
Memory Workload Synthesis Using Generative AI
Chengao SHI

Hong Kong University of Science and
Technology

Hong Kong, China

Fan JIANG
Hong Kong University of Science and

Technology
Hong Kong, China

Zhenguo LIU
Hong Kong University of Science and

Technology (GZ)
Guangzhou, Guangdong, China

Chen DING
University of Rochester

Rochester, New York, USA

Jiang XU
Hong Kong University of Science and

Technology (GZ)
Guangzhou, Guangdong, China

ABSTRACT
Generative AI, a novel general-purpose technology, has the ca-
pability to produce outputs closely resembling its training inputs.
This paper presents the first use of such learning in memory work-
load synthesis. By devising three learning techniques and compar-
ing them with two existing techniques, the paper shows that by
carefully choosing the training input and processing the generated
output, AI-based synthesis can produce generated workloads that
have similar or better accuracy than the best of existing methods.

KEYWORDS
Computer systems organization→Memory system; Neural
networks; Statistical simulation

1 INTRODUCTION
The recent release of ChatGPT and GPT-4 by OpenAI [19] has
gained immense popularity since November 2022, amassing over
100 million users by January 2023, demonstrating the remarkable
capabilities of GPT (Generative Pre-trained Transformer).The trans-
former architecture was introduced in 2017 [21].This architecture
breaks away from previous neural networks in significant ways. In-
stead of convolution, it is based on a technique called multi-headed
attention, which allows parallel encoding. Unlike the dense activa-
tion in convolution, the attention activation is sparse. Both parallel
encoding and sparse activation provide greater speed, better scal-
ability, and faster learning ability than convolutional or recurrent
neural networks.

More importantly and surprisingly, it is capable of general-purpose
learning and has been used for a myriad of purposes, including
summarizing and graphing experimental results and writing a pa-
per.

In this work, we study the use of generative AI inmemory work-
load synthesis. Cycle-level simulators, such as Gem5 [5], are in-
valuable tools in computer architecture research. However, they
suffer from prohibitively high computational costs for large-scale
applications. A promising approach to reduce the simulation time
is workload synthesis. By constructing shortened workloads, or
microbenchmarks through statistical profiles, it captures key pro-
gram behaviours including memory access patterns and data de-
pendence of the profiled applications[1, 2, 12].

The nature of learning by generative AI is not well defined. One
may say that it generates output similar to the input, but with-
out a precise definition what exactly this similarity means. For

workload synthesis, there are at least two types of similarity that
are important. First, the latency of a memory access depends on
nearby instructions. Second, the cache behaviour depends on data
reuses that may span many instructions. The essence of this re-
search hinges on two pivotal questions: (i) Can Transformer mod-
els effectively capture and reproduce the similar memory behav-
iors exhibited by program traces? (ii) How do these models com-
pare against traditional methods in terms of synthesis quality and
computational overhead?

The answers to these questions will help to understand how
workload synthesis can benefit from generative AI to construct its
representative microbenchmarks. In tandem with fast yet accurate
simulators, we believe transformer-enabled synthesis promises to
accelerate computer architecture research in the future.

2 BACKGROUND
2.1 Synthesis of Memory Workloads
Memory workload synthesis is a computational process that aims
to generate synthetic traces that reproduces thememory behaviour
of original workloads. Typically, statistical profiles are collected
from the binary-instrumented workloads, without storing original
traces, ensuring client confidentiality. These profiles later direct
the workload generator, producing either synthetic memory traces
or executables, to ensure a holistic capturing of memory behaviour.
Various statistical models have been proposed [1, 3, 18], aiming at
capturing the memory behaviour more accurately.

The pursuit of accurately capturing memory behaviour using lo-
cality features has led to the proposal of sophisticated methodolo-
gies and frameworks. WEST [3] builds its model around temporal
locality by harnessing the LRU stack distance, or reuse distance[11]
distribution on the cache hierarchy. Yet, the focus on temporal
locality underscores its ability to model microarchitectural struc-
tures, such as prefetchers, that harness spatial locality. On the other
hand, STM [1] emerges as a more promising solution. While it uti-
lizes a similar framework to West, a pivotal distinction is intro-
duced. STM’s broadened approach integrates both temporal and
spatial locality, facilitating a more in-depth understanding of mem-
ory behaviour and versatile explorations across memory hierar-
chies. Later, HRD [18] is proposed as an effective and efficient
generalization of reuse distance to capture the spatial locality mea-
sured at multiple data-block granularities in addition to the tempo-
ral locality model of traditional reuse distance.

