CPU and the memory. As a
result, all memory requests of CPU are routed through NDP. This
introduces additional latency for the CPU to receive the responses
from memory and prioritize these responses in real hardware. To
avoid this, we created an additional port called ndp_port on CPU
to facilitate direct access to the memory for both CPU and NDP.
This is achieved by assigning a small specified address range for
the ndp_port to distinguish from the dcache_port on CPU side 2.
During simulation, any read or write operations within this ad-
dress range will trigger functions in Gem5 to update NDP registers
emulating memory mapped device functions. So, in the modified
framework, NDP is connected to CPU through ndp_port as shown
in Figure 2b instead of dcache_port like in original framework. This
additional port is only active to initialize the function to be executed
and supply base addresses for the sparse matrix and vector arrays in
CSR format through registers. Once initialization is complete, this
port is inactive. MAID needs compressed format data for irregular
value alignment and it directly reads this information from the LLC
rather than using the L1 cache to avoid unnecessary cache pollution.
MAID in spMV and spMspV algorithms aligns values exclusively for
the CPU consumption. Therefore, it is unnecessary to write these
temporary values into LLC all the time that has higher latency. If
there is a scratchpad memory associated with the CPU then MAID
can write directly into this memory. If there is no scratchpad, MAID
can write directly into the L1 cache of the CPU as shown in Figure
2b using the mem_side port. Since this data is temporary and needs

2The NDP memory map is defined by the primary core so that these addresses do not
have to be hard-coded.
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to be available in L1 cache only until CPU utilizes it, we tested
with locking few cache lines of the CPU’s L1 cache based on the
buffer size that is being used to communicate between CPU and
MAID. This converts the few locked cache lines of L1 cache into
a temporary scratchpad for the CPU. This may result in a small
increase in overall cache misses in L1 but unlikely to impact the
overall performance. -

CPU
icache_port dcache_port

cpu_side

cpu_side cpu_side
dma_port NDP
| NDP I [
mem_side mem_side mem_side mem_side dma_port
L1D

L2 Bus L2 Bus

it

(a) Original gem5-ndp framework (b) Modified gem5-ndp framework

Figure 2: Gem5-ndp framework

4 EXPERIMENTAL SETUP

We evaluated the performance benefits of our MAID accelerator
in a CPU - memory hierarchy using Gem5-NDP as described in
Section 3.2. Table 1 describes the system configuration used in our
experiments. MAID performs only memory addressing computa-
tions and hence is designed as an integer programmable accelerator
that can be used with both spMV and spMspV (as well as others)
algorithms and can be tuned for different workloads using initial-
ization registers. MAID is also configured with its own small local
memory of 8KiB with a latency of 5 cycles similar to that of primary
CPU’s L1 cache to efficiently hold 512 nonzero vector values and
512 column indexes of a sparse matrix. This minimizes the constant
retrieval of data from LLC for each value, even if the MAID is near
the LLC. We used randomly generated sparse matrices with varying
sparsities ranging from 10% to 90% in steps of 10% and presented
the results using 512x512 matrix in Section 5. This approach al-
lows for a better understanding of the effects of sparsity, akin to
a controlled experiment, as real-world matrices often fall within
this range. For spMspV, we assumed that the vector has same level
of sparsity as the matrix in each workload. MAID can run larger
matrix workloads by utilizing the Block CSR (BCSR) format [9],
which involves dividing the matrix into 512x512 sub-matrices. This
can be seamlessly integrated with MAID without necessitating any
modifications to the existing configuration.We collected total execu-
tion times, L1 cache misses, LLC cache misses and CPU idle or wait

cpu_side

Table 1: System Configuration

Processor Values
Core ARMv8 ISA with SIMD Extensions
Frequency = 2 GHz
Vector width (VL) = 2, 4, 8 Elements
Element Size = 64 bit
In-order and Out-of-order
MAID N=2 Buffers
Buffer size = 8 to 128 Elements
Element size = 64 bit
Local Memory = 8KiB bytes, 5 cycles
Cache line size = 64 bytes

Cache Configuration

L1 ICache 32KiB, 2 way, 5 cycles
L1 DCache 32KiB, 4 way, 5 cycles
L2 Cache 256KiB, 16 way, 14 cycles

Main memory DDR3-1600-8x8, 2GB

cycles to evaluate the effectiveness of of MAID alongside both in-
order and out-of-order primary core using TimingSimpleCPU and
DerivO3CPU models for primary core in Gem5 System Emulation
(SE) mode.

