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ABSTRACT 

RowHammer attacks are a growing security and reliability concern 

for DRAMs and computer systems as they can induce many bit 

errors that overwhelm error detection and correction capabilities. 

System-level solutions are needed as process technology and circuit 

improvements alone are unlikely to provide complete protection 

against RowHammer attacks in the future. This paper introduces 

RAMPART, a novel approach to mitigating RowHammer attacks 

and improving server memory system reliability by remapping 

addresses in each DRAM in a way that confines RowHammer bit 

flips to a single device for any victim row address. When 

RAMPART is paired with Single Device Data Correction (SDDC) 

and patrol scrub, error detection and correction methods in use 

today, the system can detect and correct bit flips from a successful 

attack, allowing the memory system to heal itself. RAMPART is 

compatible with DDR5’s RowHammer mitigation features, as well 

as a wide variety of algorithmic and probabilistic tracking methods. 

We also introduce BRC-VL, a variation of DDR5’s Bounded 

Refresh Configuration (BRC) that improves system performance 

by reducing mitigation overhead and show that it works well with 

probabilistic sampling methods to combat traditional and victim-

focused mitigation attacks like Half-Double. The combination of 

RAMPART, SDDC, and scrubbing enables stronger RowHammer 

resistance by correcting bit flips from one successful attack. 

Uncorrectable errors are much less likely, requiring two successful 

attacks before the memory system is scrubbed. 

CCS CONCEPTS 

• Security and privacy → Security in hardware; • Hardware → 

Dynamic memory; Hardware reliability; • Computer systems 

organization → Processors and memory architectures. 
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1 Introduction 

DRAMs are increasingly susceptible to RowHammer attacks 

[1], in which repeated activations of an aggressor row can flip bits 

in nearby victim rows. Interest in RowHammer attacks is growing 

due to the potential for data corruption and security exploits, 

especially in servers and data centers [2][3]. Although servers have 

employed Reliability, Availability, and Serviceability (RAS) 

methods such as symbol-based Error Correction Codes (ECC) for 

many generations, RowHammer attacks are dangerous because 

they can cause many errors across multiple DRAMs on a DIMM 

(Dual In-line Memory Module) that can overwhelm the detection 

and correction capabilities of ECC. The hammer count HC, the 

number of aggressor row activates needed to cause bit flips in 

victim rows, has dropped by more than an order of magnitude over 

the past decade [3], and recent work has discussed the coupling and 

leakage mechanisms behind RowHammer bit flips [4][5]. DRAM 

cell vulnerability will continue to get worse at smaller process 

geometries as reduced cell-to-cell spacing increases susceptibility 

to disturb induced charge leakage, and increases the number of 

victim rows. For these reasons, RowHammer is a fundamental 

scaling problem for future DRAMs that process technology and 

circuits alone are unlikely to fully solve. 

Many attacks have been demonstrated, including some that can 

result in access to privileged information and denial-of-service 

[11]-[17]. DRAM RowHammer vulnerability and mitigation 

methods in use today have been discussed in previous research 

[2],[7]-[10]. DDR4 Target Row Refresh (TRR) selects aggressor 
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rows and refreshes victims to restore bit cell charge. TRR 

algorithms are vendor and device-specific and are not public, but 

these algorithms have been reverse-engineered [2], enabling 

targeted attacks to be crafted that bypass them. Newer victim-

focused mitigation attacks like Half-Double [18] also circumvent 

DDR4 protections [32], illustrating the danger of attacks that have 

yet to be discovered. DDR5 Refresh Management (RFM) [6] 

provides protection against RowHammer attacks and is also vendor 

and device-specific with details that are not public. Obscuring these 

details makes it impossible to estimate system-level resistance to 

RowHammer attacks. Many works propose prevention and 

mitigation methods [19]-[45], with varying area and performance 

impacts [7] that change with HC [44].  

This paper presents RAMPART (Row Address Map 

Permutation And Reassignment Technique), a new approach to 

RowHammer mitigation in server memory systems that is 

compatible with DDR5’s existing RowHammer mitigation 

features.  RAMPART combines algorithmic row address 

remapping in the DRAMs together with common RAS methods 

and leverages existing circuits and process technology. Unlike 

other remapping methods [32][41][44], remapping only happens 

once during manufacturing or initialization, so remapping doesn’t 

affect performance. RAMPART mitigates RowHammer attacks by 

(i) confining bit flips to a single DRAM for any victim row address, 

and (ii) enabling RowHammer bit flips to be corrected with SDDC, 

allowing the system to continue running. The combination of 

RAMPART and SDDC works no matter how many bits flip as a 

result of a single successful attack, allowing the system to function 

properly even if the attack flips every bit in the neighboring rows. 

When RAMPART is combined with SDDC and patrol scrub, 

features in use today, uncorrectable errors require a second 

successful attack before errors from the first attack are detected and 

corrected, improving the resistance of the memory system.  

An important objective of RowHammer mitigation and 

prevention is to increase the memory system’s resistance to data 

corruption while minimizing any performance impact. RAMPART 

can be used together with many previously described prevention 

and mitigation methods, including other remapping techniques, and 

can be coupled with a variety of algorithmic tracking and 

probabilistic selection methods. When probabilistic sampling is 

used, resistance to data corruption can be substantially increased 

with the combination of RAMPART and SDDC since two 

successful attacks are needed to irreparably damage data. We also 

introduce BRC-VL, a variation of DDR5 BRC with lower 

performance overhead that works well with RAMPART and 

SDDC, and discuss a practical silicon implementation.  

We analyze DDR5-5600 memory systems across a range of HC 

values that reflect near-term possibilities based on recent studies. 

For the range of scenarios simulated, our analysis shows that the 

combination of RAMPART, SDDC, BRC-VL, and patrol scrub can 

reduce the probability of data corruption by 4 to 17 orders of 

magnitude after one year of continuous attacks compared to using 

DDR5 BRC. For the benchmarks and parameters studied, BRC-

VL’s lower overhead results in a smaller CPI impact versus DDR5 

BRC when both are compared to a system running with no 

RowHammer mitigation. The relative CPI difference can be as high 

as 3.9% at equal RFM issue rates, and can be higher when targeting 

equal memory resistance to data corruption. 

Our paper makes the following contributions: 

• We introduce RAMPART, a novel DRAM row address 

remapping method that confines RowHammer bit flips to a 

single DRAM for any victim row address. RAMPART is 

compatible with DDR5’s current mitigation mechanisms, as well 

as many other mitigation and prevention techniques.  

• We show that when RAMPART is coupled with existing ECC 

methods, bit flips from a successful RowHammer attack can be 

corrected, and the system can keep running. Uncorrectable errors 

require two successful attacks before damage from the first 

attack is detected and corrected.  

• We introduce BRC-VL, a variation of DDR5 BRC that improves 

system performance and resistance to data corruption when 

coupled with RAMPART and SDDC. Our DDR5-5600 models 

show the probability of corrupted data can be reduced by 4 to 17 

orders of magnitude after one year of continuous attacks for the 

parameters studied. We also describe a practical TSMC 7nm 

implementation. 

2 Background 

2.1 DRAMs and DIMMs 

Figure 1a illustrates the structure of DRAMs and DIMMs. 

DRAMs store bits of data in arrays of capacitors grouped together 

in a hierarchical structure that balances storage density and 

performance. DRAM bit cells are organized into groups called rows 

or pages, with multiple rows aggregated into mats, and mats 

aggregated into banks. Multiple banks form a bank group that share 

some resources. Banks have a 2D organization, with bit cells 

identified by row and column addresses that are decoded to locate 

bits in this structure. Additional rows called spare or redundant 

rows are enabled during test and repair to take the place of regular 

rows that have manufacturing defects. Row addresses for the 

repaired rows are remapped internally to these spare rows. 

