
Error Detecting and Correcting Codes for DRAM Functional
Safety

Steffen Buch
 Embedded Business Unit
 Micron Technology, Inc.

Munich Germany
 sbuch@micron.com

KEYWORDS
DRAM, LPDDR, DDR, RAS, ECC, EDC, CRC, SECDED, SEC,
functional safety, ISO26262, failure modes, diagnostic coverage,
Hamming

ABSTRACT
With the evolution of Advanced Driver Assistance Systems
(ADAS) and Autonomous Driving (AD) in vehicles, processing
requirements in Electronic Control Units (ECUs) increase
significantly. Traditional microcontrollers using embedded flash
and/or embedded SRAM to store data and execute program code
are not performant enough. These automotive microcontrollers
have for a long time been optimized for best quality and highest
safety standards. New architectures with high performance
multi-core System-on-Chip (SoC) designs and significant
external DRAM need to follow the same path to assure
functional safety.

In this paper, we first provide an overview over failure modes of
DRAM devices. After this we’ll analyze the behavior of common
Error Correcting (ECC) and Error Detecting (EDC) Codes with
the respect to their coverage of DRAM failure modes. We will
show that simple Single-Bit Correcting Double-Bit Detecting
(SEC-DED) ECC codes do not provide sufficient Diagnostic
Coverage (DC) for multi-bit (MBE) and addressing errors that
occur in DRAM devices with significantly high FIT (Failure-In-
Time) rates. The properties of popular ECC and EDC codes for
their MBE DC will be derived analytically and in addition
verified through simulations. Coding schemes with sufficient DC
to build functionally safe DRAM sub-systems will be proposed.

We will finally provide a generic equation to calculate MBE DC
for any linear block code including CRC, Hamming, Bose-
Chaudhuri-Hocquenghem (BCH) and Reed-Solomon (RS) codes.

Introduction
Functional Safety (FuSa) is defined by ISO 26262 [1] as the

“absence of unreasonable risk … due to hazards … caused by
malfunctioning behaviour … of E/E systems.” E/E stands for
electrical and electronic. As a part of the efforts that need to be
taken to certify a component under ISO 26262, a detailed
quantitative analysis of failure modes and FIT distributions for
so-called random HW faults needs to be conducted [2]. Two

approaches - Failure Modes, Effects, and Diagnostics Analysis
(FMEDA) and quantitative Fault Tree Analysis (FTA) [3] – can
be used.

The starting point of the FMEDA is detailed a block-by-block
failure mode analysis. Figure 1 shows a block diagram of a
typical LPDDR DRAM component. Next, FIT (Failure-In-Time)
rates are assigned to each block based on its relative gate count
or die size and to the identified block-level failure modes. More
details about this process can be found in [2]. Finally, to simplify
system analysis, we aggregate all individual block-level failure
mode FIT rates up to a more manageable set of top-level failure
modes (TLFM). The TLFM represents the failure behavior that
the host sees in case a low-level failure occurs.

Figure 1: Block diagram of a typical LPDDR DRAM

DRAM Top-Level Failure Modes (TLFM)
Table 1 shows the TLFM identified for LPDDR4 and LPDDR5

components [4]. There are eight distinct TLFM that can be
grouped into three main failure mode types:

• single-bit errors – SBE (TLFM-01)

• multi-bit errors – MBE (TLFM-02, -03, -04, -07, -08)

• addressing errors (TLFM-05, -06)

MEMSYS 2023, October 2023, Alexandria, VA, USA S. Buch

Table 1: LPDDR top-level failure modes

Note that all failure modes are single-point fault failures
which means, for example, that a single fault event causes
multiple bits in a read burst to be wrong (MBE failure type).

For LPDDR DRAM, a significant percentage of the safety
critical FIT budget is allocated to single-bit errors that can easily
be covered by a standard ECC on DRAM or on the host side, but
the remaining percentage of the FIT are more difficult to detect
because they are multi-bit and addressing errors. We found that
for a 64Gb LPDDR5x DRAM, roughly 70% of the FIT is in single-
bit errors (TLFM-01) while the other 30% are in multi-bit and
addressing failure mode types (TLFM-02 … -08). A recent large
scale field study on commodity servers found a distribution of
even 50%:50% for single- vs. multi-bit faults in DDR4
components [5].