Buffer Sizes and Vector Lengths: In this contribution, the size of
the buffer indicates the number of vector values corresponding to
nonzero values in a row of the sparse matrix for spMV computations
and the number of matching nonzero matrix and vector values when
both the matrix and vector are sparse (for spMspV computations).
The buffer size in our results indicate the number of elements (each
being 64 bits) assembled by MAID. On the other hand, the vector
lengths refer to the width of vectorized units (or SIMD lanes). For
example, vector length of 2 means that the processor is using 128
bit (2-wide) vector registers. There is a tradeoff between buffer sizes
and vector lengths: larger buffer sizes may lead to longer CPU wait
times since CPU must wait until the buffer is filled by MAID and
the values are released for consumption by CPU. However, shorter
vector lengths with larger buffer sizes mean that CPU will consume
the values in the buffer over several iterations of vector operations.
For example, when buffer size is 8 (or 512 bits) and vector length
is 2, CPU takes four iterations to consume all 8 buffer values. We
use two buffers (i.e., double buffering) to achieve overlap between
CPU and MAID. On the other hand, if the buffer size is too small
compared to the vector length, it results in increasing CPU wait
cycles as all SIMD lanes have to be filled before CPU executes the
vector instruction. In our studies, we have opted for a buffer size
that is at least equal to the vector length. In future, we plan to
explore the use of multiple circular buffers instead of larger buffer
sizes.

5 RESULTS

In this study, we evaluated the performance improvements attained
by adding our MAID accelerator to a SIMD processor against 3
different baselines of CPU alone handling both data gathering and
computational tasks. These baselines include (a) Scalar CPU (with
no vectorized instructions), (b) Sparse SIMD CPU (vectorized in-
structions on sparse data) where the CPU performs all computations
including indirect memory addressing and (c) Dense SIMD CPU
that represents both zero and nonzero values, possibly wasting com-
putations on zero values. We present the MAID accelerator speedup
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(f) Buffer size: 128, Vector length: 8

Figure 3: Performance analysis for 512x512 spMV on In-order core: Scalar, SIMD-only sparse and SIMD-only dense baselines vs
SIMD with MAID acceleration for various buffer sizes and vector lengths.

gains against both in-order and out-of-order baseline CPUs. Since
our goal is to offload the irregular data gathering task to MAID and
overlap this work with CPU computations, we analyzed CPU idle
cycles while waiting for the data from MAID. The results presented
in the later sections use a 512x512 sparse matrix represented in CSR
format with varying degrees of sparsity (10% to 90%) for both spMV
and spMspV algorithms. Since SIMD processors can support vari-
ous vector register widths, we experimented with vector lengths
ranging 128, 256 and 512 bits which correspond to 2, 4 and 8 values
respectively (each data items is a 64-bit long integer). Data type
(integer or floating point) is not a concern for MAID since it does
not directly perform computations on the data and only packs the
data in a buffer for the primary core (the minimum size of the buffer
is the vector width).

5.1 MAID aiding In-order processors on spMV
workload

In this section, the primary core is assumed to be an in-order CPU
and MAID as a single stand-alone integer functional unit with a
small dedicated local memory. This local memory of size 8KiB is
used to store column indexes of the row being processed and dense
vector values. MAID aligns only one value at a time and the la-
tency for aligning each value is dependent on the local memory
access latency and instruction latency (for example, obtaining a
matching vector value in spMV applications involves 2 memory
accesses: one for column index and one for vector value). It should
be noted that when the processor is in-order, without the aid of
MAID, scalar CPU works better than SIMD CPU (i.e., with vector
instructions) for irregular memory accesses as observed in Figure 3
since SIMD heavily relies on gathering sequential data. Irregular
accesses create load imbalances since all SIMD lanes have to be

