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ABSTRACT
The performance of large-scale web services heavily relies on the

hit ratio of the key-value caches. One core component of a high-

performance key-value cache is the replacement policy. A right

replacement policy can help the caching system achieve a better

hit ratio with no extra space cost, thereby improving the system’s

throughput and end-to-end latency. Memcached and Redis are two

widely used in-memory key-value caching software in many pro-

duction systems. Both Memcached and Redis are simple to use and

capable of ensuring end-to-end latency requirements for latency

critical services. Memcached and Redis use different policies for

cache replacement. In contrast, Memcached uses LRU or a vari-

ant of segmented-LRU (SegLRU) for replacement, while Redis uses

KLRU, a random sampling-based LRU policy which evicts the LRU

object from 𝐾 randomly selected samples. This naturally leads to

the question: “how does one compare to the other in actual pro-

duction usage?” To answer the question, we implement the KLRU

policy on Memcached. We evaluate the effectiveness of these three

policies using both synthetic and actual production workloads. Our

empirical analysis shows that, both SegLRU and KLRU outperform

LRU in scalability for write-intensive workloads. However, despite

the fact that SegLRU and KLRU are considerably different in terms

of their heuristic and implementation, they yield very similar cache

hit ratios, throughput, and scalability, with the random sampling-

based LRU slightly winning over write-heavy workloads. KLRU also

shows advantages in its simplicity in data structures and flexibility

in adjusting the sampling size 𝐾 to adapt to different workloads.
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1 INTRODUCTION
Modern large-scale web services rely on caching extensively; in-

memory key-value (KV) caches are placed between front-end ser-

vices and back-end storage systems to achieve high throughput and

overcome the long latency gap. In-memory KV caches are widely

used and discussed in industry and research communities; Mem-

cached [28] and Redis [22] are two in-memory caching solutions

commonly deployed in many production environments. Large web

service providers like Facebook and Twitter also developed their

general-purpose caching frameworks, Cachelib [4] and Pelikan [42],

respectively, to handle their caching use cases.

The performance of these caching systems is largely impacted

by its replacement/eviction policy, i.e., the algorithm that decides

whether an item should be cached or evicted. The Least Recently

Used (LRU) is one of the most commonly known replacement poli-

cies, which evicts an item based on the item’s access recency. De-

spite its simplicity, the LRU policy has proven quite effective in

many caching systems [4, 9, 32, 41]. There are also many other

advanced eviction policies, such as [2, 6, 26, 33, 43], which make

eviction decisions based on a combination of item’s metadata. The

effectiveness of an eviction policy primarily depends on two factors:

First, the caching workload; With the rise of cloud and data-

driven services, the diversity of in-memory caching workloads has

grown drastically compared to the past [1, 4, 10, 41]. Many existing

studies have shown that no existing heuristic-based eviction poli-

cies can consistently outperform others under every caching use

case [26, 33, 43]. As a result, many special purposes caching frame-

works have adopted different replacement policies to accommodate

different use cases [13, 25, 39, 42].

Second, the underlying cache’s structure and the storage medium

also constrain the choice of replacement policy. For example, flash-

based cache suffers from application-level write amplification (ALWA);

even though FIFO does not deliver a good hit ratio, using FIFO helps

avoid metadata updates on reads which reduces ALWA [15]. Due to

this, FIFO is often the top choice for replacement on a flash-based

cache.

Memcached and Redis use replacement policies based on more

conservative heuristics to prevent poor performance on unpre-

dictable extreme workload patterns. The early versions of Mem-

cached used the traditional doubly-linked list implementation of

LRU as default replacement [12]. The LRU policy helps the cache

retain the most recent data; however, the serialized LRU update

procedures severely hindered Memcached’s multithreaded scala-

bility, especially on write-heavy workloads. To address the thread

contention problem, the later version of Memcached (after 1.5.0)

added a multi-queue LRU and asynchronous updates, named Seg-

mented LRU (SegLRU), which significantly improved Memcached’s

performance on write-heavy workloads [12]. Similar multi-list ap-

proaches are observed in other caching systems such as [4, 35, 43].

On the other hand, Redis uses random sampling to approximate the

true LRU replacement. On cache eviction, the random sampling-

based LRU, or KLRU for short, randomly selects K objects from

the cache and evicts the least recently used object among the K

objects [21]. Such sampling-based technique is commonly used in

priority function-based replacement policies [2, 6, 21, 31]. Although

both Memcached and Redis use similar replacement heuristics, they

are implemented based on very different approaches, which mo-

tivates the need for a thorough comparison of their impacts on

the in-memory caching system’s performance. In this work, we

implement Redis-like KLRU in Memcached. Then, we present a

detailed comparison based on their impact on Memcached’s hit

ratios, scalability, throughputs, and latencies. More specifically, this

paper is organized as follows:

(1) Section 2 describes the higher-level overview ofMemcached

and its cache replacement mechanism.
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(2) Section 3 presents our design and implementation of KLRU

replacements with supports for handling expired items.