1



Chengao SHI, Fan JIANG, Zhenguo LIU, Chen DING, and Jiang XU

2.2 Transformer in Tabular Data Synthesis
Synthetic data, especially for image, video, and speech generation,
is witnessing a surge in applications. Given the prevalence of tab-
ular data in industries, there’s a growing demand for tabular data
synthesis to address challenges related to privacy and proprietary
assets[6]. For instance, over 67% of datasets on the Google Dataset
Search platform are categorized as structured or tabular data, often
in formats such as CSV, XML, and JSON[4].

However, given the cost-intensive nature of gathering data and
preprocessing, tabular datasets frequently exhibit several charac-
teristics that hamper the utility of contemporary machine learning
techniques as follows: 1.imbalanced label distribution, especially
long-tailed patterns,making generalizations even harder[9];2.sensitive
personal details, making data sharing untenable due to privacy
and socio-ethical considerations[13]; 3.noisy data or missing val-
ues, which is usual in real-life scenarios, several data imputation
methods have been proposed[16].

Traditionally, tabular data synthesis relies on techniques like
Variational Autoencoders(VAE)[15] and Generative Adversarial Net-
works(GAN)[14]. These approaches often necessitate careful data
preprocessing, such as encoding categorical columns or transform-
ing numerical ones, impacting the generativemodel’s performance.
Conversely, transformer-basedmodels likeGReaT [7] utilize transformer-
decoder networks and leverage auto-regressive generative large
language models (LLMs) for the creation of highly authentic syn-
thetic data. This approach offers more probabilistic control over
sampling, eliminates the preprocessing bottleneck, and displays
state-of-the-art performance over existingmethods in various sizes.

3 TRANSFORMER BASEDWORKLOAD
SYNTHESIS

3.1 Why Using Tabular Transformer
From the perspective of the data itself, the memory behavior of a
program is sequentially correlated, with data dependence between
preceding and succeeding elements.The behavior of individualmem-
ory accesses is also defined by attributes such as read/write oper-
ations and addresses. Therefore, we need to include the bindings
between different attributes of individual memory accesses in the
input to allow the Transformer model to learn.

Unlike other forms of data such as time series or images, tabular
data encapsulate a multitude of information in a structured man-
ner, often representing multifaceted relationships. Each column in
a table may represent distinct features or related attributes, and
each row often represents a unique instance or record. As such,
the synthesis of tabular data becomes critically essential, yet it’s
this very structure and complexity that makes the task particularly
challenging.

A tabular generative model open-sourced by World Bank re-
searchers is Realistic Relational and Tabular Transformer (REaLTab-
Former) [20]. It focuses on generating single parent relational data
and employs a GPT-2 encoder with a causal language model (LM)
head to independently model the parent table. Once trained, this
encoder remains static and serves to conditionally model the child
tables. Notably, each child table necessitates a distinct conditional
model, which is manifested as a sequence-to-sequence (Seq2Seq)

transformer. A GPT-2 decoder equipped with a causal LM head is
adeptly trained to produce observations from the child table, en-
suring flexibility for variable lengths.

3.2 Trace-Driven Fine-Tuning
In transformer-based synthesis, the training process involves feed-
ing a program trace to REaLTabFormer [20]. We call the process
the training period and the cost the training time. Subsequent to
the training, a new trace of the prescribed length is generated. We
denote the process as the generation period and the cost the gener-
ation time. The cost of synthesis is the total cost of these two steps.

Central to our method is the concept of a program trace, which
records a sequence of memory accesses. In this work, we use Intel-
Pin[17] to profile the memory traces, where each access is a row
containing the following five fields: running instruction count (IC),
read or write (Op), physical address (Addr), data item size (Size),
program counter (PC). We also calculate an extra row of reuse
distance (RD) as a locality metric, based on the address of data
items and a given cache-line size. As an example, Table 1 shows a
trace with nine load and store instructions. It is a memory work-
load, where non-memory instructions, i.e. the missing instruction
counts, are removed.

Table 1: An Example of Program Trace

Instruction Count 1 2 3 5 6 10 13 20 21
Read/Write 0 0 0 0 0 1 1 0 1

Physical Address 3672 2138 3712 3672 3888 168 3888 3712 3712
Data Size 8 1 8 8 8 8 8 4 4

Program Counter 1726 53 58 63 1734 3120 3122 3124 3126
Reuse Distance ∞ ∞ ∞ 3 ∞ ∞ 2 4 1

Given a program trace, we use three methods to synthesize a
shorter trace. In thesemethods, a program trace is modified to have
different information as discussed below. The generated output by
the tabular transformer has the same format as the input trace it
takes. We then convert the output trace to have the five fields as
in the program trace.

In the basic method, the instruction count (IC) field is removed
from the training input, which has only the remaining four fields.
Removing the IC field reduces the training time by about 20% but
has no significant effect on the generation time. Without IC, the
column index is used by the transformer. The actual IC includes
only memory-access instructions and is not continuous. In the gen-
erated trace, the column index is used as IC.