filled with data causing additional overhead in data alignment. Also,
at higher sparsities irregular memory accesses are spread across
multiple cache lines and as vector length increases, the cache uti-
lization decreases as there can be only be a single hit per cache line
and to fill all SIMD lanes, different cache lines need to be fetched.
Since scalar processor works with only one value at a time, cache
misses are reduced and as well as the processing time. Only at lower
sparsities and higher vector lengths, we observe similar gains for
both scalar and SIMD CPU baselines. As the number of nonzeros
decreases (sparsity increases), scalar baseline performs better, even
at higher vector lengths since cache utilization decreases. MAID
accesses one vector data element at a time corresponding to the
nonzero column index of the sparse matrix. But MAID assembles
these values for CPU and works concurrently with CPU which
uses the values supplied by MAID to perform necessary computa-
tions such as Multiply-Accumulate (MAC) operations. This leads
to performance gains when compared to SIMD CPU baseline (with-
out MAID). Also since the aligned values are supplied to the SIMD
CPU, use of MAID can reduce primary CPU’s L1 cache misses. Since
dense SIMD CPU ignores data sparsity, it performs all 512x512 MAC
operations. At lower sparsities (e.g., 10%) the number of wasted zero
value multiplications is minimal and acceptable, but as the sparsity
increases, dense formulation incurs too many wasted zero value
multiplications. On the other hand, sparse data representations re-
quire indexing overheads for locating vector values corresponding
to the location of nonzero values of the matrix. These overhead
computations can be excessive at low sparsities. We observe that
SIMD CPU with MAID using CSR data representations can achieve
nearly 10x to 17x speedup over dense (CPU only) formulations at
90% sparsities.



Streaming Sparse Data on Architectures with Vector Extensions using Near Data Processing

As vector register widths (or SIMD lanes) increase, speedup
increased with SIMD + MAID (SIMD CPU aided by MAID) over
scalar when MAID uses buffer sizes of 8 (see Figure 3a, 3b, 3c). MAID
aligns 8 vector values and writes them into L1 cache of the primary
CPU. If the vector register width is smaller than the provided data
(or buffer size) then CPU can access the data to satisfy multiple
SIMD computations. In the meantime this data may be evicted from
L1 by other instructions. But as vector length increases, most of the
data provided will be utilized in a single or very few SIMD cycles.
Thus it is necessary to set the buffer sizes based on the vector
widths. At buffer size of 8 and vector length of 2, SIMD+MAID
worked similar to a scalar processor with no gains. But as vector
length increases, speedup increased as shown in Table 2. This table
summarizes the results shown in Figure 3. Since MAID writes into
L1 of CPU, and all loads are regular L1 accesses, SIMD+MAID gains
over SIMD CPU-only baseline which may have to bring multiple
cache lines to fill the vector registers. Speedup also increases as
the buffer size increases. The speedup becomes more prominent
when the vector length increases as more values are processed at
once. Since dense CPU works irrespective of sparsity in data, all
loads are sequential similar to what is achieved with the MAID for
a SIMD CPU. However, MAID reduces the number of computations
as sparsity increases (eliminating zero values) but the execution
times for dense baseline do not change. As buffer size increases
to 128 elements, gains increase to almost 4x with vector length as
8 compared to scalar processor and vector processor as shown in
Figure 3.

To summarize, MAID, in conjunction with an in-order SIMD
CPU, demonstrates the potential for scalability through varying
vector lengths, resulting in performance gains. Increasing buffer
size effectively mitigates CPU and MAID wait times and enhances
the overlapped execution of CPU and MAID, increasing the over-
all performance. These results lead us to believe that it may be
possible to consider MAID like accelerators with SMP cores inside
GPUs, whereby the MAID aligns sparse data for consumption by
the threads of an SMP, since these threads are in-order processors.
We will explore these ideas in our future research.

5.2 MAID aiding Out-of-order processors on
spMV workload

In this section, we analyzed the performance of MAID alongside
an out-of-order primary core. In in-order processing, the CPU’s
pipeline stalls until all the vector register values are available for the
SIMD instruction. The out-of-order processor hides this latency by
reordering instructions. Thus out-of-order cores with SIMD instruc-
tions outperform those without SIMD instructions (i.e., scalar cores)
as observed in Figure 4. For out-of-order processing, we observe
from Figures 4a, 4b and 4c, no speedup when compared to the dense
baseline at lower sparsities for buffer size of 8. At lower sparsities,
the number of zero computations are insignificant and thus it may
be better to use dense representations of matrices, avoiding the need
for indexing using CSR formats which may cause irregular memory
accesses. Once MAID starts providing more values (using a larger
buffer size) and CPU uses larger vector lengths then we observe
slight gains over dense baseline. These gains are more prominent
with larger vector lengths than shorter vector lengths since shorter

Table 2: Speedup against In-order baselines on a 512x512
matrix with 10% to 90% sparsity.