Because of the significant allocation to MBE and addressing
failure types, we found that a standard JEDEC LPDDR DRAM
with commonly used host inline ECC schemes (e.g., 64+8 single
error correction, double error detection (SEC-DED)) is not able
achieve hardware Key Performance Indicators (KPIs) required
for functional safety [2][7]. This finding has recently also been
confirmed independently by a team of researchers from TU
Kaiserslautern, Fraunhofer Institute and Mercedes-Benz using a
different analysis methodology — fault tree analysis (FTA)
instead of FMEDA [3]. The issue is the mediocre detection
capability of traditional ECC schemes for multi-bit and
addressing errors. We’ll analyze the characteristics of common
error detecting and error correcting codes with respect to their
MBE detection capability in the next chapters.

Error Correcting and Error Detecting Codes
An error correcting code (ECC) adds redundant information –

check bits or symbols – on sender side. The resulting codeword
is transmitted over a noise channel where errors occur. The
receiver can then correct a certain number of errors based on the
redundancy added. Commonly used ECC codes for memory
protection are SEC (Single Error Correct) or SEC-DED (Single
Error Correct – Double Error Detect) Hamming codes. These
codes can correct a single-bit error per codeword. Other
alternatives are Bose-Chaudhuri-Hocquenghem (BCH) and Reed-
Solomon (RS) codes. BCH codes can correct multiple single-bit
errors and RS codes one or multiple symbols (e.g. bytes).

Error detecting codes (EDC) also add redundant bits or
symbols on sender side. Again, the codeword is transmitted over
a noisy channel that, with a certain probability, creates an error
in the codeword. The receiver now can detect errors without
correcting them. An example for and EDC is the Cyclic
Redundancy Check code (CRC) [6]. However, any Hamming
code can also be operated in EDC mode as the decoding
procedure consists of 3 steps: 1. detection of an error in the
codeword, 2. determination of the location of the erroneous bit,
and 3. flipping of the respective bit location. A Hamming code is
operated in EDC mode if the decoding procedure is stopped after
the 1st step.

Multi-Bit Error Diagnostic Coverage
Diagnostic Coverage (DC) is a KPI used in ISO 26262 to

determine the fault detection capability of a safety mechanism. It
is specified as the ration of detected dangerous faults to all
possible dangerous faults [1].

𝐷𝐶 =
detected failures

all failures
= 1 −

undetected failures

all failures

Let d be the number of data and e the number of check bits in
an error detecting or error correcting code. The code has then 2d
valid code words and 2d+e possible words.

In an EDC, all arbitrary multi-bit errors that fall on a valid
codeword cannot be detected. The error and the valid codeword
could not be distinguished. The EDC, hence, has 2d undetectable
failure variants and 2d+e overall possible failure variants. The
MBE DC can be calculated as

𝐷𝐶(𝑀𝐵𝐸)𝐸𝐷𝐶 = 1 −
2𝑑

2𝑑+𝑒 = 1 − 2−𝑒

It is interesting to note that the MBE DC of an error detecting
code does not depend on the number of data bits but solely on
the number of check bits of the code. This is only valid within
the capacity limits of the code that in turn depend on the
number of check bits.