In the second method, a field is added to contain the reuse dis-
tance (RD) of data access. The reuse distance is for cache-line gran-
ularity and is measured by the number of cache lines. We still re-
move the IC field. The input has five fields for each row. During
trace generation, we use the generated RD as follows. If RD is larger
than 64, we use the generated physical address. If RD is less than or
equal to 64, we generate the physical address that has this RD. The
IC field is added by using the column index, as we do in the first
method.

In the third method, we include the IC field but do not use any
new field such as RD in the second method.The generated trace has
the same format as the program trace.

2



Memory Workload Synthesis Using Generative AI

4 EVALUATION
4.1 Experimental Setup
We use 12 different workloads in SPEC2017[8].1 In order to capture
the important phases of each workload, we fast-forward about 10
billion instructions before trace-collections and stop trace-collections
once 10 million instructions of memory requests are recorded. All
the traces are collected using a Pin based tool.

We use the three methods described in Section 3.2 to produce
the synthesized trace using generative AI. In addition, we use two
previous techniques, hierarchical reuse distance (HRD) and STM,
as introduced in Section 2. In all five methods, we generate a trace
of one million memory requests for each application, which is one-
tenth of the profiled trace.

We set up the Gem5[5] simulator as a platform for validation.
Given a trace of memory requests, we measure both the time and
data movement. The timing is measured by the access latency for
each request, and the data movement by the miss ratio at L1 and
L2 caches. The L2 cache size is 256KB. For L1, we simulate eight
configurations from 128 bytes, doubling at each step, to 16KB. We
measure how accurate a synthesized trace is compared to the orig-
inal trace in the timing and the miss ratios reported by Gem5.

4.2 Synthesis Costs
For the three REaLTabFormer based methods, we used
NVIDIA A100[10] Tensor Core GPUs, founded on the Ampere Ar-
chitecture, with 40GB high-bandwidth memory
(HBM2) whose memory bandwidth surpasses 2TB/s. The
GPUs are rented from Google Colab. A100 has 19.5 TFLOPS F32
and 156 TFLOPS Tensor Float 32. Each run of REaLTabFormer was
on a single A100 GPU.

ForHRD and STM,we employed an Intel 12th Generation (Alder
Lake) multicore processor 12900, featuring 16 Cores (24 Threads)
with base and turbo frequencies of 2.4 GHz and 5.1 GHz, respec-
tively. The system incorporated a 30MB Cache and Dual-Channel
DDR4-3600 MHz Memory. Both HRD and STM were executed in
a single-threaded mode.

Table 2 compares the time taken by the five methods. The three
AI based methods use over two hours, while HRD takes less than
a minute, and STM slightly over 4 minutes. The table shows the
breakdown of the cost.Themost timing consuming step is training
in AI based methods. Although Tab-RD requires post processing in
the generation step, it still takes less time than IC.

4.3 SynthesisQuality
The quality is measured by the similarity between the results of
the original and the synthesized workload. We evaluate two mea-
sures: the timing shown by the read latency and the data move-
ment shown by the miss ratio at the two cache levels.

1The selected programs from SPEC2017 are 600.perlbench_s, 602.gcc_s,
603.bwaves_s, 605.mcf_s, 607.cactuBSSN_s, 619.lbm_s, 620.omnetpp_s,
623.xalancbmk_s, 631.deepsjeng_s, 638.imagick_s, 641.leela_s,
644.nab_s, all with the reference input.

4.3.1 Read Latency. We first evaluate the timing accuracy. Table 3
shows the mean memory read latency in 𝜇𝑠2. For each configura-
tion (L1 size) and each method, the table shows the geomean of
the average read latency of the 12 workloads. The second column
named Reference shows the ground truth, which is the read latency
for the trace before synthesis.The remaining columns compare the
latency result from five synthesis techniques: three based on AI
and two previous analytical methods. In addition to the mean la-
tency, each table cell shows the range, which is the geomean of the
highest and the lowest latency values of 12 workloads.

The second column shows that for these workloads, the read
latency starts high, drops precipitously around 2KB, and then be-
comes negligible. It is higher than 33 𝜇𝑠 for cache sizes 128B to
1KB, 25 𝜇𝑠 at 2KB, and stays at 2.1 𝜇𝑠 at 4KB and greater sizes.