[ [ Buffer size: 8 ]

Buffer size: 128

Vector| 4 8 2 4 8
length

0.95x 1.44x 1.92x 1.23x 2.18x 3.53x
Scalar to to to to to to
CPU

0.92x 1.3x 1.56x 1.15x 1.83x 2.39x
SIMD 1‘:'07)( 1.t7(§3x l.fglx 2.t0:x 2‘1:605)( 3.t506x
CPU 1.53x 1.68x 1.80x 1.91x 2.36x 2.76x

1.27x 1.42x 1.56x 1.63x 2.16x 2.89x
Dense to to to to to to
CPU

10.70x | 11.36x | 11.26x | 13.40x | 15.97x | 17.23x

Table 3: Speedup against Out-of-order baselines on a 512x512
matrix with 10% to 90% sparsity.

[ [ Buffer size: 8 ]

Buffer size: 128

Vector| 4 8 2 4 8
length

1.73x 2.18x 2.45x 1.95x 2.46x 3.88x
Scalar to to to to to to
CPU

1.72x 2.13x 2.00x 1.15x 2.32x 3.14x
SIMD 1.f3x 1.S7x 1.t28x 1.t77x 1.;55x 2.:)2x

o 0 0 o o 0

CPU

1.23x 1.42x 1.37x 1.39x 1.47x 1.88x

0.98x 0.95x 0.90x 1.13x 1.07x 1.44x
Dense to to to to to to
CPU

8.56x 8.18x 7.48x 9.69x 8.94x | 10.29x

vector lengths (but larger buffer sizes) may cause MAID to wait for
CPU to consume all the values in a buffer. As sparsity increases,
dense baseline performs poorly compared to all other configura-
tions because of the increasing number of wasted computations
on zero values. When the buffer size and vector length are both
8, all values produced by MAID are consumed by the CPU in a
single iteration. Figures 4a, 4b, 4c show that with buffer size set to
8, performance decreases as the vector lengths increase from 2 to 8.
On the other hand, when buffer size is set to 128, CPU has more
data provided and speedups are higher as shown in Figures 4d,4e
and 4f.

In summary, out-of-order CPU cores effectively conceals latency
caused by irregular memory accesses since the processor can issue
and execute instructions out of order and in the case of processors
with vector instructions, the performance scales with the vector
widths, and achieves favorable gains against dense baseline at lower
sparsities. The performance gains in the out-of-order setup can be
further improved by adding MAID, particularly with larger buffer
sizes and wider vector registers as shown in Table 3. These gains are
higher as the sparsity in the matrix increases. Rather than increasing
the buffer size, a more effective strategy would be to consider each
large buffer as multiple smaller buffers, with each buffer size set
equal to the vector length, similar to circular buffer schemes. This
approach reduces the wait time of the CPU associated with larger
buffer sizes, and CPU and MAID can achiever greater overlapped
executions with multiple buffers.
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Figure 4: Performance analysis for 512x512 spMV on Out-of-order core: Scalar, SIMD-only sparse and SIMD-only dense baselines
vs SIMD with MAID acceleration for various buffer sizes and vector lengths.
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Figure 5: Performance analysis for 512x512 spMspV on Out-of-order core: Scalar, SIMD-only sparse and SIMD-only dense
baselines vs SIMD with MAID acceleration for varying vector lengths and buffer size of 16.