A command decoder receives commands and addresses from 

the memory controller (or controller for short) via a 

command/address (CA) bus connected to the CA pins. When data 

is read from a DRAM, an activate command provides a row address 

to specify that all bits in one row of a bank are to be moved to sense 

amplifiers (or sense amps). A separate read command provides a 

column address to select a subset of the bits from the sense amps to 

be returned across the DQ pins. Write commands function in a 

similar manner, providing data to be written into the DRAM.  

Data is passed on a memory channel between the controller and 

multiple DRAMs on a DIMM. DDR5 DIMMs contain more than 

one channel, and the DRAMs associated with a channel are 

partitioned into independent subsets called ranks. One rank of 

DRAMs responds to a transaction initiated by the controller, with 

the data spread among the DRAMs in the rank. ECC can be 

provided with up to 2 additional DRAMs in each rank, allowing a 

limited number of errors to be corrected. With 2 additional 

DRAMs, Single Device Data Correction (SDDC) is enabled, 



 

 

 

allowing the memory system to continue operating even if one 

DRAM in the rank fails or returns data that is completely incorrect. 

The same row and column addresses are passed to all DRAMs in 

the rank, and each decodes these addresses in the same way to 

access data. Processors can connect to multiple memory channels, 

enabling higher capacities and bandwidths.  

Figure 1b illustrates how controller row addresses map to rows 

in the DRAM banks. The mapping shown is fictitious but is 

illustrative of the function. Mappings are vendor and product-

specific, and are not public [3], making it unclear which rows are 

neighbors [17]. Each DRAM on a DIMM is from the same 

manufacturer and maps row addresses in the same way. Address 

mappings can be reverse engineered [3][7], revealing the mapping 

algorithm used for a given DRAM product. An important exception 

is for repaired rows that are remapped to spare rows. Repaired rows 

can be different in each DRAM, and there is flexibility on where 

they can be remapped, making the location and neighbors of these 

rows DRAM-specific. These mappings are not public, making the 

DRAM the only device that knows the complete mapping of 

addresses to rows in the DRAM core. 

2.2 RowHammer in DRAMs and DIMMs 

A traditional RowHammer attack, shown in Figure 2a, 

repeatedly activates an aggressor row (row R) to cause bits in 

neighboring victim rows (rows R±1) to flip before their data can be 

refreshed. Double-sided RowHammer attacks repeatedly activate 2 

rows (rows R-2 and R) on either side of a victim row (row R-1), 

making it harder to identify them. At smaller process geometries 

the hammer count continues to fall, and aggressor rows have a 

larger blast radius that affects victims multiple rows away, 

enabling more sophisticated attacks. Refreshing victim rows can 

stop these attacks.  

Half-Double attacks, shown in Figure 2b, flip bits in victim rows 

that are multiple rows away from the aggressor row. This attack 

hammers row R, the far-aggressor, and relies on refresh operations 

being issued to rows R±1 that are designed to stop a traditional 

attack. These refresh operations act as near-aggressors that 

hammer rows that are two rows away (rows R±2) from the far-

aggressor. Half-Double attacks use victim-focused mitigation 

operations (refreshes to rows R±1) as hammers, leveraging 

methods designed to stop traditional attacks [18][32]. 

Figure 3 illustrates how a RowHammer attack can cause 

uncorrectable errors in server memory systems. As discussed in 

Section 2.1, each DRAM maps controller row addresses to internal 

rows in the same way. An important observation is that when a 

controller row address is hammered, the same controller row 

addresses are victims in each DRAM in the rank. If multiple 

DRAMs have errors at the same victim row address, ECC detection 

mechanisms will be overwhelmed and will fail. In the worst case, 

many errors in multiple DRAMs will be undetected, leading to 

silent data corruption. 

 
                              (a) Structure of DRAMs and DIMMs                                         (b) Mapping of Controller Row Addresses 

 

Figure 1: The structure of DRAMs and DIMMs is shown in (a). A memory channel communicates data between the controller 

and a rank of DRAMs on a DIMM. Row addresses issued by the controller are mapped to rows in the DRAM banks, as shown 

in (b). Defective rows are mapped to spare rows during manufacturing. The mapping shown in this example is fictitious.  

 

  
      (a) Traditional attack             (b) Half-Double attack 

 
Figure 2: Examples of (a) a traditional RowHammer attack 

and (b) a Half-Double attack. Half-Double attacks use 

refreshes of Rows R-1 and R+1 (victims of aggressor row 

R) to act as aggressors on victim Rows R-2 and R+2. 

 

 



 

 

 

 

3 RAMPART: Confining Victim Addresses to a 

Single DRAM 

Our solution approach is to confine victim row bit flips for any 

address to a single DRAM, and to use existing ECC methods to 

detect and correct these errors. The foundation of our solution is the 

observation that bit flips for any victim row address can be confined 

to a single DRAM if controller row addresses are never neighbors 

in more than one DRAM. This can be achieved if each DRAM in 

the rank implements a unique mapping of controller row addresses 

to rows within the banks. In this case, a successful RowHammer 

attack can still flip bits in each DRAM, but they will be in victim 

rows that correspond to different controller row addresses in each 

DRAM. By mapping addresses in this way, potential bit flips are 

spread among different victim row addresses in different DRAMs, 

in a way that allows ECC to correct them. Reading data from any 

of these victim row addresses will result in erroneous data from 

only one DRAM, which can be corrected with existing system-level 

ECC methods described in Section 4, allowing the system to 

continue running. Irreparable damage to data requires a second 

successful attack to the same victim row address, but in a different 

DRAM, before errors from the first attack are corrected with ECC. 

In this section we introduce RAMPART, a remapping method 

enabling different row address mappings in each DRAM so that 

row addresses are never neighbors in more than one DRAM in the 

rank. By remapping in this way, RAMPART provides the benefits 

of (i) confining bit flips to a single DRAM for any victim row 

address, allowing them to be corrected with SDDC ECC, and (ii) 

requiring two successful attacks (before bit flips from the first 

attack are corrected) to cause irreparable damage to data. In 

addition, remapping is only done once, at manufacturing time or 

during initialization, and does not affect performance. 

Figure 4 illustrates RAMPART using a circular left shift 

remapping function that takes controller row addresses issued by 

the controller and permutes them so that they map to different rows 

in the DRAM bank. This example shows that controller row 

address 0x8000 is circularly shifted left by a programmed shift 

value of 2 bits, and the resulting value 0x0002 is the row in the bank 

that this controller row address maps to. Other functions are 

possible, for example using Linear Feedback Shift Registers 

(LFSRs).  

Generalized circular shift hardware can be implemented easily 

in the DRAM interface with no additional latency penalty, as 

repaired rows already go through a remapping process. Based on 

our analysis of die photos such as that shown in [48], DRAM 

peripheral circuits including the DLL, IO, command decoder, data 

path and command path occupy about 3% of DRAM area, and an 

additional 16b circular shifter has no die size impact. Each DRAM 

in the rank can be programmed with a different shift value based on 

a unique ID programmed during initialization or set with fuses at 

manufacturing, for example. Implementing RAMPART remapping 

in the DRAM also allows the mapping of controller row addresses 

to core rows to remain hidden from the memory controller.  

Figure 5a illustrates a 16b row address mapping (similar in size 

to DDR5) that assigns each DRAM in the rank a unique ID value, 

and circularly left shifts controller row addresses by this ID value 

(1-bit×ID). The tables at the bottom of this figure illustrate the 

unique mappings that RAMPART provides for each DRAM. In 

each table, the controller row address is shown in the left column, 

and the right column shows the row in the bank that this controller 

row address maps to. In this example, controller row address 

0x0000 always maps to the first row in each DRAM, as circularly 

left shifting 0x0000 by any number of bits always results in 0x0000. 

But controller row address 0x0001 maps to different rows 

depending on how many bits it is shifted by. In DRAM 0, controller 

row address 0x0001 occupies row 0x0001 (shift by 0 bits). In 

DRAM 1, controller row address 0x0001 is in row 0x0002 (shift by 

1 bit). And in DRAM 2, controller row address 0x0001 is in row 

0x0004 (shift by 2 bits).  The figure shows controller row address 

0x0001 is next to controller row address 0x0000 only in DRAM 0 

and moves further away in other DRAMs due to the increasing size 

of the shift. Using this mapping, neighbors of any given row 

address in one DRAM are never neighbors in another DRAM.  