(3) Section 4 describes the workloads used in our evaluation.

(4) Section 5.1 compares the miss ratio difference of Mem-

cached configured with SegLRU and KLRU. Our results

confirm that both SegLRU and KLRU yield similar miss

ratios, especially under a sufficiently large cache.

(5) Section 5.2 presents an empirical performance evaluation

for Memcached under SegLRU and KLRU. We observe simi-

lar read performance for both policies and slightly higher

write performance on KLRU. We also show the impacts

of the network latency and global slab allocator lock on

Memcached’s throughput.

Based on our evaluation, both SegLRU and KLRU perform notice-

ably better than the early version ofMemcached, with KLRU slightly

leading SegLRU on write-intensive workloads.

2 MEMCACHED’S REPLACEMENTS
OVERVIEW

Memcached is a multithreaded key-value cache that is typically

used to reduce latency and increase throughput by caching objects

in memory from the slow back-end storage system. Memcached

uses a slab-based memory allocator for internal memory manage-

ment with a default slab size of 1MB. Internally, the memory is

divided into slab classes, with each class storing items with the

corresponding size. Initially, slabs are distributed to slab classes

based on demand. When a slab class exhausts all of its slabs, it will

first try to request a new slab; then, if no slab remains, it begins

evicting items from the slab class according to the replacement

algorithm. The replacement policy and related data structures are

thus on a per-class basis.

2.1 LazyLRU Policy
The early version of Memcached(1.4.x) uses the standard doubly-

linked list to implement its LRU replacements, where every slab

class maintains its LRU list. Memcached uses multiple worker

threads to process client requests concurrently. Client requests

are commonly in the form of GET or SET requests. When handling

a GET request, a worker thread first performs a hash table lookup.

If the requested item is found, the worker thread will update the

item’s metadata and position in the LRU list and then send back the

retrieved item to the client. If not found, Memcached will notify the

client it’s a miss. When handling a SET request, the worker thread

first checks whether there is enough free space left for storing the

item. The new item will be stored in memory and inserted into

the LRU list head if space is sufficient. In case of insufficient mem-

ory, the worker thread will trigger the cache replacement/eviction

algorithm to remove an old item to make space for the new one.

When the client requests an item, Memcached maintains the

LRU list by repositions the newly referenced item into the head

of the LRU list. When the slab class exceeds its capacity, it starts

evicting items from the tail of the LRU list. These manipulation

operations on the LRU list must be serialized to prevent LRU list

corruption. To handle that, a dedicated LRU mutex lock is held

during LRU list update and eviction so that only one worker thread

can modify the LRU list at once. This approach worked at the time,

but as Memcached scales to more cores, the LRU lock becomes

a bottleneck on Memcached’s throughput [37]. One optimization

Memcached made to reduce the LRU lock contention is introducing

an item_update_interval, which is set to one minute by default. The

update interval restricts items on the LRU list from being moved to

the head of the list more than once per minute. The idea is that, on

the LRU list, those recently used items are always closer to the head

of the LRU list, which is less likely to age out and be evicted. Thus,

constantly updating these recently accessed items on the LRU list is

unnecessary. Setting the update interval to one minute drastically

decreases the number of LRU list updates, hence reducing LRU lock

contention. For convenience, we use LazyLRU
1
to denote the above

approach in all of the following discussions.

The LazyLRU approach addresses the excessive LRU locking

issue in most read-intensive scenarios (see Section 5.2), but it does

not eliminate the problem completely. Workloads with bursts of

re-accesses longer than the item_update_interval are likely to suffer
from performance degradation. Furthermore, the item_update_interval
only alleviates the LRU locking issue on the read path; for write-

intensive workloads, Memcached must hold the LRU lock when

inserting a new item into the LRU list.

2.2 SegLRU Policy
The Segmented LRU (SegLRU for short) policy was designed to

replace Memcached’s original LRU policy (LazyLRU), and it was set

as Memcached’s default replacement policy starting from 1.5.0 [12].

The Segmented LRU’s design is inspired by the OpenBSD’s variant

of the 2Q algorithm [35].