5.3 MAID aiding Out-of-order processors on
spMspV workload

In this section we evaluate the effectiveness of MAID when both
the matrix and vector are sparse. The vector is represented using
two arrays instead of a single dense array as in spMV: V_cols array
to hold the positions of nonzeros within the vector while the V_-
vals array stores the corresponding nonzero values. For this set of
experiments, we used the same sparsity levels for both matrix and
vector. The primary core employed was an O3 SIMD CPU, as we
had previously observed with spMV algorithm that even O3 scalar
CPU can effectively hide latency for irregular memory fetching
compared to a in-order SIMD CPU. The local memory of MAID now
stores not only the vector values and the column indexes of a single
row from the sparse matrix (as in spMV computations) but also the
vector indexes and matrix values for that row. MAID performs index
matching between the matrix column indexes and vector indexes
to determine the presence of a corresponding nonzero value in

the vector. MAID fetches matrix and vector nonzero values only
if there is a match. We doubled the buffer size for spMspV (buffer
size of 16 in Figure 5) compared to the spMV since MAID supplies
matching nonzero matrix and vector values: the buffer is divided
into two halves, with the first half storing aligned vector values
and the second half storing the aligned matrix values. The primary
core uses vector load instructions to obtain aligned matrix and
vector values from the buffer and performs MAC operations. To
optimize performance and minimize the delays in providing the
primary core with data, we sometimes supply zero values for vector
(when it becomes necessary to fetch additional data to assure index
matching). This may cause some wasted zero computations, but
this can be avoided by providing the CPU with masks to indicate
the number of zeros that are included in the buffers. It should be
noted that the zeros are appended after packing all the aligned
values within the buffer size. MAID still aligns only one value at a
time and the latency for aligning each value is dependent on the
local memory access latencies and instruction latencies for index
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matching and accessing arrays. Figure 5 shows the performance
improvements of MAID aided out-of-order SIMD CPU against Scalar
O3 CPU, SIMD 03 CPU and Dense SIMD O3 CPU baselines at
a buffer size of 16 and vector lengths of 2, 4 and 8 for varying
sparsities. As can be seen in these figures, as vector length increases,
all values supplied by MAID are effectively utilized by the CPU
in a single iteration. Consequently, the overhead of identifying
matching indexes becomes more substantial at lower sparsities
when vector length increases. This leads to a lack of speedup against
the dense baseline until the sparsity reaches 50% for a vector length
of 8. However at lower vector lengths, MAID can maintain pace
with the processor resulting in marginal gains at 20% for vector
length of 2. SIMD+MAID consistently outperforms Scalar and SIMD
CPU only baselines since memory-intensive pattern matching and
irregular data gathering tasks are offloaded to MAID which works
in parallel with the CPU. Scalar baseline performs better than SIMD
CPU-only baseline because SIMD instructions are incapable of
executing pattern matching on indexes, and they struggle with data
irregularities and dependencies. With MAID, on an average, we
observe speedups of almost 4x for all sparsities over SIMD CPU-
only baseline and 3x over Scalar baseline. In both Scalar and SIMD
CPU-only baselines, as sparsity increases, performance improves
upto 50% sparsity and then there is a slight decline. This decline
occurs at higher sparsities since there are fewer nonzero values in
both matirx and vector: as stated above, we sometimes pad buffers
with zero values which can lead to higher number of wasted zero
computations. The zero computations can be avoided by providing
masks to indicate the presence of zero values and the CPU can
deactivate SIMD lanes with zero values (and we will explore this in
our future work).
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Figure 6: CPU Wait cycles in out-of-order SIMD+ MAID at
vector length of 8 for spMV algorithm

As the vector length increases, wait cycles also increase, as all
supplied data is rapidly consumed by the CPU. Since MAID performs
more computations to match nonzero matrix and vector values,
causing longer delays in filling and providing buffers to the CPU,
we observe CPU wait cycles of above 7% compared to only 1% with
spMV as shown in Figures 6 and 7. The use of zero padding actually
reduced the wait cycles to some extent and the wait cycles will be
even higher otherwise in spMspV.