The benefit of this mapping is shown in Figure 5b.  If controller 

row address 0x0001 is successfully hammered, different controller 

row addresses will be victims in each of the other DRAMs. A 

subsequent read to controller row address 0x0000 will only see 

errors from DRAM 0, as controller row address 0x0001 is not 

neighbors with controller row address 0x0000 in any other DRAM. 

 

 
Figure 3: DRAMs on a DIMM map controller row 

addresses to rows in DRAM banks in the same way. A 

RowHammer attack can flip bits in the same victim row in 

multiple DRAMs, overwhelming ECC protection. 

 

 
 

Figure 4: Example RAMPART row address remapping. 

Controller row addresses are circularly shifted left by 2 

bits. The resulting address is the row in the DRAM bank.  



 

 

 

This mapping confines bit flips to a single DRAM for any victim 

row address, allowing ECC to repair these bit flips.  

Figure 5a shows a mapping in which no two controller row 

addresses are immediate neighbors in more than one DRAM. This 

approach also works when victims can be 2 or more rows away 

from the aggressor (blast radius ≥ 2), for example using larger shifts 

(e.g., 2-bits×ID) if the address space is large enough, and/or with 

other mapping functions. One challenge is that repaired rows are 

mapped uniquely to spare rows, making it difficult to guarantee row 

addresses have unique neighbors in each DRAM. In many cases, 

DRAMs have substantial numbers of unused spare rows, allowing 

repaired rows to be shielded from other rows by placing unused 

spare rows between them. DRAMs can be binned to identify those 

with sufficient unused spare rows so that remapping can guarantee 

all rows, even repaired ones, have unique neighbors and/or unused 

rows for shielding. If all repaired rows cannot be spaced 

sufficiently far apart, the vast majority of rows (including many 

repaired rows) will have unique neighbors, confining errors in these 

rows to one DRAM. The locations of vulnerable rows will vary 

across DIMMs, and attacks targeting these repaired rows may work 

on one DIMM but will likely fail on others. Because DRAMs 

already implement row address mapping on repaired rows, 

RAMPART’s remapping function is an incremental design change 

that can be implemented with no additional latency. 

4 Correcting Bit Flips with SDDC ECC 

As data rates rise and process geometries shrink, memory 

systems are more prone to errors. In DDR5, integrity and reliability 

are improved using a layered ECC approach combining protection 

in the DRAM [6] with protection at the system-level. DDR5 

DRAMs can detect single-bit errors in 128b blocks of data, 

returning corrected data on a read operation. An important concern 

is error accumulation, in which multiple single-bit errors occur in 

the same 128 bits of data over time. This results in undetectable 

errors and silent data corruption (SDC). Error accumulation can be 

prevented with Error Check and Scrub (ECS) operations that 

correct single-bit errors during all bank refresh and self-refresh.  

Multi-bit errors can be corrected at the system level (in the 

controller) using additional DRAMs per rank. At the system-level, 

multiple bits are aggregated into symbols, some holding data and 

some holding check symbols for data integrity. Reed-Solomon (RS) 

coding can correct one or more symbol errors across the data and 

check symbols, allowing any number of bit errors within an 

erroneous symbol to be corrected. 

DDR5 server DIMMs can provide system-level ECC by using 

8 x4 DRAMs per rank for data symbols, and up to 2 additional x4 

DRAMs per rank for check symbols.  DIMMs that use 2 additional 

DRAMs per rank can implement Single Device Data Correction 

(SDDC, also called chipkill), a method commonly used today [57] 

that can correct any number of bit errors from a single DRAM. 

SDDC allows a system to keep running even if a DRAM fails. 

DIMMs can instead use 1 additional DRAM per rank, trading off a 

lower level of ECC protection for reduced cost. DIMMs can also 

forgo additional ECC DRAMs to minimize cost.  

Figure 6a shows an SDDC configuration with 4b symbols using 

all bits from the same burst of a DRAM. RS(10,8) coding can be 

used on the 10 symbols to correct any number of bit errors in one 

symbol. Two symbols in error can be detected (but not corrected) 

47% of the time, while 53% of the time they cannot be detected at 

 
    (a) Unique mappings of controller row addresses in each DRAM           (b) Different victim row addresses in each DRAM 

 
Figure 5: Example RAMPART row address mappings producing unique neighbors, so RowHammer attacks have different 

victim addresses in each DRAM. (a) Circular left shifts of controller row addresses based on unique DRAM IDs are shown. The 

tables at the bottom show how controller row addresses map to internal bank rows in each DRAM. Row addresses 0x0000 and 

0x0001 are bolded to show increasing separation with larger shifts. (b) Hammering controller row address 0x0001 flips bits in 

controller row addresses 0x0000 and 0x0002 in DRAM 0, but controller row addresses 0x8000 and 0x8001 in DRAM 1. A 

subsequent read to controller row address 0x0000 sees errors only from DRAM 0 that can be corrected with SDDC ECC. 

 
 



 

 

 

 

all [60]. And three or more symbols in error can be detected (but 

not corrected) only 41% of the time, while 59% of the time they 

cannot be detected. Figure 6b shows an SDDC configuration with 

16b symbols formed from all bits of the burst length on each data 

pin. RS(40,32) coding on these 40 symbols enables any number of 

bit errors in up to 4 symbols to be corrected. The system is protected 

when an entire DRAM fails, or when up to 4 symbols across the 

DRAMs are in error. ECC with larger symbols is more robust, but 

slower and more complex. With RS(40,32) and 16b symbols, the 

SDC probability with 5 to 8 symbol errors is below 5.0×10-15, and 

with 8b symbols is below 2.2×10-5. 

When the controller corrects an error, a demand scrub operation 

is initiated that writes the corrected data back to the DRAMs, 

clearing any single-bit and multi-bit errors stored in them. Patrol 

scrub [42] is used today (typically once to a few times per day 

depending on the desired level of memory system reliability) to 

proactively read all DRAM locations and write data back to 

memory, correcting any errors. Patrol scrub runs in the background, 

with memory accesses spread out over the patrol scrub interval, and 

the overhead is small in modern servers. Running patrol scrub once 

per day on a 1TiB DDR5-5600 memory channel transfers 2TiB of 

read and write data, consuming 25.5MB/s or 0.057% of the peak 

memory bandwidth and memory power.  

Our solution combines RAMPART with SDDC and patrol scrub 

to correct bit flips caused by one successful RowHammer attack, as 

errors at any victim row address are confined to a single DRAM. A 

variety of SDDC methods can be used, including those in Figure 6. 

The only ECC requirement is that the complete corruption of data 

from a single DRAM can be corrected. Using the example in Figure 

6b, if an attack has been successful each victim row address will 

have at most four symbols in error, one for each of the 4 pins of the 

DRAM with the victim row address. If any of these victim rows is 

accessed, SDDC will detect and correct bit errors and write 

corrected data back to the DRAM, healing the data and reversing 

the effects of the attack. Irreparable damage to data requires a 

second successful attack on the same victim row address, but in a 

different DRAM. If the victim row address is accessed (e.g., read 

by an application or via patrol scrub) before the second attack 

succeeds, the data will be corrected and written back to memory, 

thwarting the attack. Referring to Figure 5b, a RowHammer attack 

attempting to flip bits in controller row address 0x0000 needs to 

successfully hammer row address 0x0001 to flip bits in DRAM 0, 

and row address 0x8000 to flip bits in DRAM 1. If data at victim 

row address 0x0000 is read before the second attack completes, bit 

flips from the first attack will be corrected with SDDC. RAMPART 

and SDDC can also be used together with other RowHammer 

defense mechanisms to provide an added layer of resilience.  