A single-bit correcting ECC (SEC or SEC-DED Hamming
code) also has 2d+e overall possible MBE and all MBE that fall on
the 2d valid codewords cannot be detected. In addition, all (d+e)2d
possible multi-bit error combinations that appear as a single-bit
error cannot be distinguished from real SBE and are, hence,
undetectable. The MBE DC of a single-bit correcting ECC can be
calculated as

𝐷𝐶(𝑀𝐵𝐸)𝐸𝐶𝐶 = 1 −
2𝑑 + (𝑑 + 𝑒)2𝑑

2𝑑+𝑒 = 1 − (d + e + 1)2−𝑒

For the same number of check bits e, DC(MBE)EDC is larger

than DC(MBE)ECC. Figures 2, 3, and 4 show this trade-off in a
graphical way. The 9x9 chess board represents the code space (81
possible words). The green boxes are the valid code words (9
valid codewords). We assume that errors can propagate only
vertically and horizontally. As can be seen, the minimal
Hamming distance is 3 so that a single-bit correcting code can be
implemented in this code space. Minimum 3 steps are required to
get from one green field to the next one.

Error Detecting and Correcting Codes for DRAM Functional Safety MEMSYS 2023, October 2023, Alexandria, VA, USA

Figure 2: Hypothetical EDC

The MBE DC of the hypothetical EDC in Figure 2 can be
calculated as DC(MBE) = 1 – 9/81 = 89%.

Figure 3: Hypothetical SEC-ECC

The yellow boxes in Figure 3, being one horizontal or vertical
step away from a green box, represent single-bit errors. There
are 36 possible singe-bit errors. MBE DC of the hypothetical
SEC-ECC can be calculated as DC(MBE) = 1 – (9+36)/81 = 44%.

Figure 4: Hypothetical SEC-ECC with an unused codeword

In Figure 4, one of the possible codewords remains unused –
one green box less. This method can be used to implement error

correcting codes that combine the single-bit correction capability
with high multi-bit detection as we will show later. This is
commonly called overprovisioned ECC. The MBE DC of this
code increases to DC(MBE) = 1 – (8+32)/81 = 51%.

ECC and EDC Fault Simulation
To validate the above analytical calculations, fault

simulations of several CRC and Hamming codes in ECC and
EDC mode have been conducted in Matlab. For all codes
investigated, an all-0 data word yielded an all-0 codeword.
Words with combinations of 1 could, hence be used to simulate
errors in the all-0 codeword. All possible combinations with i bit
errors for the binary codeword were generated and ran through
the decode operation. Detected and undetected bit errors were
counted. Simulations started with i=1 (SBE) and i was increased
until the number of possible combinations was too high to be
executed in reasonable time spans.
A Hamming code can be described by the number total bits n,
data bits k, and the minimum Hamming distance h. A common
representation is Hamming(n, k, h).

Table 2: Hamming(39,32,4) code fault simulation

Table 2 shows a Hamming code with 32 data bits and 7 check
bits. With its minimum Hamming distance of 4, it can correct
100% of all single-bit errors and detect 100% of double-bit errors
when operated in ECC mode (SEC-DED ECC). In EDC mode, it
can detect 100% of all bit error combinations up to 3 bits (TED
EDC). In addition to its single-bit correction and double-bit
detection capabilities, the Hamming code can also detect a
percentage of MBE. The simulations show that even bit errors
are detected with a very high probability, while the DC for odd
bit errors is rather low.

Even bit errors can be detected because the additional parity
bit used in h=4 Hamming codes to implement the DED function
has the capability to detect all even bit errors - not just 2. Since
valid codewords have the same parity as even bit errors, the
overall DC is be bit lower than 100%.

Certain odd bit errors can also be detected in this code since
Hamming(39,32,4) is a so-called truncated Hamming code
truncated from the full Hamming(64,57,4). Some MBE are
decoded to unused (truncated) codewords and can, hence, be
identified as uncorrectable MBE. It should be noted that
additional logic must be implemented in the ECC decode

MEMSYS 2023, October 2023, Alexandria, VA, USA S. Buch

hardware to leverage the odd MBE detection capability. A simple
textbook implementation might not have this.

The analytical number for DC(MBE)ECC from the equations
derived in this paper is 68.75%. To compare with the simulations,
we need to average over odd and even MBE. We cannot use the
weighted average to compare with the analytical number since
the number of bit error combination differs significantly between
i and i+1. Moreover, the coverage values simulated for individual
i-bit errors can deviate from the ideal average as they depend on
the actual code word selection in a truncated Hamming code.
The higher i, the lower is the deviation from the ideal average.
Averaging over i=8 (even MBE) and i=9 (odd MBE) gives the
expected 68.75% from the analytical calculation.