Among the five synthesis techniques, Tab-RD is the most accu-
rate for cache sizes smaller than 2KB. The other four methods are
less accurate but similar to each other except for Tab-IC, whose la-
tency is consistently lower than the ground truth. For cache sizes
larger than 2KB, HRD is the most accurate, followed by STM and
Tab-IC. Tab-Base and Tab-RD are the least accurate, although the
absolute difference is small (less than 3 𝜇𝑠). None of the methods is
accurate for the 2KB threshold cache size. HRD is the closest, over
6 𝜇𝑠 higher, and Tab-Base is the farthest, over 14 𝜇𝑠 higher. For L1
cache sizes from 4KB to 16KB, The read latency across all methods
becomes significantly small, with REaLTabFormer’s Tab-Base and
Tab-RD showing much higher latency compared to other methods.

Table 4 shows the comparison for 12 workloads. Averaged over
8 hardware configurations (varied L1 cache size), the table shows
the geomean read latency of each workload and those from the
five synthesis techniques. The ground truth given by the reference
trace is shown in the second column.The remaining columns show
first three AI-based techniques and then two conventional tech-
niques.

The reference read latency varies between 24 and 38 𝜇𝑠 across
12 workloads, with the geomean at 32.5𝜇𝑠 . By the geomean, HRD
is the most accurate at 33.8 𝜇𝑠 , followed by Tab-RD at 36.3 𝜇𝑠 and
STM at 37.2 𝜇𝑠 , while the result is too high by Tab-Base and too low
by Tab-IC. Tab-Base, 39.0 𝜇𝑠 , is close to Tab-RD and STM. Looking
at each workload, HRD is the most accurate in all individual cases.
Tab-RD is more accurate than STM in more than half of the work-
loads, 605, 607, 619, 623, 631, 638, 644.

The main difference from AI-based techniques and traditional
techniques comes from the latency results for workloads 631, 638
and 641, which have the largest relative error in both Tab-Base and
Tab-RD, while HRD maintains good accuracy in these cases. Over-
all, from the perspective of workloads, HRD is the most accurate
in reproducing the reference read latency.

4.3.2 Miss Ratios. Tables 5 to 8 compare the L1 and L2 miss ra-
tios respectively, first for different cache configurations and then
for different workloads. The L1 miss ratio, as reported by Gem5,
is the number of L1 misses divided by the number of L1 accesses,
including both reads and writes.The L2 miss ratio is the number of

2When asked to describe Table 3, GPT-4 replied “The table represents latencymeasure-
ments for two main categories: REaLTabFormer (with its three methods: Tab-Base,
Tab-RD, and Tab-IC) and Traditional (with its two methods: HRD and STM). The mea-
surements are taken across different L1 cache sizes.”

3



Chengao SHI, Fan JIANG, Zhenguo LIU, Chen DING, and Jiang XU

Table 2: Comparison of Synthesis Time (h:m:s)

Methods Training/Profiling Generation Total Cost
Base 1:39:43±0:06:46 0:20:27±0:00:90 2:00:10±0:06:51

REaLTab RD 2:13:42±0:04:90 0:29:60±0:01:47 2:43:42±0:05:12
IC 2:37:18±0:09:94 0:34:20±0:01:03 3:11:38±0:09:99

Trad HRD 0:00:04:49±0:00:00:36 0:00:50:14±0:00:05:67 0:00:54.63±0:00:05.73
STM 0:02:50:12±0:00:00:85 0:01:13:20±0:00:00:82 0:04:03.31±0:00:01.09

Table 3: Read Latency (μs) of System Configurations

L1 Size Reference REaLTabFormer Traditional
Tab-Base Tab-RD Tab-IC HRD STM

128B 37.4137±9.92497 38.7896±9.3345 38.9558±9.7325 29.6694±9.5026 34.4064±10.2590 41.8590±7.0406
256B 36.8903±10.2554 39.0276±9.4335 37.6864±10.3045 29.7062±9.4897 34.0346±10.3563 40.6587±9.5634
512B 36.0381±10.4466 39.4092±9.5608 36.6487±10.5516 29.2366±9.4188 33.6215±10.3833 39.3389±11.5229
1KB 33.4471±10.9816 39.8508±9.6357 35.9896±10.5616 25.9639±10.0382 33.2077±10.3090 37.6201±13.8018
2KB 25.2486±12.4658 39.3350±9.8288 33.3499±11.3098 17.3430±11.0772 31.5611±10.6096 33.6720±16.4813
4KB 2.1419±2.6475 4.8042±11.4474 4.8199±11.5312 3.6307±3.4630 2.4147±3.6816 2.4979±3.8404
8KB 2.1415±2.6474 4.7707±11.4095 4.8080±11.5185 3.6285±3.4569 2.1323±2.5162 2.4979±3.8404
16KB 2.1415±2.6474 4.7707±11.4095 4.8080±11.5185 3.6285±3.4569 2.1323±2.5162 2.4979±3.8404

Geomean 11.9387±6.36714 17.8324±10.2179 17.0661±10.8593 12.3880±6.66805 12.0785±6.39936 13.8086±7.49812