DIMMs with 1 additional DRAM per rank instead of 2 provide 

a lower level of ECC protection at a reduced cost. A configuration 

similar to that shown in Figure 6b, but with 9 DRAMs and a similar 

mapping of bits to symbols, can implement 2-symbol correction 

using RS(36,32) coding. Up to 2 erroneous symbols can be 

corrected, providing protection against RowHammer attacks that 

only flip bits in up to 2 symbols in the same DRAM. With 

RS(36,32) and 16b symbols the SDC probability with 3 to 8 symbol 

errors is less than 1.5×10-7, and with 8b symbols it is less than 

9.5× 10-3. Previous studies [7] have shown that RowHammer 

attacks often do not flip all bits in a row, instead affecting a smaller 

number of bits. Using 9 DRAMs per rank with RS(36,32) encoding 

can provide partial protection against attacks for DRAMs with a 

small number of susceptible bits per row, but cannot match the 

stronger reliability that 10 DRAMs per rank can achieve with 

RAMPART and SDDC. There are no limits on the number of bit 

flips that can be corrected with RAMPART and SDDC as a result 

of a single successful RowHammer attack. With 10 DRAMs per 

rank, one successful attack can flip every bit in the neighboring 

rows and RAMPART coupled with SDDC can correct these errors. 

To cause uncorrectable errors, a second successful attack is needed 

before errors from the first attack are detected and corrected. 

5 Minimizing the Impact of RowHammer 

Mitigation Mechanisms 

A key objective for RowHammer mitigation and prevention 

mechanisms is to increase the memory system’s resistance to bit 

flips while minimizing any impact to performance. RAMPART and 

SDDC increase resistance to data corruption in server memory 

systems by requiring two successful attacks to cause uncorrectable 

memory errors. In this section we discuss BRC-VL, a variation of 

DDR5’s BRC mitigation feature that improves performance by 

reducing mitigation overhead.  

RAMPART can be used together with DDR5 BRC as well as 

with many different RowHammer tracking and sampling 

techniques. Numerous methods [2][21][27][30][38] have been 

proposed, with these approaches varying in area, complexity, and 

performance impact. Tracking methods identify aggressor rows 

based on historical accesses. Some methods like Misra-Gries [30] 

provide a guarantee that aggressor rows will be identified if enough 

candidate rows are tracked. As HC continues to fall and the number 

of banks and channels continues to rise, SRAM and Content 

 
(a) SDDC with RS(10,8) encoding 

 

 
(b) SDDC with RS(40,32) encoding 

 
Figure 6: The mapping of bits to symbols in (a) supports 

SDDC ECC, allowing the system to keep running if one 

DRAM fails or all bits from one DRAM are in error. The 

mapping in (b) uses more symbols to provide SDDC ECC 

and the ability to correct up to 4 symbol errors. 

 



 

 

 

Addressable Memory (CAM) storage requirements grow and can 

make tracking techniques challenging or impractical to implement 

[32][37][44]. Another concern is that future attacks may be 

developed that evade current algorithms.  

An alternative to algorithmic tracking is random sampling, 

which selects aggressor rows probabilistically. Random sampling 

can be effective at minimizing the probability of success for 

RowHammer attacks and can avoid risks associated with 

algorithmic tracking. These methods are also simpler to implement, 

but do not provide certainty that an aggressor row will be identified. 

Instead, random sampling methods mitigate RowHammer attacks 

by making it statistically unlikely that an attack will succeed. 

PARA [8] is a well-known example of a random sampling 

approach. 

DDR5 DRAMs support Directed Refresh Management 

(DRFM) and Bounded Refresh Configuration (BRC) [6], enabling 

controller-driven probabilistic sampling methods like PARA to be 

implemented (PARFM [38] uses DRFM to implement PARA). 

DRFM allows the controller to select a target row address (e.g., 

row R) by setting a dedicated bit in commands that precharge a row, 

and BRC sets the number of rows that are refreshed. The DRAM 

stores the target row address and refreshes its victim rows (rows 

R±1) when an RFM command is received. Like Refresh, RFM 

commands can affect all banks (RFMab), or the same bank number 

in each bank group (RFMsb). BRC combats victim-focused 

mitigation attacks by refreshing neighbors of victim rows (rows 

R±2), but at a lower frequency called the refresh ratio (or ratio) 

known only by the DRAM. After some number of activates to a 

bank (the Rolling Accumulated ACT Initial Management 

Threshold, RAAIMT), an RFM command is issued by the 

controller. The DRAM will always refresh one set of rows (e.g., 

rows R±1), and sometimes refresh a neighboring set of rows (e.g., 

R±2). The controller must allocate enough time to refresh all four 

rows, even though the DRAM may only refresh two rows. DRAM 

bandwidth is wasted, and subsequent transactions can incur 

additional latency, hurting system performance. Multiple BRC 

support levels are defined (our example describes BRC2), enabling 

different numbers of neighboring rows to always be refreshed 

based on RowHammer susceptibility. Although our discussion 

assumes hammering row R only affects immediately neighboring 

victim rows R±1, we note that this approach extends to larger 

numbers of victim rows.  

We propose Bounded Refresh Configuration with Victim Levels 

(BRC-VL), a BRC variation that is compatible with DDR5 DRFM, 

is simple to implement, and improves system performance by 

reducing RFM overhead. When coupled with RAMPART, SDDC, 

and probabilistic sampling, BRC-VL performs well at mitigating 

both traditional and victim-focused mitigation attacks. BRC-VL 

differs from BRC by having the controller instruct the DRAM to 

refresh either the victim rows (level 1 victims R±1) or the neighbors 

of the victim rows (level 2 victims R±2). The advantage of 

refreshing either the level 1 or level 2 victims is reduced RFM time 

and improved system performance, as only two rows are refreshed. 

Level 1 victims are selected with higher probability than level 2 

victims, mirroring the approach used in BRC. The tradeoff is a 

small increase in the probability of success of a single traditional 

RowHammer attack, because (i) level 1 victims are not refreshed 

with 100% probability, and (ii) if level 2 victims are selected and 

refreshed, the level 1 victims will be impacted twice (a situation we 

refer to as double hammering).  But as we show in Section 6, this 

small increase in the probability of success of a single attack is 

more than compensated for by the need for two successful attacks 

to irreparably damage data when BRC-VL is combined with 

RAMPART and SDDC. At the system level, the combination of 

RAMPART and shorter BRC-VL RFMs results in higher 

application performance and improved resistance to data corruption 

compared to DDR5 BRC. Like BRC, BRC-VL RFM commands 

can be directed at all banks or the same bank in each bank group. 

We describe BRC-VL with two victim levels, and note the 

approach can extend to more levels and can also refresh larger 

numbers of rows. More levels may be needed depending on system 

parameters and the susceptibility of the DRAM to RowHammer. 

BRC-VL selects the victim level (level 1 or level 2 victims) 

based on probabilities that work well against a range of attacks. 

Since RFMs are issued after RAAIMT activates to a bank, a high-

frequency attack that activates only one row (row R) will hammer 

it RAAIMT times before the controller selects it. If the RFM 

refreshes level 1 victims (rows R±1) once after every RAAIMT 

activates to the aggressor row, these refreshes will hammer the 

level 2 victims (rows R±2) but at a lower frequency, 1/RAAIMT, 

compared to the aggressor row. When an RFM is issued, we refresh 

level 1 victims with a probability of (RAAIMT-1)/RAAIMT, and 

the level 2 victims with a probability of 1/RAAIMT. 

A sample implementation of the BRC-VL selection logic was 

designed for a 32-bank system with 2 victim levels and consists of 

4 parts: (i) a random number generator, (ii) target row selection, 

(iii) Bank Activate Counters (BACs) in the controller that track the 

number of activates to each bank, and (iv) signaling the need for an 

RFM command. Many options exist for random number 

generation, and a full discussion is beyond the scope of this paper. 