In the segmented LRU policy, the original LRU list is split into

three separate segments: HOT, WARM, and COLD, with each list

protected by its own mutex lock. Unlike LazyLRU, where the LRU

list updates directly lie on the read request’s execution path, the

Segmented LRU shifts cached items between/within each segment

asynchronously by a background maintainer thread. Thus, it di-

rectly avoids potential lock contentions on read-intensive work-

loads. Next, we briefly outline the semantics of each segment based

on the Memcached site post [12]:

(1) HOT behaves like a FIFO queue. A newly arrived item is

added to the head of the HOT segment and gradually sinks

to the tail of the segment as more items continue to flow

into the HOT segment. When the HOT segment reaches

its limit, the background maintainer starts shifting the tail

item to the head of the Warm segment if it is an active item

or the Cold segment if it is inactive. An item is active if it

has been re-accessed at least once in the process of the item

flowing from segment head to tail.

(2) WARM only admits active items. When the WARM seg-

ment reaches its limit, the background maintainer asyn-

chronously moves overflowed inactive items to COLD and

re-admits active items back to the head of WARM.

(3) COLD admits inactive items from both HOT and WARM.

If an item becomes active in COLD, it will asynchronously

move back to the WARM. In case the slab class is full, it

starts evicting items from the tail of the COLD.

1
Note that we use LazyLRU to denote original Memcached(1.4.x)’s default LRU re-

placement, the LazyLRU is not referring to the work in reference [29]
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Here we highlight three main improvements of SegLRU when

compared to LazyLRU. (1) Similar to the 2Q replacement [20],

SegLRU achieves scan resistance by sinking all inactive items di-

rectly to COLD, evicting them from the tail, and using the WARM

queue to keep all active items protected. (2) It’s more tunable.

SegLRU allows you to change the size of the HOT and WARM

queues while running. (3) The LRU mutex lock is wholly removed

from the read path, thus avoiding all potential waits on the mutex

locks for a read request. However, mutexes on the write/update path

still exist, which is still a potential bottleneck of scaling Memcached

to more cores for write-intensive workloads.

3 KLRU IN MEMCACHED
This section presents our design and implementation of KLRU in

Memcached and its impact on background crawling of expired

items.

Algorithm 1 Random Sampling Based Eviction in Memcached

1: procedure KLRU_Eviction(𝑐𝑙𝑠 , K)
2: ⊲ cls: the slab class

3: ⊲ K: random sampling size K

4:

5: 𝐿𝑅𝑈 𝐼𝑡𝑒𝑚 ← 𝑁𝑜𝑛𝑒

6: 𝐿𝑅𝑈𝑇𝑖𝑚𝑒 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 ()
7:

8: while 𝐾 > 0 do
9: 𝐾 ← 𝐾 − 1
10: 𝑟𝑜𝑤_𝑖𝑛𝑑𝑒𝑥 ← 𝑟𝑎𝑛𝑑 () 𝑚𝑜𝑑 𝑐𝑙𝑠.𝑠𝑙𝑎𝑏𝑠
11: 𝑐𝑜𝑙_𝑖𝑛𝑑𝑒𝑥 ← (𝑟𝑎𝑛𝑑 () 𝑚𝑜𝑑 𝑐𝑙𝑠.𝑝𝑒𝑟𝑠𝑙𝑎𝑏) ∗ 𝑐𝑙𝑠 .𝑠𝑖𝑧𝑒
12: 𝑖𝑡𝑒𝑚 ← 𝑐𝑙𝑠 .𝑠𝑙𝑎𝑏_𝑙𝑖𝑠𝑡 [𝑟𝑜𝑤_𝑖𝑛𝑑𝑒𝑥] [𝑐𝑜𝑙_𝑖𝑛𝑑𝑒𝑥]
13:

14: if 𝑖𝑡𝑒𝑚 𝑒𝑥𝑝𝑖𝑟𝑒𝑑 then
15: 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑖𝑡𝑒𝑚)
16: continue
17: end if
18:

19: if (𝑖𝑡𝑒𝑚 𝑖𝑛 𝐻𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒) and (𝑖𝑡𝑒𝑚.𝑡𝑖𝑚𝑒 ≤ 𝐿𝑅𝑈𝑇𝑖𝑚𝑒)
then

20: 𝐿𝑅𝑈 𝐼𝑡𝑒𝑚 ← 𝑖𝑡𝑒𝑚

21: 𝐿𝑅𝑈𝑇𝑖𝑚𝑒 ← 𝑖𝑡𝑒𝑚.𝑡𝑖𝑚𝑒

22: end if
23: end while
24:

25: if (𝐿𝑅𝑈 𝐼𝑡𝑒𝑚 ≠ 𝑁𝑜𝑛𝑒) then
26: 𝑟𝑒𝑚𝑜𝑣𝑒 (𝐿𝑅𝑈 𝐼𝑡𝑒𝑚)
27: end if
28: end procedure

3.1 KLRU Design and Implementation
The KLRU replacement is a variant of the LRU algorithm in which,

at eviction time, it randomly samples 𝐾 items and evicts the LRU

item among the 𝐾 items. When 𝐾 = 1, the KLRU is equivalent to

random replacement. It’s easy to see that as the value of𝐾 increases,

the probability of selecting a less recently used item also increases.