Table 4: Read Latency (μs) of Workloads

App Reference REaLTabFormer Traditional
Tab-Base Tab-RD Tab-IC HRD STM

600.perlbench_s 32.719±11.470 41.003±7.601 38.191±9.735 23.930±10.785 35.368±10.871 35.518±14.207
602.gcc_s 30.471±10.880 38.397±9.425 36.676±10.478 35.379±10.779 32.058±10.552 34.639±15.205

603.bwaves_s 38.542±8.805 39.268±9.413 35.046±10.791 40.726±7.485 37.341±9.908 41.671±7.409
605.mcf_s 32.243±10.614 40.575±8.230 37.814±10.103 24.486±10.600 34.100±10.402 38.610±11.674

607.cactuBSSN_s 35.725±10.352 38.915±9.290 35.400±10.619 25.582±8.855 36.990±9.909 41.321±7.573
619.lbm_s 33.532±10.775 38.682±9.449 33.481±10.733 23.934±8.747 34.508±10.545 38.967±11.962

620.omnetpp_s 34.243±10.813 40.215±8.521 39.230±9.503 24.160±9.877 35.414±10.582 37.248±13.192
623.xalancbmk_s 33.886±10.549 39.056±9.334 37.747±10.300 24.912±10.065 31.507±10.374 38.673±12.401
631.deepsjeng_s 24.824±1.262 38.274±9.187 38.279±9.184 23.474±1.969 24.824±1.263 7.200±8.843
638.imagick_s 26.634±10.512 33.727±11.026 33.211±11.187 21.440±7.670 29.282±9.564 39.482±10.202
641.leela_s 30.311±12.583 40.422±8.669 38.685±9.946 22.193±11.637 33.937±10.927 38.221±12.697
644.nab_s 33.610±10.812 40.219±8.283 34.301±10.674 22.452±9.068 32.888±10.576 37.651±12.262
Geomean 32.466 ± 10.612 38.998 ±9.068 36.364 ±10.372 25.051 ± 9.953 33.838 ±10.338 37.173 ± 12.022

L2 misses divided by the number of L2 accesses. L2 miss ratios are
trivial, either 0% or close to 100%. The accuracy is best measured
by the L1 miss ratio.

Table 5 shows that miss ratios are positive for cache sizes from
128B to 2KB. The last row shows that when measured by the ge-
omean, HRD and Tab-RD are more accurate in reproducing the
reference trace result. This is consistent with the timing results in
Table 3, where HRD and Tab-RD are the most accurate for cache
sizes up to 2KB.

Table 6 compares L1 cache miss ratios from the perspective of
different workloads. After taking the geomean of all hardware con-
figurations, the reference L1 miss ratios vary from 0.198 to 0.063.
In general, HRD and Tab-RD are the most accurate among all 12

workloads. While HRD performs much better in 631 and 619, Tab-
RD excels in 605 and 638. Tab-Base has the largest relative error
across all workloads. Notably, all AI-based techniques seem not to
fit well into the simplest trace pattern from workload 631, which
is the reason Tab-RD falls behind HRD slightly after taking the
geomean. We will discuss workload 631 in Section 4.5.

4.4 The Reuse Distance (RD) Threshold
Tab-RD uses the threshold of RD=64 (Section 3.2). We have tested
different thresholds above and below but found that this particular
threshold gave the best overall result. Upon closer inspection, we
see that the threshold includes most of the data reuses.

Table 9 shows the Cumulative Distribution Function (CDF) of
the RD histograms of the original 10M traces for each workloads.

4



Memory Workload Synthesis Using Generative AI

Table 5: L1 Cache Miss Ratio of System Configurations

L1 Size Reference REaLTabFormer Traditional
Tab-Base Tab-RD Tab-IC HRD STM

128B 0.479 0.905 0.460 0.738 0.561 0.648
256B 0.387 0.825 0.355 0.665 0.502 0.575
512B 0.284 0.691 0.269 0.553 0.43 0.445
1KB 0.179 0.502 0.191 0.406 0.335 0.287
2KB 0.084 0.267 0.104 0.236 0.198 0.137
4KB 0.0 0.0 0.0 0.001 0.001 0.0
8KB 0.0 0.0 0.0 0.001 0.0 0.0
16KB 0.0 0.0 0.0 0.001 0.0 0.0