Our design uses a 16-bit LFSR that generates a single random bit 

every clock cycle. The 16-bit random number is sampled at the 

beginning of each RAAIMT window (next RAAIMT activates to a 

bank) and is used to select the target row. The number of clock 

cycles per window can vary due to scheduling, making it difficult 

to predict the sampled number. The maximum supported RAAIMT 

value is 256, and up to 8 bits from the 16-bit random number are 

used to select the target row from the RAAIMT window. Up to 8 

of the remaining bits are used to select the victim level. Level 2 

victims are selected if the bits match a specific value, otherwise 

level 1 victims are chosen. When the target row is precharged, the 

DRAM saves the row address and victim level for use with the next 

RFM command. For large memory systems with hundreds of banks 

or more, area efficiency can be improved if multiple banks share a 

random number generator. Our design shares one random number 

generator across all 32 banks, with each bank receiving a unique 

arrangement of bits from the LFSR. A tracking block monitors the 

BACs and indicates when an RFM operation is needed.  

Our 32-bank design was synthesized in TSMC’s 7nm process. 

Based on raw synthesis results, and assuming 70% area utilization 

and conservative routing, our design reaches a speed of 2.85GHz 

in an area of 3910um2, or roughly 51K NAND2 gates. For a server 



 

 

 

 

with 1024 banks, the total area required is only 0.1251mm2. The 

small size illustrates a key advantage of probabilistic selection 

methods like PARFM that are coupled with BRC or BRC-VL. 

6 Evaluation and Analysis 

In this section, we analyze the effectiveness of RAMPART and 

BRC-VL when coupled with controller-driven probabilistic 

sampling. We compare the theoretical resistance and performance 

impact of PARFM with BRC (a DDR5 implementation of PARA) 

against PARFM with BRC-VL, RAMPART, and SDDC. When 

BRC-VL is combined with RAMPART and SDDC, systems 

benefit by (i) having stronger resistance to data corruption from 

RowHammer attacks due to needing two successful attacks to cause 

irreparable data damage, (ii) having more available memory 

bandwidth resulting from shorter RFM operations, and (iii) 

enabling better application performance due to higher memory 

bandwidths and reduced RFM latencies. We explore these benefits 

in the following sections.  For the rest of this paper, we assume that 

BRC-VL is combined with RAMPART and SDDC unless noted. 

6.1 Data Corruption Probability 

We first analyze BRC-VL’s data corruption probability in the 

same manner used to evaluate PARA [8], with an attack that 

activates an aggressor row exactly HC times per refresh interval. 

We assume an RAAIMT window with N activates, and at most one 

aggressor row activate per window (i.e., some windows may have 

none in them). In windows that have an aggressor row activate in 

them, the probability of randomly selecting the aggressor row is 

(1/N), and the probability of refreshing level 1 victims is (N-1)/N. 

The probability of refreshing the correct victim row in an RAAIMT 

window is then (N-1)/N2, and the number of victim row refreshes 

can be treated as a binomially-distributed random variable with 

parameters B(HC,(N-1)/N2).  Bit flips occur in the level 1 victim 

rows only if they are never refreshed in any of the RAAIMT 

windows during the refresh interval. The probability that this 

occurs is (1-(N-1)/N2)HC.  

The effective hammer count HCe in BRC-VL needs to be 

considered due to double hammering that can happen to rows R±1. 

If row R is activated and its level 2 victims (rows R±2) are 

refreshed, rows R±1 are impacted twice. The probability of this 

happening in any RAAIMT window is 1/N2. For the smallest 

RAAIMT window (N=16) in our study, this probability is 1/256. 

For our most susceptible DRAMs (HC=1000), on average about 4 

double hammers occur across 1000 RAAIMT windows, reducing 

HC from 1000 to an effective value of HCe=996. This minor 

decrease in hammer count is more than compensated for because 

RAMPART with SDDC requires two successful attacks to cause 

irreparable damage to data. For two attacks to be successful, the 

level 1 victims of each attack need to avoid being refreshed 996 

times on average, for a total of 1992 missed refreshes. Although it 

is possible in this example for 1000 consecutive double hammers 

to occur (the minimum number of aggressor activates to corrupt 

data when BRC-VL is coupled with RAMPART and SDDC), the 

probability of this happening is vanishingly small at (1/256)1000. 

Table 1 shows the probability of one successful attack in a 32ms 

refresh interval and over one year for two different HC values. The 

calculations use the corresponding HCe values shown. Also shown 

is the probability of data corruption due to two successful attacks 

in two consecutive refresh intervals (64ms), and over the course of 

a year. The smaller HCe values change the probabilities by less than 

one order of magnitude and show that double hammering impact is 

minimal for the smallest RAAIMT values we study. 

6.2 RowHammer Attack Models 

More aggressive attacks that hammer rows at a higher frequency 

than the one discussed in Section 6.1 improve the chances of 

flipping bits over time. We use the two RowHammer attack models 

shown in Figure 7 to evaluate the resistance of DDR5 BRC and 

BRC-VL: (i) a low-frequency attack that randomly mixes 1 

hammer and N-1 decoy activates per RAAIMT window, issuing 

them back-to-back to the same bank, and (ii) a high-frequency 

attack that issues back-to-back activates to the same row in the 

same bank. Low-frequency attacks are difficult to identify with 

algorithmic tracking [2]. High-frequency attacks are easier to track 

but can promote victim-focused mitigation attacks. The aggressor 

row activates in Figure 7 can be to the same address (a single-sided 

attack) or to multiple addresses affecting the same victim row (a 

multi-sided attack). The probability of selecting an aggressor row 

depends on how many aggressor activates occur in an RAAIMT 

window, not on the number of sides in the attack. Both attacks are 

 
(a) Low-frequency RowHammer attack 

 

 
(b) High-frequency RowHammer attack 

 
Figure 7: RowHammer Attack Models. (a) Low-frequency 

attacks hide aggressors in a sea of decoy activates. (b) High-

frequency attacks enable victim-focused mitigation attacks. 

 

 

Table 1: BRC-VL Attack Success Probability Analysis  

1 successful attack 

RAAIMT=16 HC=1000 (HCe=996) HC=3000 (HCe=2988) 

32ms 7.6×10-27 4.4×10-79 

1 year 7.5×10-19 4.4×10-71 
 

2 successful attacks (data corruption) 

RAAIMT=16 HC=1000 (HCe=996) HC=3000 (HCe=2988) 

64ms 5.8×10-53 2.0×10-157 

1 year 5.6×10-37 1.9×10-141 

 
 



 

 

 

useful for studying bounds on the susceptibility to attacks aimed at 

victim rows, independent of the number of sides attacked.  

We model BRC with a ratio of 1/RAAIMT to match the 

approach used by BRC-VL, which makes its resistance to both 

attacks similar mathematically. For the traditional attack, the 

probability of selecting aggressor row R in an RAAIMT window of 

size N is 1/N, and rows R±1 are always refreshed so the probability 

the attack is stopped is 1/N in any RAAIMT window. For a victim-

focused mitigation attack the probability of selecting aggressor row 

R is 1, and rows R±2 are refreshed with probability 1/N, so the 

probability an attack is stopped in an RAAIMT window is also 1/N.      

6.3 Data Corruption Probability vs. Time 

 Markov models were created to statistically analyze the 

resistance to data corruption over time of PARFM with BRC and 

PARFM with BRC-VL, RAMPART, and SDDC using these more 

aggressive attack models. The primary difference is that one 

successful RowHammer attack is needed to cause uncorrectable 

errors in BRC, while RAMPART and SDDC strengthen BRC-VL 

by requiring two successful RowHammer attacks to cause 

uncorrectable errors. We assume the controller is secure and its 

target row choices cannot be observed by an attacker. Our BRC-

VL model also assumes an oracle attacker that knows when a first 

attack has been successful and switches to a different aggressor row 

to attack the same controller row address in a different DRAM. It 

is unclear how to achieve this, as RAMPART and SDDC will 

ensure that reading data at the victim row address will correct any 

bit flips caused by the first attack (requiring the attack to start over), 

but we study this case as it provides a worst-case time bound on the 

susceptibility to two successful attacks. Because BRC-VL with 

RAMPART and SDDC requires two attacks to corrupt data 

compared to just one attack with BRC, to first order the probability 

of data corruption at any time with this combination is the square 

of the probability of data corruption with BRC. Our models 

evaluate the effectiveness of both methods over one year of 

continuous attacks to a single DRAM bank, using DDR5-5600 

timing parameters shown in Table 2. HC values of 1000 to 3000 

are used, reflecting near-future possibilities [9][32]. Our BRC-VL 

models use four victim levels, as victim-focused RFMs for our 

lowest RAAIMT values can recursively induce attacks on other 

victims multiple rows away. These attacks can weaken 

RowHammer defenses if 𝐴𝑃𝑅 ≥ 𝑅𝐴𝐴𝐼𝑀𝑇(𝑉𝐿+1) , where 𝐴𝑃𝑅  is 

the number of activates per refresh period, and 𝑉𝐿 is the maximum 

victim level. When considering the number of victim levels to 

support, systems should choose 𝑉𝐿 ≥ log𝑅𝐴𝐴𝐼𝑀𝑇(𝐴𝑃𝑅) − 1. 