In practice, we notice that when 𝐾 = 16, KLRU behaves nearly

identical to the exact LRU replacement. In order to make a fair

comparison between Memcached’s replacements and KLRU, we

implement the KLRU algorithm on top of Memcached, similar to

the RankCache design from LHD [2]. On a GET/SET request from

the client, KLRU does not maintain the doubly-linked list to keep

track of the recency order of items in the cache. Instead, it simply

updates the timestamp of the items being referenced. By removing

the doubly-linked LRU list, it also no longer needs the LRU mutex

lock to safeguard the list manipulation, hence avoiding the potential

lock contention problem [37]. Algorithm 1 outlines the steps for the

eviction process in KLRU. When the cache is full, worker threads

attempt to randomly select K items from the corresponding slab

class by generating random indexes for the items (lines 10-12).

These selected items are then compared to potential candidates

(lines 19-22). Note that only the actual item removal process is

serialized (line26) to prevent multiple workers from removing the

same item simultaneously. The rest of the algorithm 1 is all done in

parallel to maximize the thread concurrency.

Compared to LazyLRU and SegLRU, the most noticeable distinc-

tion of the sampling-based replacement policy (KLRU) is it does

not rely on any data structure to maintain the ordering of cached

items. This unique characteristic of KLRU has its advantages and

drawbacks. We summarized three major advantages of KLRU as

follows: (1) KLRU uses random sampling for eviction, thus com-

pletely eliminating the LRU locks from both read and write paths.

(2) The overhead per item is much smaller. KLRU only uses item

timestamps during the eviction to compare items’ recency. Hence, it

saves 16 bytes on the two extra pointers for the doubly-linked LRU

list. (3) Random sampling eviction provides great flexibility. Two

potentially tunable factors can optimize cache performance under

different cache use cases. First, the eviction process described by

Algorithm 1 is orthogonal to the item’s priority; even though KLRU

only uses recency information to decide the lowest priority item

on eviction (line 19), the priority function can be easily changed to

adapt to even more diverse cache use cases [2, 6, 21]. The second

factor is the sampling size K; when workloads favor LRU replace-

ment, one can dynamically increase the value of K (up to 32). When

workloads favor random replacement, a smaller value of K can be

chosen to increase randomization on the eviction. However, note

that this also leads to the drawback of the sampling-based eviction;

it does not guarantee that popular or recently accessed items could

live longer in the cache, especially for a smaller value of K; thus, it

might lead to some occasional latency spike on popular items.

3.2 Handling Item Expiration
Similar to other In-memory caching software [3, 22, 42], Mem-

cached also supports item expiration. The client can specify an

item’s time-to-live (TTL) on a SET request. The TTL sets the time

limit for how long an item will remain valid in the cache before it’s

expired. Memcached employs a separate background crawler that

periodically walks over the LRU list starting from the tail of the list,

then removes the expired item and reclaims the memory. However,

this approach is not feasible for Memcached with KLRU. The KLRU

implementation described earlier completely removes the LRU lists

from the system. Thus, the background crawling of expired items

can no longer be done by walking through LRU lists. Instead, we
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scan for expired items directly at the slab level. Since each slab is

a piece of continuous 1MB memory, scanning for expired items

directly at the slab level is more cache-friendly than scanning from

the LRU list level. After the system runs for a while, items start

to be allocated randomly on the slab class slabs. One downside to

scanning at the slab level is that it wastes resources for scanning

through some unused memory chunks. However, this phenome-

non should be rare since in-memory caches are usually full when

crawling is triggered. Secondly, Memcached also supports a passive

expired item reclaim mechanism triggered whenever eviction oc-

curs. On eviction, Memcached checks a fixed number of items from

the tail of LRU list and removes the expired item. Note that this

passive mechanism operates on the lock-protected LRU list and lies

directly on the eviction execution path; thus, it could potentially

limit the scalability due to the heavy locking of the LRU list. To

add passive expired item reclaim supports to the KLRU, we adopt a

similar passive reclaim mechanism used in Redis [22]. When the

KLRU randomly selects K items from the slab class on eviction, we

remove all the selected expired items directly (Algorithm 1 line

14-17).

4 TRACES DESCRIPTION
We use three publicly available production workloads and well-

known synthetic workloads to evaluate the difference between

LazyLRU, SegLRU, and KLRU.

MSR MSR Cambridge traces [34] is a collection of one-week

block I/O traces from 13 different enterprise servers, such as web

proxy (prxy), media server (mds), and source control (src1, src2), etc.
The MSR workload consists of a diverse set of access patterns that

previously been used in many caching system evaluations [5, 30,

36, 38, 40].