Geomean 0.227 0.566 0.261 0.490 0.402 0.391

Table 6: L1 Cache Miss Ratio of Workloads

App Reference REaLTabFormer Traditional
Tab-Base Tab-RD Tab-IC HRD STM

600 0.383 0.622 0.331 0.620 0.442 0.565
602 0.265 0.831 0.538 0.457 0.462 0.555
603 0.400 0.677 0.715 0.630 0.727 0.617
605 0.283 0.756 0.297 0.450 0.385 0.580
607 0.652 0.764 0.803 0.762 0.804 0.749
619 0.576 0.706 0.754 0.699 0.665 0.666
620 0.363 0.682 0.343 0.675 0.446 0.598
623 0.336 0.710 0.453 0.570 0.488 0.511
631 0.063 0.878 0.879 0.498 0.063 0.061
638 0.198 0.582 0.116 0.475 0.530 0.287
641 0.276 0.634 0.310 0.505 0.365 0.561
644 0.464 0.777 0.788 0.684 0.830 0.640

Geomean 0.351 0.706 0.487 0.577 0.464 0.533

Table 7: L2 Cache Miss Ratio of System Configurations

L1 Size Reference REaLTabFormer Traditional
Tab-Base Tab-RD Tab-IC HRD STM

128B 0.0 0.0 0.001 0.0 0.0 0.0
256B 0.0 0.0 0.001 0.0 0.0 0.0
512B 0.0 0.0 0.001 0.0 0.0 0.0
1KB 0.0 0.001 0.001 0.0 0.0 0.0
2KB 0.0 0.001 0.002 0.001 0.0 0.0
4KB 0.998 0.891 0.949 0.174 0.033 1.0
8KB 1.0 1.0 1.0 0.19 0.999 1.0
16KB 1.0 1.0 1.0 0.19 1.0 1.0

Geomean 0.999 0.297 0.434 0.072 0.182 1.0

Table 8: L2 Cache Miss Ratio of Workloads

App Reference REaLTabFormer Traditional
Tab-Base Tab-RD Tab-IC HRD STM

600 0.128 0.213 0.209 0.215 0.052 0.116
602 0.139 0.158 0.169 0.000 0.054 0.108
603 0.137 0.170 0.165 0.000 0.036 0.113
605 0.131 0.167 0.170 0.194 0.065 0.113
607 0.112 0.161 0.156 0.159 0.032 0.101
619 0.104 0.165 0.160 0.173 0.040 0.100
620 0.123 0.174 0.181 0.181 0.055 0.111
623 0.127 0.171 0.167 0.180 0.042 0.112
631 0.142 0.144 0.099 0.151 0.061 0.152
638 0.196 0.184 0.181 0.215 0.045 0.155
641 0.140 0.188 0.187 0.206 0.041 0.115
644 0.125 0.171 0.162 0.181 0.036 0.110

Geomean 0.138 0.167 0.163 0.072 0.045 0.113

It shows that for most workloads, 95% of their RD are below this
threshold. A high CDF value at RD=64 means that the RD beyond
this threshold are relatively infrequent. By focusing on the RD val-
ues below this threshold, the fine-tuning by Tab-RD captures most
of the data reuses for most of the workloads.

4.5 A Case of Poor AI Learning
The cumulative RD distributions in Table 9 show a special case
which is 631.𝑑𝑒𝑒𝑝𝑠 𝑗𝑒𝑛𝑔_𝑠 . In thisworkload, virtually all reuses have
the reuse distance 0, whichmeans that they are consecutive uses of
the same cache block. Checking the 10M profiled trace, we see that
the trace only captures a data initialization loop. The entire trace
consists of only memory writes to consecutive word addresses, re-
sulting in a long sequence of RD of 03, with a relative small number
of cold misses4.

While 631.𝑑𝑒𝑒𝑝𝑠 𝑗𝑒𝑛𝑔_𝑠 has the trivial memory access pattern,
AI synthesis performs unusually poorly. The geomean L1 miss ra-
tio is 0.063 for the reference workload, but it is 0.5 by Tab-IC and
over 0.8 by Tab-Base and Tab-RD. The simplest pattern is not well

3During the experiments, we measure the RD based on the physical address of each
memory request. The calculation of RD is in terms of cache block size that presumes
a cacheline size of 64 bytes. A RD of 0 means that the two consecutive addresses are
in the same cache block.
4In a contiguous word-by-word traversal, there is a cache miss every 16 accesses.

reproduced in AI-based synthesis, leading to large relative errors
in terms of both latency and miss ratio results. If the results from
app 631 are excluded, Tab-RD outperforms HRD.

4.6 Main Findings
From the results, we make the following observations:

(1) REaLTabFormer, a most recent AI technique based on large
language models (LLM), when used out of the box, is not as
good as (less accurate than) existing analytical techniques.

(2) By augmenting the training input with a domain specific
measure, the AI technique produces results as accurate as
or slightly better than the best of existing techniques. For
example, Tab-IC offers much better read latency results
and Tab-RD achieves nearly or slightly better miss ratio
accuracy compared to HRD.