Figure 8 illustrates the susceptibility of a DDR5-5600 DRAM 

bank to a traditional low-frequency RowHammer attack (shown in 

Figure 7a) when using PARFM and BRC. The graphs show the 

probability of a continuous attack successfully evading PARFM’s 

random selection enough times to cause bit flips – HC times in a 

row across RAAIMT consecutive windows. The graphs plot the 

probability of at least one attack being successful over a year of 

continuous attacks as RAAIMT and HC vary. Susceptibility falls 

as HC increases and as RAAIMT is reduced. The former indicates 

the DRAM has a stronger inherent resistance to RowHammer, 

while the latter enables PARFM to issue more frequent RFM 

operations designed to thwart these attacks. The vulnerability of a 

bank can be adjusted across many orders of magnitude by changing 

RAAIMT, but the graphs also show that for a given range of 

Table 2: DDR5-5600 Model Parameters 

Param Value Description 

tRC 46.4ns Row cycle time 

tREF 32ms Refresh period 

tREFIsb 487.5ns Same bank refresh interval 

tRFCsb 130ns Same bank refresh cycle time 

tDRFMsb 240ns (BRC) 

130ns (BRC-VL) 

Same bank DRFM duration 

HC 1000-3000 Hammer Count 

RAAIMT 16-100 RAAIMT window size 

 
 

 

         

 
 

Figure 9: For the most vulnerable DRAMs studied, 

infrequent RFMs relative to HC lead to near-certain data 

corruption under traditional attacks. RAMPART and 

SDDC strengthen resistance to data corruption, but for 

HC=1000 and RAAIMT=100, irreparable data damage can 

still occur in minutes. 

 

 

           

 

 
Figure 8: Resistance of a DDR5-5600 DRAM bank to a 

traditional low-frequency RowHammer attack when using 

PARFM with BRC. Systems with higher HC values and 

lower RAAIMT values are more resistant to RowHammer 

attacks.  Resistance can be adjusted across many orders of 

magnitude by changing RAAIMT, but the range over 

which vulnerability can be adjusted narrows as HC falls.  



 

 

 

 

RAAIMT values, the range over which vulnerability can be 

adjusted narrows as HC falls. 

Figure 9 shows that for the most vulnerable DRAMs simulated 

(HC=1000, 1500), issuing RFMs infrequently (RAAIMT=100) 

leads to near-certain data corruption with traditional attacks in just 

minutes when using BRC. The same is true for victim-focused 

mitigation attacks, which are not shown. And even though 

RAMPART with SDDC improves the resistance of BRC-VL, data 

corruption is still likely to occur in less than an hour. For the most 

vulnerable DRAMs, patrol scrub does not run often enough in 

modern servers to allow RAMPART with SDDC to repair damage 

from the first attack before a second attack is likely to succeed. 

Figure 10 illustrates the impact of running patrol scrub together 

with RAMPART, SDDC, and BRC-VL. When used with 

RAMPART and SDDC, patrol scrub can reverse the effects of a 

single successful RowHammer attack, increasing memory system 

resistance. Once patrol scrub begins, the probability of data 

corruption (due to two successful attacks) follows a shallower 

curve, improving resistance by several orders of magnitude over a 

year of continuous attacks compared to not using patrol scrub. 

More frequent patrol scrubs provide higher resistance to attacks, 

but consume more memory bandwidth, reflecting the tradeoff 

between system resistance and performance impact. 

Issuing RFMs more frequently dramatically improves 

resistance to both types of attacks, as shown in Figure 11a and 

Figure 11b. Both figures compare the effectiveness of three 

mitigation methods: (i) PARFM with BRC, (ii) PARFM with BRC-

VL, and (iii) PARFM with RAMPART, SDDC, BRC-VL, and 

patrol scrub run once per day. PARFM with BRC-VL refreshes 

slightly fewer rows on average compared to PARFM with BRC, 

trading off a small increase in data corruption probability against 

lower mitigation overhead. The difference in susceptibility for 

these two methods is within an order of magnitude over the 

simulated duration of attacks. These figures also show that 

RAMPART with SDDC more than compensates for BRC-VL’s 

small increase in RowHammer susceptibility by requiring two 
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Figure 11: Probability of data corruption over time in one DDR5-5600 DRAM bank under continuous attack. The “BRC” graphs 

depict PARFM (a DDR5 implementation of PARA) using DDR5 BRC, while the “BRC-VL” graphs depict PARFM coupled with 

BRC-VL. The “RAMPART+SDDC+BRC-VL+Scrub” graphs depict PARFM coupled with RAMPART, SDDC, BRC-VL, and 

patrol scrub run once per day. RAMPART with SDDC, BRC-VL, and patrol scrub provides stronger resistance to data 

corruption than BRC and BRC-VL under (a) traditional attacks and (b) victim-focused mitigation attacks as two successful 

attacks are needed to irreparably damage data.  The probabilities for BRC are mathematically similar in both attacks. For the 

most vulnerable DRAMs analyzed (HC=1000), the probability of data corruption using RAMPART with SDDC and BRC-VL is 

below 1.45×10-17 for both attacks after one day with RAAIMT=24, an improvement of nearly 8 orders of magnitude over BRC. 

Across the configurations shown, RAMPART with SDDC, BRC-VL, and patrol scrub achieves between 4 and 17 orders of 

magnitude lower probability of data corruption after one year of continuous attacks compared to DDR5 BRC. Resistance can be 

further improved in all cases by reducing RAAIMT, but this also increases RFM overhead and can impact system performance. 

            

    
 

Figure 10: Impact of combining RAMPART, SDDC and 

BRC-VL with patrol scrub run every hour, every 6 hours, 

and every day. Patrol scrub reverses the damage from a 

single RowHammer attack when used with RAMPART 

and SDDC, increasing resistance to attacks. Running 

patrol scrub more often improves resistance, but consumes 

more memory bandwidth. 



 

 

 

successful attacks to corrupt data before errors from the first attack 

are corrected. This essentially squares the probability of data 

corruption compared to using BRC-VL alone. The use of patrol 

scrub further improves resistance to attacks compared to BRC. 

  Table 3 summarizes the resistance of BRC and BRC-VL with 

RAMPART, SDDC, and patrol scrub after one day and one year 

when HC=1000 and RAAIMT=24. The probability of data 

corruption for BRC-VL with RAMPART and SDDC is roughly the 

square of the probability when using DDR5 BRC before patrol 

scrub begins, again due to requiring two successful attacks. After 

patrol scrub starts, there are further gains in resistance compared to 

BRC. For the range of parameters and attacks in Figure 11, BRC-

VL with RAMPART, SDDC, and patrol scrub provides between 4 

and 17 orders of magnitude lower probability of data corruption 

after one year of continuous attacks. Periodic patrol scrubs coupled 

with RAMPART and SDDC provide additional protection as they 

can correct errors caused by the first attack, requiring the attacker 

to start over from the beginning. With DDR5-5600 DRAMs, 16 

banks per channel can be simultaneously attacked at the rates 

shown in Figure 7. In addition, modern servers can have 16 or more 

memory channels, each of which can be attacked in parallel. These 

attacks are independent, and the probability of corrupted data in at 

least one bank across a 32-channel memory system, where 16 banks 

are attacked simultaneously per channel, is shown in Table 3.  