Twitter Twitter Cache traces [41] are a collection of one-week-

long caching traces from 54 Twitter’s in-memory caching clusters.

The trace suite is around 14 TB in file size and comprises various

caching use cases. For our evaluation, we choose sub-traces from

9 different caching clusters, each with approximately 100 million

requests and various combinations of read/write ratios.

IBM COS The IBM COS traces [14] consist of 99 traces, and each

was collected over a week-long period from IBM’s public cloud-

based object storage service. Each of these IBM traces has different

requests-to-distinct-objects ratios. To ensure that enough items are

stored in the cache, we use IBM COS traces containing at least 1

million distinct items and have a steady miss ratio of less than 30%.

Zipf Many prior studies use synthetic traces with Zipfian pop-

ularity distribution to approximate real caching workload [1, 2, 7,

10, 11, 17–19, 24]. In this evaluation, we include three synthetic

traces that follow Zipfian popularity distribution with Zipfian con-

stants of 0.5 (less skewed), 1.0, and 1.2 (most skewed), respectively,

to simulate caching workloads with different levels of popularity

skewness.

Our evaluation uses all four workloads to test different cache

replacements’ miss ratio (or, conversely, the hit ratio) performance.

Then, when evaluating the impact of the replacement policy on

Memcached’s throughput and scalability, we mainly use Twitter’s

caching workloads, as it contains traces with a variety of read/write

ratios.

5 EVALUATION
This section presents miss ratio difference, empirical throughput

and latency evaluation for Memcacheds configured with different

cache replacement policies, mainly LazyLRU, SegLRU, and KLRU.

Our experiments run on a server with two NUMA nodes, each

with a 2.20 GHz Intel(R) Xeon(R) CPU E5-2650 v4 containing 12/24

cores/threads with hyper-threading enabled and 250 GB DRAM.

The operating system is Fedora 32 with Linux kernel 5.6.15.

In the following evaluation, we use Memcached 1.6.10 with mod-

ifications to support KLRU replacement. Moreover, we deploy the

Memcached instance only on one NUMA node to eliminate possible

memory access latency discrepancies. We use a modified version

of mc-crusher [27] on a second node to generate requests for Mem-

cached. We add support for item setbacks on cache misses, as well

as support for loading/replaying existing traces on mc-crusher. In

Section 5.1, we compared the effectiveness of KLRU and SegLRU in

terms of cache miss ratio and concluded that both implementations

have their advantage (Figure 3); there is no clear winner from the

perspective of miss ratio. Memcached’s replacement policies are

constructed based on the doubly-linked LRU list, where any modifi-

cation of the LRU list is protected by mutex lock. In contrast, KLRU

is completely lock-free and only requires an update in the times-

tamp. This section focuses on the impacts of the data structures and

locks of the three policies, so we would like to eliminate differences

caused by miss ratio. Unless otherwise specified, we over-provision

the Memcached memory size so that the entire workload can fit

in the cache. Therefore, there will be no capacity misses. Addition-

ally, we always warm the cache for a sufficient time to eliminate

discrepancies from the cold start (cold misses) on our results.

5.1 Miss Ratio Comparison
One of the most important metrics to consider when evaluating

different cache replacement policies is the cache’s miss (or hit) ratio.

This section presents the cache’s miss ratio results of the workloads

mentioned in Section 4. Since Memcached manages eviction inde-

pendently on each slab class using the same replacement policy,

we fix item size for all items in a workload so that all items can fit

into exactly one slab class for easier understanding and analysis of

the cache’s miss ratio.

We generate Miss Ratio Curves (MRC, a plot of cache’s miss

ratios against cache sizes) for every trace with different replace-

ment policies. When generating MRCs under LazyLRU and SegLRU

policies, we use Memcached’s default setting for all tunable param-

eters associated with these policies. For Memcached with KLRU

policy, we also do not tune for optimal sampling size K; instead,

we conservatively choose K = 16. Figure 1 illustrates the MRCs of

9 representative traces from MSR, Twitter, and IBM COS. When

the 𝑖𝑡𝑒𝑚𝑢𝑝𝑑𝑎𝑡𝑒𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 for LazyLRU is set to high value, LazyLRU

behaves similarly to FIFO. Therefore, we have also plotted FIFO

MRCs for different traces on figure 1 for reference purposes. Based

on the MRCs, we observe that KLRU, LazyLRU, and SegLRU per-

form very similarly to each other in most instances; they approach

steady miss ratios within the roughly same amount of memory

size. The largest gap appears in ibm.029, where segLRU results in

much higher miss ratios for certain cache sizes. For a more detailed

illustration, Figure 2 depicts miss ratio differences between SegLRU
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and KLRU for all traces tested under three different cache sizes with

the 95%, 75%, and 50% working set sizes, respectively. As expected,

with larger cache sizes, miss ratio differences between SegLRU and

KLRU are close to zero. We observe more deviation between the

two policies when the cache size is small relative to the working set

(50%). When the cache size increases, more items, especially those

popular items, fit into the cache, resulting in minor differences.