In summary, even when both the matrix and the vector are sparse,
MAID can be beneficial with an out-of-order CPUs using vector

1% —

CPU wait cycles / Total execution cycles

Figure 7: CPU Wait cycles in out-of-order SIMD+ MAID for
spMspV algorithm at varying vector lengths and buffer size
of 16.

instructions. Without MAID an out-of-order CPU faces difficulties
in hiding latencies since it must assemble matching values for the
SIMD instructions and the irregularities caused by the presence of
sparsities with both the matrix and vector can lead to several mem-
ory accesses and cache misses. However MAID helps in mitigating
the latency in fetching values by operating in parallel with CPU
and supplying values as needed. CPU may be waiting longer for
MAID to provide aligned data , but performance gains result from
the overlapped execution of MAID with the CPU. SIMD+MAID
can outperform Scalar, SIMD CPU-only and dense baselines (using
out-of-order CPUs), particularly at higher sparsities. For lower spar-
sities with longer vector lengths, the process of matching indexes
incurs a significant overhead in comparison to conducting a dense
multiplication.

5.4 Memory utilization

Our goal is to offload the irregular memory computations to MAID
and work in parallel with CPU. In spMV algorithm, each MAC
operation involves a total of 3 cache accesses: one for fetching
the column index, one for the associated vector value, and one
for the matrix value instead of 2 load accesses typically seen in a
dense matrix-dense vector algorithm. However, with MAID aligning
vector values for the CPU, we effectively decrease the total cache
accesses required by the CPU for a single MAC operation to 2;
fetching only matrix and vector values, while MAID handles the
irregular index matching. By providing these values as needed
by the CPU, we manage to reduce CPU cache misses. In other
words, the scalar CPU and SIMD CPU baselines experience higher
cache misses compared to the SIMD+MAID configuration. Given
the differences in the total number of cache accesses for different
configurations, we recognize that the traditional cache miss rate is
not a fair or accurate way to compare the effective use of caches.
Instead we opted to employ cache misses per MAC operation as our
metric for comparing cache utilization. Figures 8 and 9 illustrate the
L1 Dcache and L2/LLC cache misses for out-of-order configurations
using a vector length of 8 with 2 different buffer sizes of 8 and



128. It can be seen that changing buffer size or vector length does
not impact LLC misses. This is attributed to the fact that all 512
vector values, along with a maximum of 512 column indexes, are
already present in MAID’s local memory. As a result, there is no
change in LLC misses in Figure 9, regardless of buffer size. As
MAID operates in parallel and provides data to the CPU through
buffers in L1 Dcache as needed, L1 misses are reduced as observed
in Figures 8. With larger buffer sizes, more data is supplied by MAID
even before the CPU needs it, leading to a marginal rise in cache
misses in comparison to smaller buffer sizes. This situation may
lead to unnecessary L1 cache evictions, subsequently contributing
to higher cache misses. However, with MAID working alongside the
SIMD CPU and is connected to the LLC, it can retrieve the column
index and vector data directly from the LLC without storing them
into the L1 cache. This leads to a decrease in the overall number
of cache misses with our MAID alongside SIMD configuration for
spMV algorithm. Similarly in spMspV algorithm, using MAID in
conjunction with the SIMD core reduces the L1 Dcache misses on
average by 7.2 times and L2 cache misses by 9 times for all sparsities
reducing the number of cache misses per MAC as shown in Figures
10 and 11 respectively. The inclusion of zeros in the buffer during
spMspV as described previously makes the number of cache misses
per MAC similar for both spMV and spMspV algorithms (treating
the sparse vector as if it is dense). The reduced cache access and
misses when MAID is used suggests that the use of local memory
with MAID (8KiB in our experiments) should not be viewed as
additional hardware: it may be possible to use smaller L1 caches for
the primary core and use the saved space for MAID local memory.
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Figure 8: Number of L1 Dcache misses of Out-of-order SIMD
CPU baseline over SIMD +MAID for spMV algorithm at vector
length of 8 with buffer sizes 8 and 128.

6 RELATED WORK

Sparse accelerators. Much work has been done on compression for
DNNs, but the unique challenges posed by quantized data and
SIMD processing have not been adequately addressed. dCSR [33]
proposes to address the issue of indexing bit-width by altering CSR
format to store an index delta rather than the column index itself.
This delta is calculated as the difference between the actual column
index of a nonzero value and the average index for a matrix row.
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This format tackles the same issue of compressing the bit width of
sparse column indexes, but is much more complicated to implement
in a streaming run time. Our solution is simpler and more flexible
because 1) the compression algorithm does not require advance
knowledge of the matrix layout as in dCSR and 2) our storage format
is agnostic to the initial shape of the dense matrix.