We further analyzed BRC and BRC-VL coupled with 

RAMPART, SDDC, and patrol scrub by creating analytical models 

that are upper-bounds on our Markov models. For any attack, if the 

probability of refreshing the victim rows after an RAAIMT window 

is 𝑝 , the probability of an attack succeeding after 𝑠  windows is 

𝑠𝑝(1 − 𝑝)𝐻𝐶 < 𝑠𝑝𝑒−𝑝𝐻𝐶 for a hammer count of 𝐻𝐶. With BRC-

VL, the upper bound formula is modified to account for double-

hammering in traditional attacks, and the probability of an attack 

succeeding is bounded by 𝑠𝑝𝑒
−(

𝑁−1

𝑁2+1
)𝐻𝐶

.  If the system is subject to 

𝑘 simultaneous attacks, both formulas are multiplied by 𝑘, up to a 

maximum of 𝑠𝑒
−(

𝑁−1

𝑁2+1
)𝐻𝐶

 due to bandwidth limitations.  If multiple 

simultaneous attacks are nearly independent, the probability of two 

attacks succeeding is no more than approximately (𝑠𝑒
−(

𝑁−1

𝑁2+1
)𝐻𝐶

)
2

 

per channel. Table 4 shows the resulting probabilities, which are 

upper bounds on the Table 3 values. 

Multiple simultaneous attacks against a bank were also 

considered. We analyzed the resistance of PARFM with BRC 

against PARFM with RAMPART, SDDC, BRC-VL, and patrol 

scrub run once per day under one attack, and under 10 simultaneous 

attacks. For our RAMPART simulations, we assume the single 

attack scenario uses an oracle attacker, and the 10 simultaneous 

attack scenario uses 10 non-oracle attackers that target the same 

victim row address, but in different DRAMs. Each DRAM is the 

subject of one attack that hammers a different row address, but that 

has the same victim row address across all DRAMs.  The goal of 

this attack is to have at least 2 attacks succeed, causing irreparable 

damage to data that SDDC cannot repair.  

We assume the success of separate attacks is independent, but 

our analysis suggests a slight anticorrelation that further helps 

RAMPART. The results of this analysis are shown in Table 5. Ten 

simultaneous attacks against a bank increase the probability of data 

corruption for both BRC and RAMPART coupled with SDDC, 

BRC-VL, and patrol scrub. But this is not enough to overcome the 

requirement of two successful attacks to cause irreparable data 

damage when using RAMPART and SDDC. 

6.4  Memory Subsystem Performance Impact 

We created a DRAMSys4 [49]-[51] memory subsystem model 

to study how BRC and BRC-VL impact memory bandwidth as 

RAAIMT varies. Activates are tracked with Bank Activate 

Counters (BACs, see Section 5), and one same bank RFM (RFMsb) 

is issued after a BAC value reaches a value of RAAIMT for any 

bank in the bank group. BAC values are decremented by RAAIMT 

(to a minimum of 0) for banks affected by the RFMsb operation, 

and refreshes do not decrement the BACs. The target row and BRC-

VL victim level are communicated in commands that precharge 

rows, as is done in DDR5 DRFM.  

We model a single-channel DDR5-5600 memory system with 2 

ranks and 32 banks/rank, using the timing parameters in Table 2. 

The controller implements a closed adaptive page policy and a 32-

deep scheduling buffer. Two workloads were run: (i) a 64-byte 

aligned random address stream (rand), and (ii) a simulated 

RowHammer attack (hamR) with 20% of the transactions targeting 

Table 3: Markov Model Data Corruption Probability 

 

HC=1000 

RAAIMT=24 

 

BRC 

RAMPART+SDDC+ 

BRC-VL+Scrub 

1 Day 1 Year 1 Day 1 Year 

 Single Bank Attack, DDR5-5600 

  Traditional 7.8×10-10 2.9×10-7 1.4×10-17 5.3×10-15 

  Victim Focused 7.8×10-10 2.9×10-7 3.8×10-19 1.4×10-16 

 System Attack (16 banks attacked per channel, 32 channels) 

  Traditional 4.0×10-7 1.5×10-4 7.4×10-15 2.7×10-12 

  Victim Focused 4.0×10-7 1.5×10-4 2.0×10-16 7.2×10-14 

 
 

Table 5: Simultaneous Attack Data Corruption Probability 

 

HC=1000 

RAAIMT=24 

 

BRC 

RAMPART+SDDC+ 

BRC-VL+Scrub 

1 Day 1 Year 1 Day 1 Year 

 Single Bank Attack, DDR5-5600 

  Traditional 7.8×10-10 2.9×10-7 1.4×10-17 5.3×10-15 

  Victim Focused 7.8×10-10 2.9×10-7 3.8×10-19 1.4×10-16 

 10 Simultaneous Attacks Against 1 Bank 

  Traditional 7.8×10-9 2.9×10-6 1.3×10-15 4.7×10-13 

  Victim Focused 7.8×10-9 2.9×10-6 3.4×10-17 1.3×10-14 

 

Table 4: Analytical Bound on Data Corruption Probability 

 

HC=1000 

RAAIMT=24 

 

BRC 

RAMPART+SDDC+ 

BRC-VL+Scrub 

1 Day 1 Year 1 Day 1 Year 

 Single Bank Attack, DDR5-5600 

  Traditional 2.1×10-9 7.5×10-7 1.5×10-16 5.4×10-14 

  Victim Focused 2.1×10-9 7.5×10-7 1.7×10-16 6.3×10-14 

 System Attack (16 banks attacked per channel, 32 channels) 

  Traditional 1.1×10-6 3.9×10-4 7.6×10-14 2.8×10-11 

  Victim Focused 1.1×10-6 3.9×10-4 8.8×10-14 3.2×10-11 

 



 

 

 

 

one victim row, and the rest randomly distributed. Both use a 2:1 

read-write ratio and deliver transactions at a rate that keeps the 

scheduling buffer full.  

Figure 12 shows the bandwidth efficiency for BRC and BRC-

VL as a function of RAAIMT for both workloads, comparing them 

to baselines with RFMs disabled. The hamR workloads have lower 

efficiency due to the concentration of accesses to one bank, which 

leads to higher bank contention. For RAAIMT>60, relatively 

infrequent RFM operations reduce bandwidth efficiency by less 

than 2% compared to the baseline for both BRC and BRC-VL, with 

BRC-VL having up to 1.2% better efficiency (hamR, 

RAAIMT=100). For RAAIMT≤60, BRC-VL’s shorter RFM 

operations result in larger performance advantages. At 

RAAIMT=16, the difference in bandwidth efficiency between 

BRC-VL and BRC is 5.0% for rand, and 2.5% for hamR. As 

hammer counts fall, RAAIMT values will need to fall as well, and 

the results in Figure 12 illustrate that the shorter BRC-VL RFMs 

can improve available memory system bandwidth.  

6.5 System-Level Performance Impact 

We created a system-level model in gem5 [52][53] to analyze 

the performance impact of BRC and BRC-VL on various 

application workloads. We modified gem5 to support same bank 

refreshes and RFMs to match our DRAMSys4 model. The 

controller suspends activates to a bank when BAC values reach a 

limit of 2×RAAIMT. Our gem5 and DRAMSys4 models were 

correlated using the same configurations and workloads described 

in Section 6.4. Our models correlate well, with bandwidth 

efficiencies being within 4.7% and 1.5% on rand and hamR, 

respectively. The largest differences occurred at RAAIMT=16, 

when more RFMs were issued. 