Next, Figure 3 illustrates the impact of cache misses on applica-

tion performance. This experiment chooses two different traces to

show the latency change over time with Memcached configured

with SegLRU and KLRU. Miss penalties, i.e., the time to request

missed data from the back-end database, are randomly distributed

between 100-300us for both tests. To reflect the impact of cache

misses on request latencies, we include the cache hit ratio along

with the latency plot in Figure 3. The first trace, Figure 3(a), is a syn-

thetic trace that follows Zipfian popularity distribution with alpha

= 0.99, interrupted by a long scanning request pattern in the middle.

As expected, we observe that SegLRU is much better at protecting

the cache from long scanning requests. KLRU appears to recover

from the scanning slower than SegLRU, which is reasonable given

that we use the sampling size of K=16; at this sampling size, KLRU

behaves similarly to an LRU cache. The second trace, Figure 3(b),

is IBM COS 029. As shown in Figure 1, the KLRU cache’s overall

miss ratio is significantly lower than the SegLRU cache’s miss ratio

under IBM COS 029 trace. We observe a significant latency reduc-

tion during the time interval from 2000 to 3000 seconds, where the

KLRU cache’s hit ratio wins over the SegLRU cache’s hit ratio.

Based on our miss ratio comparison results, it’s simple to see

that there is no clear winner that consistently yields the lowest

miss ratio. The replacement policy’s effectiveness largely depends

on the workload’s request pattern. Thus, it’s crucial that caching

systems, like Memcached, provide runtime tuning capability for

their replacement algorithm so that users can manually tune the

replacement to better suit their use cases.

5.2 Throughput, Latency, and Scalability
5.2.1 Throughput. We compare Memcached throughput under

three different policies stated in Sections 2 and 3. We configure

the Memcached instance with 20 worker threads, each serving

70 connections. We use both read and write-intensive workloads

from Twitter in our experiments. Memcached uses per slab class re-

placement; To make an apple-to-apple comparison on replacement

policies, we use the same size (96bytes) for every KV pair so that all

items can fit into a single slab class. Figure 4 depicts Memcached

throughput under LRU and three other LRU variants. Under the

read-intensive case (Fig 4a), Memcached configured with LazyLRU,

SegLRU, and KLRU achieves similar throughput. These LRU variants

relax LRU locks on the read request, and as a result, they outper-

form the naive LRU implementation (i.e., locks LRU queue on every

read request) by 45%. Under the write-intensive case (Fig 4b), we do

not observe any major performance difference between naive LRU

and three other variants. Although Memcached configured with

KLRU is completely LRU lock-free on write requests, the improve-

ment over throughput compared to naive LRU is insignificant. The

similar throughput between Memcached with KLRU and naive LRU
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implies that the LRU lock is not the primary limiting factor of Mem-

cached performance under write-intensive workloads. Furthermore,

we also observe that Memcached’s LazyLRU underperforms naive

LRU by 35% in the write-intensive case. Inspecting Memcached’s

source code, we notice that under LazyLRU, Memcached always

attempts to reclaim the memory first before allocating memory for

the new item. The memory reclamation is done by walking up a

few elements from the LRU tail and removing expired/invalidated

items along the walk. This LRU lock-protected reclamation process

severely limits LazyLRU’s throughput and scalability (Sec. 5.2.3).

After removing the reclamation on the write request’s execution

path, the throughput of LazyLRU recovers to the same level as other

variants.

5.2.2 Latency. Figure 5 illustrates Memcached’s latency cumula-

tive distribution under read-intensive, write-intensive, and read/write

mixed cases. And Table 1 shows the tail latencies of these three

corresponding cases. Memcached shows similar latency distribu-

tion and tail behavior for read-intensive workloads under different

policies. When the fraction of write requests increases, KLRU and

SegLRU show lower end-to-end latency than LazyLRU. In the case

of Memcached configured with limited memory, one should ex-

pect better tail latency from KLRU as both SegLRU and LazyLRU

require mutex lock on eviction, which could hurt tail behavior as

Memcached scales.

5.2.3 Scalability. We present the scalability results in Figure 6,

which shows the change in Memcached’s throughput as the number

of worker threads increases from 1 to 20. Our experiment shows

that Memcached scales nearly linearly up to 20 worker threads

for all three replacement policies under read-intensive workloads.