(3) Not only is the accuracy of AI learning highly sensitive
to the fields supplied in the input, but also the cost of AI
training. However, the longest learning time, 2.5 hours in
Tab-IC, actually produces less accurate results than Tab-
RD, whose training is half an hour faster.

(4) AI techniques can learn to reproduce similar instruction
sequences and similar reuse patterns. The most accurate

5



Chengao SHI, Fan JIANG, Zhenguo LIU, Chen DING, and Jiang XU

Table 9: Cumulative Reuse Distance (RD) Distributions

Applications RD=64 RD=32 RD=16 RD=8 RD=4 RD=2 RD=1 RD=0
600.perlbench_s 0.953 0.884 0.794 0.677 0.563 0.477 0.414 0.334
602.gcc_s 0.970 0.908 0.845 0.775 0.705 0.636 0.590 0.508
603.bwaves_s 0.873 0.790 0.718 0.634 0.480 0.178 0.096 0.048
605.mcf_s 0.983 0.954 0.904 0.705 0.556 0.447 0.384 0.282
607.cactuBSSN_s 0.916 0.770 0.577 0.375 0.213 0.098 0.060 0.030
619.lbm_s 0.950 0.874 0.773 0.597 0.384 0.176 0.086 0.041
620.omnetpp_s 0.961 0.889 0.824 0.730 0.614 0.532 0.482 0.353
623.xalancbmk_s 0.969 0.855 0.803 0.734 0.698 0.641 0.615 0.459
631.deepsjeng_s 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
638.imagick_s 0.886 0.809 0.777 0.643 0.627 0.519 0.506 0.032
641.leela_s 0.958 0.899 0.797 0.738 0.660 0.556 0.505 0.354
644.nab_s 0.942 0.872 0.773 0.605 0.474 0.129 0.050 0.023

learning by Tab-RD depends on the selection of the fields
in the input and on the post-processing of the output.

(5) Tab-RD shows that RD is better than AI for synthesizing
short distance reuses, while AI is better at long distance
reuses.

(6) Learning using one particular information, the instruction
count, requires the highest training and generation time
but produces the lowest accuracy among all methods.

5 SUMMARY
In this paper, we have developed a new technique for memory
workload synthesis based on generative AI that performs slightly
better than the best of existing techniques for smaller cache sizes
and similar for other cache sizes. It uses the reuse distance as the
additional information in training.The output is modified based on
the generated reuse distance.The combination takes less time than
the method using unmodified input and output, yet the synthesis
accuracy is significantly higher.

As with any early-stage research, there are opportunities for
improvement and further investigation. Here are some highlights
that need to be improved in future work. One observation through
our simulation results on Gem5 is that these workloads seem to
fit neatly into 4KB of L1 cache, which is rather small. This can
be solved by profiling diverse traces of these workloads that in-
clude memory-intensive regions. Also, we collected traces purely
by Intel-PIN. A natural progression will be to integrate mecha-
nisms for trace gathering from a weakly ordered memory infras-
tructure like ARM, RISC- V, and MIPS. Also, the model can be ex-
tended to include atomics, transactional requests and flushes. En-
capsulating these requests types could further improve the accu-
racy of the models with respect to actual memory subsystems.

In conclusion, while our current research offers foundational
insights, we recognize the potential avenues for improvement and
re-evaluation.We are optimistic that addressing these will not only
fortify our methodology but also offer valuable insights.

ACKNOWLEDGMENTS
We thank the anonymous reviewers of MEMSYS for their construc-
tive feedback and Nathan Ganger, Dylan McKellips, and Yifan Zhu
for their help with the presentation of the material.

This work was supported by the Guangzhou-HKUST(GZ) Joint
Funding Program (No. 2023A03J0013).Thisworkwas also supported
by the National Science Foundation (Contract No. CCF-2217395,
CCF-2114319). Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the funding organiza-
tions.

REFERENCES
[1] Amro Awad and Yan Solihin. 2014. STM: Cloning the spatial and temporal

memory access behavior. In 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA). https://doi.org/10.1109/hpca.2014.
6835935

[2] Mario Badr, Carlo Delconte, Isak Edo, Radhika Jagtap, Matteo Andreozzi, and
Natalie Enright Jerger. 2020. Mocktails: Capturing the Memory Behaviour of
Proprietary Mobile Architectures. In Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture (Virtual Event) (ISCA ’20).
IEEE Press, 460–472. https://doi.org/10.1109/ISCA45697.2020.00046

[3] Ganesh Balakrishnan and Yan Solihin. 2012. WEST: Cloning data cache behavior
using Stochastic Traces. In IEEE International Symposium on High-Performance
Comp Architecture. 1–12. https://doi.org/10.1109/HPCA.2012.6169042

[4] Omar Benjelloun, Shiyu Chen, and Natasha Noy. 2020. Google Dataset Search
by the Numbers. arXiv:2006.06894 [cs.IR]