Our gem5 model uses the DRAM timings in Table 2, and the 

system parameters shown in Table 6. We simulate a single-core x86 

CPU with a two-channel 64GiB DDR5-5600 memory system 

running Ubuntu 18.04.2 (kernel v4.9.186), with per-core cache 

sizes on par with current SoCs [59]. The SPEC2017 [54] and GAP 

[55] benchmarks were run, with statistics captured for the first 100 

seconds of the region of interest, or for the full region of interest if 

runtime is shorter. Our GAP runs use a synthetic graph with degree 

15 comprised of 4.2M nodes and 64M undirected edges.  

Figure 13a shows the CPI impact of BRC and BRC-VL for 

several RAAIMT values normalized to a baseline with RFMs 

deactivated. A cross section of SPEC workloads with a range of 

working set sizes and DRAM bandwidths based on prior 

characterization [58] are shown. Many benchmarks in SPEC have 

low memory activity at these cache sizes, resulting in a geometric 

mean across the full SPEC suite of <1% CPI impact for BRC-VL 

and <1.5% for BRC in the worst case when RAAIMT=16. Results 

for BRC show a maximum CPI increase of 6.8% in GAP bfs and 

5% in SPEC lbm_s with RAAIMT=16. Results for BRC-VL show 

a lower CPI impact of 2.9% in bfs (a relative difference of 3.9% 

compared to BRC) and 2.7% in lbm_s at the same RAAIMT value. 

BRC-VL’s shorter RFMs reduce mitigation impact, especially at 

the lowest RAAIMT settings and in more memory intensive 

workloads. The overhead of RFMs is harder to hide in these cases, 

which occur up to 15K times (lbm_s) per 32ms refresh period. The 
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Figure 13: (a) Impact of BRC and BRC-VL on CPI, normalized to the case with RFMs disabled. (b) Bandwidth impact of 

RowHammer mitigation on two of the most sensitive applications in our study. (c) Improved CPI benefit of BRC-VL when 

systems target a fixed error rate of less than 1.0×10-12 after one day of continuous attacks against a DRAM bank. 

    

 

Figure 12: BRC and BRC-VL bandwidth efficiency for 

high-bandwidth random (rand) and simulated attack 

(hamR) workloads over a range of RAAIMT values. The 

bandwidth efficiency with RFMs disabled is also shown. 

Table 6: System Simulation Parameters 

Parameter Value 

CPU  1 x86 core running at 3GHz 

L1/L2 Cache Sizes 32KiB/2MiB 

DRAM Channels Two 40-bit DDR5-5600 channels 

DIMM Configuration 2 ranks/channel, 32 banks/rank 

Page Policy Closed Adaptive 

 

 
 



 

 

 

performance gap between BRC-VL and BRC decreases with larger 

RAAIMT values and has negligible impact when RAAIMT=100.    
Figure 13b illustrates how the change in bandwidth efficiency 

and total bandwidth vary with RAAIMT for the two benchmarks 

with the highest CPI impact from RFM operations. Results are 

normalized to the case where RFMs are disabled. The graphs show 

similar trends as the high bandwidth workloads of Figure 12, but 

bandwidth efficiency impact is lower as these programs are less 

memory intensive. For BRC, efficiency drops by up to 0.39% and 

0.27% on lbm_s and bfs, respectively. The percentage of DRAM 

bandwidth achieved decreases more significantly however, with 

BRC seeing reductions of up to 6.7% and 5% for bfs and lbm_s. 

CPI increases are directly related to this reduction in bandwidth.   

BRC-VL also benefits systems targeting a particular resistance 

to RowHammer data corruption. If a system with HC=1000 targets 

a probability of data corruption in a bank of under 1.0×10-14 after 

one year when subject to a traditional low-frequency attack, BRC 

can achieve this with RAAIMT=16 (probability of 1.7×10-16). 

BRC-VL can meet this target with RAAIMT=24 (probability of 

5.3×10-15). Figure 13c shows the relative CPI difference of BRC-

VL (RAAIMT=24) and BRC (RAAIMT=16) for the most sensitive 

applications in Figure 13a. The results show that BRC-VL reduces 

CPI impact by 4.8% on bfs, and by 3.4% on lbm_s.  

7 Related Work 

Breaking the spatial relationship between aggressor rows and 

victim rows has been proposed in several controller-based and 

DRAM-based mitigation and prevention studies. Controller-based 

approaches track frequently accessed rows and remap them to 

break the spatial relationship between aggressors and victims 

[32][45], using area for the tracking structures. Random sampling 

can eliminate tracking structure storage, but without per-DRAM 

remapping a successful attack can flip bits in a victim row address 

in multiple DRAMs, overwhelming ECC correction capabilities. 

RAMPART and SDDC can be used with DDR5 RFM-compatible 

probabilistic sampling to save area and correct bit flips from a 

single successful attack. RAMPART can also be used as an added 

protection layer with other tracking methods. 

DRAM-based mitigation methods provide an alternative to 

controller-based methods. The remapping method in [42] analyzes 

a set of DRAMs to identify bit cells susceptible to RowHammer, 

then applies statistical analysis to remap rows differently in each 

DRAM to minimize (but not prevent) uncorrectable errors due to a 

successful attack. Each DRAM in a rank has a unique design with 

different decoder contacts, making this a more expensive solution. 

DRAMs may also need periodic re-examination to address changes 

in bit cell reliability due to process drift. SHADOW [44] 

dynamically remaps rows in the DRAM during RFM ops, using one 

spare row per subarray. The latency of accesses that require 

activates increases as remapping information is retrieved before the 

activate is issued. Panopticon [37] adds per row activation counters 

by modifying two MATs per subarray. Its TRR-based mitigation is 

less efficient than remapping schemes in DRAMs with a larger 

blast radius [44]. RAMPART differs from these DRAM-based 

methods by enabling bit flips from a single attack to be repaired 

when coupled with SDDC, using programmable mappings in a 

single DRAM design with no mat changes, having no latency 

impact for remapping, and accommodating repaired rows. 

A DIMM-based remapping technique is described in [43] that 

remaps addresses with logic in the RCD and 6 extra CA pins. 

Different DRAMs in a rank connect to a subset of these additional 

pins to create address permutations. One concern is that internal 

DRAM mappings are not public and can conflict with DIMM-

based mappings, negating the protection for certain rows and for 

repaired rows. RCDs also have multiple CA bus interfaces [56], 

with each requiring additional pins and routing space that can 

increase cost. RAMPART does not require changes to the RCD or 

DIMM and can accommodate repaired rows.  

8 Conclusion 

RowHammer continues to be a challenging problem, one that 

process technology and circuit improvements alone are unlikely to 

solve in the future. In this paper, we introduce RAMPART, a novel 

DRAM row address remapping method that confines bit flips from 

a successful RowHammer attack to a single DRAM for each victim 

row address. When RAMPART is coupled with SDDC ECC, a 

method commonly used today, a single successful attack can flip 

every bit in the victim rows and the system can correct them and 

continue running. A second successful attack is required to 

irreparably damage data before errors from the first attack are 

detected and corrected, either through normal memory accesses or 

with patrol scrub. We also introduce BRC-VL, a variation of DDR5 

BRC with reduced overhead that enables higher system 

performance and that can be used together with RAMPART.  

The combination of RAMPART, SDDC, and BRC-VL provides 

stronger resistance to data corruption from RowHammer attacks 

and enables higher system performance compared to DDR5’s BRC 

mitigation. We compare DDR5-5600 memory systems using 

RAMPART coupled with SDDC, BRC-VL, and patrol scrub 

against similar memory systems using DDR5 BRC. We study their 

impact on memory channel efficiency as well as application 

performance. For the RowHammer attacks and range of parameters 

discussed, our models show the combination of RAMPART, 

SDDC, BRC-VL, and patrol scrub run once per day can reduce the 

probability of data corruption by 4 to 17 orders of magnitude after 

one year of continuous attacks. Across the benchmarks and 

parameters studied, BRC-VL’s lower overhead results in a smaller 

CPI increase versus DDR5 BRC when both are compared to a 

system with RFMs disabled. Our study shows that the difference in 

relative CPI impact can reach 3.9% at the same RAAIMT value and 

can be higher when targeting equal resistance to data corruption. 
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