Memcached’s scalability decreases when theworkloads shift toward

the more write-intensive end. Even though KLRU is totally LRU

lock-free, throughputs are still capped at 1 MQPS after 12 worker

threads. SegLRU, which locks the LRU queue onwrite, achieves only

slightly lower throughput for the given number of worker threads

than KLRU. Similar scalability between KLRU (LRU lock-free write)

and SegLRU (LRU locked write) indicates that the LRU lock on write

is not the dominating factor that limits Memcached’s write capa-

bility. For LazyLRU, the throughput degrades when Memcached

scales beyond 12 worker threads; As mentioned before, the long

LRU-locked reclamation process lies on the write path of LazyLRU

creates heavy lock contention as the number of worker threads

increases, which bottlenecked Memcached’s performance.

In summary, for read-intensive workloads, our experiment shows

that all three LRU variants achieve significantly higher through-

put than the naive LRU implementation, and all three have close

to linear scalability. For write-intensive workloads, Memcached

with KLRU shows slightly better performance compared to SegLRU.

Nonetheless, we find that Memcached’s write capability stops scal-

ing past 12 worker threads regardless of the replacement policies.

5.3 KLRU Analysis
5.3.1 Metadata Overheads. The KLRU design scrapes off the

entire LRU lists layer fromMemcached, which leads to two apparent

benefits. First, it simplifies the read/write execution path and lowers

the overall system complexity. Second, it saves 16 bytes per item

by removing two pointers used for the doubly-linked LRU list. For

workloads with large item size (> 1𝐾𝐵), 16 bytes saving in metadata

will not be significant, but for small item size (< 100 bytes) workload,

reducing metadata overhead could help save a significant portion

of memory resource. For example, under SegLRU, the trace used in

Figure 7 would take 96 bytes (including metadata) for each item,

but under KLRU, it only takes 80 bytes per item, representing a 17%

reduction in total memory consumption.

5.3.2 Eviction Overheads. Upon eviction, KLRU randomly sam-

ples𝐾 elements from the slab class and evicts the oldest item among

selected 𝐾 items. Table 2 shows the cost of sampling 𝐾 items from

slab class with 𝐾 from 1 to 32. The sampling cost grows linearly as

the size of𝐾 increases. Fortunately, it’s been shown that KLRU with

a sampling size as small as 16 can very well approximate the actual

LRU [2, 40]. In our experiments, we use 16 as the default sampling

size. To compare the impacts of eviction overhead with SegLRU, we

configure Memcached with three different memory sizes, such that

the cache miss ratio was the same for KLRU and SegLRU. Figure 7

shows that the throughput for SegLRU and KLRU is nearly the same

in this setting, which indicates that random sampling up to sample

size 16 does not negatively impact the Memcached throughput.

5.3.3 Reclaiming Expired Items. Section 3.2 describes an al-

ternative mechanism for crawling expired items for Memcached
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Table 1: Memcached Request Tail Latency

Read Intensive Mix Read/Write Write Intensive

(%) 99 99.9 99.99 99 99.9 99.99 99 99.9 99.99

LazyLRU 21 27 33 34 41 49 48 57 67

SegLRU 23 29 35 29 35 43 36 43 57

KLRU 22 27 33 25 30 37 33 39 48
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Figure 7: Memcached Throughput under Small Cache Size

Table 2: Eviction Item Sampling Overhead

cost of K random sampling from a slab class
K 1 2 4 8 16 32

cost (𝜇Sec) .3 .5 1.2 1.9 4.2 6.6

configured with KLRU. In this section, we compare the effective-

ness of this slab-based crawler+passive random sampling reclamation
with the original Memcached implementation. To compare their

effectiveness in handling expired items, we use a read-intensive

trace with all items’ TTL set to 60 seconds so that items that stay

in the cache for longer than one minute are considered expired.

Figure 8(a) shows Memcached’s throughput change over an 8-hour

interval. and (b) shows Memcached’s memory consumption over

the same period. We observe that Memcached with KLRU and

SegLRU yield very similar throughputs, with KLRU slightly win-

ning over. In terms of memory consumption, we show that both

crawling mechanisms are capable of bounding the memory usage

compared to Memcached with expired reclaim disabled.
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Figure 8: (a) is the Memcached’s throughput over time measured

every 300 sec. (b) is the Memcached’s memory consumption over

time measured every 300 sec. The Memcached is configured with

10 worker threads and the trace used here is Twitter 034 trace.

5.4 Impacts of Network Latency and Slab
Allocation Lock

In this section, we further compare Memcached replacements by

peeling off other performance-limiting factors on Memcached.