[5] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (aug 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[6] Vadim Borisov, Tobias Leemann, Kathrin Sessler, Johannes Haug, Martin Pawel-
czyk, and Gjergji Kasneci. 2022. Deep Neural Networks and Tabular Data: A
Survey. IEEE Transactions on Neural Networks and Learning Systems (Jan 2022),
1–21. https://doi.org/10.1109/tnnls.2022.3229161

[7] Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji
Kasneci. 2023. Language Models are Realistic Tabular Data Generators.
arXiv:2210.06280 [cs.LG]

[8] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC
CPU2017: Next-Generation Compute Benchmark. In Companion of the 2018
ACM/SPEC International Conference on Performance Engineering (Berlin, Ger-
many) (ICPE ’18). 41–42.

[9] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. 2019.
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss.
arXiv:1906.07413 [cs.LG]

[10] Jack Choquette and Wish Gandhi. 2020. NVIDIA A100 GPU: Performance &
Innovation for GPU Computing. In 2020 IEEE Hot Chips 32 Symposium (HCS).
1–43. https://doi.org/10.1109/HCS49909.2020.9220622

[11] C. Ding and Y. Zhong. 2001. Reuse Distance Analysis. Technical Report UR-CS-
TR-741. University of Rochester.

[12] L. Eeckhout, J. Sampson, and B. Calder. 2006. Exploiting program microarchi-
tecture independent characteristics and phase behavior for reduced benchmark
suite simulation. In IEEE International. 2005 Proceedings of the IEEE Workload
Characterization Symposium, 2005. https://doi.org/10.1109/iiswc.2005.1525996

6

https://doi.org/10.1109/hpca.2014.6835935
https://doi.org/10.1109/hpca.2014.6835935
https://doi.org/10.1109/ISCA45697.2020.00046
https://doi.org/10.1109/HPCA.2012.6169042
https://arxiv.org/abs/2006.06894
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/tnnls.2022.3229161
https://arxiv.org/abs/2210.06280
https://arxiv.org/abs/1906.07413
https://doi.org/10.1109/HCS49909.2020.9220622
https://doi.org/10.1109/iiswc.2005.1525996


Memory Workload Synthesis Using Generative AI

[13] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Do-
erner, Samee Zahur, and David Evans. 2016. Privacy-Preserving Distributed
Linear Regression on High-Dimensional Data. Cryptology ePrint Archive, Pa-
per 2016/892. https://doi.org/10.1515/popets-2017-0053 https://eprint.iacr.org/
2016/892.

[14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Networks. arXiv:1406.2661 [stat.ML]

[15] Diederik P Kingma and Max Welling. 2022. Auto-Encoding Variational Bayes.
arXiv:1312.6114 [stat.ML]

[16] Wei-Chao Lin and Chih-Fong Tsai. 2020. Missing Value Imputation: A Review
and Analysis of the Literature (2006–2017). Artif. Intell. Rev. 53, 2 (feb 2020),
1487–1509. https://doi.org/10.1007/s10462-019-09709-4

[17] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005.

Pin: building customized program analysis tools with dynamic instrumentation.
ACM SIGPLAN Notices (Jun 2005), 190–200. https://doi.org/10.1145/1064978.
1065034

[18] Rafael K. V. Maeda, Qiong Cai, Jiang Xu, Zhe Wang, and Zhongyuan Tian. 2017.
Fast and Accurate Exploration of Multi-level Caches Using Hierarchical Reuse
Distance. In Proceedings of the International Symposium on High-Performance
Computer Architecture. 145–156. https://doi.org/10.1109/HPCA.2017.11

[19] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[20] Aivin V. Solatorio and Olivier Dupriez. 2023. REaLTabFormer: Generating Real-

istic Relational and Tabular Data using Transformers. arXiv:2302.02041 [cs.LG]
[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017).

7

https://doi.org/10.1515/popets-2017-0053
https://eprint.iacr.org/2016/892
https://eprint.iacr.org/2016/892
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1312.6114
https://doi.org/10.1007/s10462-019-09709-4
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1109/HPCA.2017.11
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2302.02041

	Abstract
	1 Introduction
	2 Background
	2.1 Synthesis of Memory Workloads
	2.2 Transformer in Tabular Data Synthesis

	3 Transformer Based Workload Synthesis
	3.1 Why Using Tabular Transformer
	3.2 Trace-Driven Fine-Tuning

	4 Evaluation
	4.1 Experimental Setup
	4.2 Synthesis Costs
	4.3 Synthesis Quality
	4.4 The Reuse Distance (RD) Threshold
	4.5 A Case of Poor AI Learning
	4.6 Main Findings

	5 Summary
	Acknowledgments
	References