Some [7, 23] propose Processing-in-Memory approach to rear-
range sparse data either to align nonzero values or expand sparse
date to dense data. While our approach is somewhat similar to these,
we overlap the data alignment with computations and we propose
our near data processing along cache memories. Moreover, we rely
on programmable cores for our data alignment which allows the
alignment to be based on different sparse data formats and access
patterns (e.g., row-wise or column-wise). There were some prelimi-
nary results presented for near data processing for embedded and
micro controller systems based on RISC V cores [3, 34, 37].

Prefetchers. There are several studies on data prefetching into
on-chip cache to hide the memory latency problem. Most of the
early works [16, 19-21] are sequential stride-based prefetchers.
Some more recent prefetchers can even be programmed or learn to
handle irregular accesses [39], similar to those those used by Apple
M1 systems. However, in most cases prefetchers are unaware of
program specific structure bounds (or array bounds) and this can
be exploited by security attacks as reported in [35]. Our MAID is
programmed not only to understand access patterns but also with
memory bounds for different structures, limiting the ability of out
of bounds attacks.

Helper Threads. While there have been many prior studies in
terms of decoupling or off-loading memory access operation (con-
sider an early decoupling work reported in [31]), MAID is a flexible
hardware which can be programmed to process application spe-
cific metadata processing. Helper threads (particularly software
threads) have been used to aid primary threads with some oper-
ations (for example see [22]). Such software techniques may not
lead to performance gains if the threads are scheduled on different
cores requiring cache coherency related overheads. We use sepa-
rate hardware unit specifically for indexing operations, placed near
memory and hence eliminate cache coherency issues and compiler
optimization that leads to performance loss in software threads.

Accelerators for Machine Learning. Interest in DNN based ac-
celerators have seen a rise in recent years, leading to many spe-
cialized hardware accelerators, too many for us to include here.
Many of these specialized accelerators based on either dataflow
or tensor/systolic arrays that lack flexibility or reconfigurability
[11, 18, 24, 25, 27, 28, 42]. These accelerators either rely on very
specialized sparse data representations or implement specific DNN
algorithms. Our MAID only aids in memory-side operations and
does not perform actual computations. In this contribution we fo-
cused on quantized data used in TinyML applications. Our MAID is
programmable and can be used with different compression formats
and for different DNN algorithms.

Several works focus on accelerating sparse matrix-dense vec-
tor multiplication (spMV) operations [5, 10, 17, 29, 38], We only
proposed to aid in index computations for any sparse data based al-
gorithm instead of accelerating the actual computations. While [7]
and [2] are somewhat similar to our work, they expand sparse data

into dense data so that the primary cores can rely on simple al-
gorithms; our MAID only provided required or matching nonzero
values needed for the computation, still keeping the primary core
computations simple.

Processing in Memory Simulation Tools. There are very few us-
able tools for prototyping processing in memory or near memory
designs [14, 36]. There are FPGA based PIM prototyping tools [26].
We extended [36] since the tool is based on widely used full system
simulator Gemb5 [8]. Our framework permits programmable PIMs
or custom hardware PIMs.

7 CONCLUSION

In this work, we introduced MAID, a memory-side programmable
accelerator designed to operate in conjunction with a vectorized
in-order or out-of-order CPU. The primary aim is to expedite com-
putations involving both sparse matrix-dense vector and sparse
matrix-sparse vector algorithms using CSR format and can be ex-
tended to other algorithms and compression formats. We offloaded
the irregular data gathering task to our accelerator, which functions
in parallel with the processor, and aligns them for the CPU. This
alignment enhances SIMD compatibility, thereby reducing cache
misses and enhancing performance. This approach is particularly
advantageous when applied to the spMspV algorithm, given that
both arrays exhibit sparsity and involves index matching before
fetching matrix and vector values. We evaluated the performance
of our accelerator in the CPU-memory system by modifying the
Gemb extension to enable parallel execution of both CPU and MAID
while communicating through CPU’s L1 data cache. In the future,
we would like to explore multi-ported local memory for MAID to
access multiple column indexes and vector values so that MAID can
meet the demands of wider SIMD registers or even GPU threads.
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