We first consider the impact of network latency. Network latency

can account for a significant portion of the overall end-to-end re-

quest latency, and high network latency can mask the performance

differences between different replacement policies. To focus the

evaluation on replacement policies, we bypass the network latency

by buffering the entire workload into Memcached and then replay

requests directly in the process. In Figure 9, we compareMemcached

throughputs with and without network bypass enabled. After by-

passing the network stack, we observe no major throughput change

for Memcached with naive LRU implementation for read-intensive

workload, as it is bottlenecked by heavy LRU lock contention, but

all three other LRU variants show significant throughput increases.
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KLRU’s throughput is notably higher than SegLRU and LazyLRU.

For the write-intensive workload, Memcached with and without

network latency yields similar performance differences among re-

placement policies, which backs our previous claim (Sec. 5.2.1) that

LRU lock is not the major bottleneck on Memcached’s write path.

Lastly, besides the LRU lock, the Memcached’s write path is also

guarded by a global slab allocation lock. The slab allocation lock

ensures that all internal memory management operations, such as

memory allocation and memory reclaim, are serialized. To exam-

ine the impacts of slab allocator lock, we temporarily change the

global slab lock to the different levels of fine-grained slab locks. Fig-

ure 10 shows throughputs of Memcached running write-intensive

workload on the first eight default slab classes sharing 1, 4, and

8 slab locks, respectively. As the number of slab locks increases,

the contention pressure on each lock decreases, leading to higher

throughput.

6 RELATEDWORK
There is a great amount of research on cache eviction policies. In

this section, we review various policies used in state-of-the-art

production caching systems and academia.

Production caching
Facebook - Cachelib [4] is a general-purpose caching engine

developed by Facebook in an effort of balancing the generality

and specialization of a wide variety of caching systems, including

CDN caches, K-V caches, media caches, and social-graph caches.

Cachelib is a hybrid cache engine that supports caches composed

of DRAM and Flash. Its eviction policy is configurable for the two

different underlying storage media. For DRAM cache, each separate

DRAM cache pool or slab class is capable of applying different

recency or frequency-based eviction policies, including LRU, LRU

with multiple insertion points, 2Q [20], and TinyLFU [13]. For Flash

cache, FIFO and a pseudo-LRU policy are used in Large Object Cache

to amortize the computational cost of flash erasures, while the Small

Object Cache only supports policies with no state updates on hits

such as FIFO.

Twitter - Segcache [42], a new storage back-end dedicated to

small objects developed by Twitter, believes macro management

over a contiguous block of object segments could improve both

throughput and scalability by reducing CPU cycles on maintaining

object indexes for eviction and other operations. It uses a merge-

based algorithm to perform eviction by segments. Multiple con-

secutive, un-expired object segments of the same TTL range are

combined into one, and per-object eviction decisions are made

while traversing through those segments by evaluating each ob-

ject’s frequency-over-size ratio.

Caffeine [3] is a high performance caching library for Java. It

adopts Window TinyLFU eviction policy [13], which involves two

cache areas: main cache and window cache. The main cache uses

the Segmented LRU eviction policy and TinyLFU admission policy,

where the two separate regions of Segmented LRU space are parti-

tioned into 80% of hot items and 20% of non-hot items. The window

cache adopts LRU eviction and no admission policy. The size of the

main cache and window cache can be adaptively determined by a

hill climbing optimization. Their evaluation shows Caffeine’s im-

plementation provides a hit rate near Belady’s optimal theoretical

upper bound over a range of workloads.

Research caching
MemC3 [16] uses Cuckoo hashing, removes Memcached’s LRU

chain pointers and locks by implementing an approximate LRU

cache based on CLOCK replacement algorithm to improve con-

currency and throughput, but at the cost of sacrificing memory

efficiency, and only works good for workloads with targeted char-

acteristics. MICA [23] adopts an append-only circular log data struc-

ture that is write-friendly by placing new objects only at the end of

the log. It maps accesses to specific CPU cores and data partitioning

to improve scalability and throughput. But it only supports FIFO

and approximated LRU policy. HotRing [8], is a Key-Value store

with an ordered-ring hash structure that is lock-free to support

massive concurrent accesses and improve system throughput.

7 CONCLUSION
This paper presents the results of an empirical study on the per-

formance impacts of two popular LRU implementations on Mem-

cached. Our result reveals that the KLRU implementation, which

is LRU (list, lock)-free, results in slightly better write performance

and fewer metadata overhead. Our evaluation demonstrates that
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both implementations of Memcached exhibit close to linear scal-

ability under read-intensive workloads. However, Memcached’s

throughput under write-intensive workloads stops scaling after 12

threads, even with the LRU lock-free implementation. This implies

that the LRU lock is not currently Memcached’s write performance

bottleneck. Moreover, we demonstrate that relaxing the global slab

allocator lock enhances the write performance, but Memcached’s

write performance appears to still not scale well with more threads.

We believe these findings can offer valuable insights for the devel-

opment of future in-memory cache designs.
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