In EDC mode, all odd bit errors are detected with 100%
probability. Since also here valid codewords have the same
parity as even bit errors, even MBE falling on valid codewords
cannot be detected. This is why the DC for even MBE is a bit less
than 100%. The expected analytical DC(MBE)EDC is 99.6%.
Averaging over i=8 (even MBE) and i=9 (odd MBE) gives 99.7%.

Table 3: Hamming(72,64,4) code fault simulation

Table 3 shows a Hamming code with 64 data bits and 8 check
bits. Such codes are often used as an inline ECC in memory host
controllers to protect against single-bit flips in DRAMs. In
addition to its single-bit correction and double-bit detection
capabilities, this Hamming code can also detect 71.48% of all
arbitrary MBE in ECC mode. It can detect 100% of all bit errors
up to i=3 and detect 99.6% of all higher order MBE in EDC mode.
Averaging over i=8 and i=9 in the simulation results gives 69.95%
in ECC mode and 99.55% in EDC mode.

Table 4: Hamming(272,256,4) code fault simulation

Table 4 shows the simulation results for an overprovisioned
Hamming code with 256 data and 16 check bits. The minimal
number of check bits required for a Hamming code with h=4 to
protect 256 data bits would be 10. This code uses 6 additional
check bits so that it is “overprovisioned”. The overprovisioning
leads to many unused codewords and can, hence, be used to
increase DC(MBE)ECC while maintaining the single-bit correction
capability as it has been shown in Figure 4.

The Hamming code has been derived from the IBM-CRC-16
polynomial (x16 + x15 + x2 + 1) which can protect up to 32751 bits
with a minimal Hamming distance h=4 [6]. It should be noted
that any CRC code with a given minimal Hamming distance h
can be converted into a Hamming code with the same h.

The analytical values are DC(MBE)ECC=99.583% and
DC(MBE)EDC=99.998%. The simulated average for i=4 and i=5 is
99.514% and 99.996% for ECC and EDC mode respectively.

Extension to BCH and RS codes
With growing memory density and bandwidth requirements,

improved multi-bit or symbol correcting codes are likely to be
required. HBM3, for example, uses Reed-Solomon (RS) codes for
improved robustness [8].

The generic equation for the detection capability (in
functional safety terminology Diagnostic Coverage) of
uncorrectable errors in any linear block code is given below:

𝐷𝐶𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑏𝑙𝑒 = 1 −

(2𝑚𝑘 − 1) ∗ ∑ (𝑛

𝑖
)(2𝑚 − 1)𝑖

𝑡

𝑖=0

2𝑚𝑛 − ∑ (𝑛

𝑖
)(2𝑚 − 1)𝑖

𝑡

𝑖=0

With n being the codeword size, k the data word size, m the
symbol size, and t the number of correctable bit or symbol
errors. It should be noted that this equation is now truly generic.
It can be used for CRC codes (m=1, t=0), Hamming codes (m=1,
t=1), BCH codes (m=1, t>1), and RS codes (m>1, t≥1).
Table 5 shows the fault simulation of all possible bit errors for a
RS(7,3,3,5) code. The code has n=7 symbols in a code word of
which there are k=3 data symbols. The symbol size is m=3 bits.
The code has a minimum Hamming distance of 5 so that it can
correct up to t=2 symbol errors. The code consists of overall
m*n=21 bits. All error combinations with 1 or 2 bit errors can be
corrected as they cannot span more than 2 symbols. For bit error
combinations with 3 to 6 bit errors, some combinations can still
be corrected if they fall into maximum 2 symbols. Bit error
combinations with more than 6 bit errors always span more than
2 symbols and can, hence, not be corrected anymore. The
simulation results in an average DC over all uncorrectable error
combinations of 73.6951% which is identical to the result
obtained with the generic equation presented above.

Error Detecting and Correcting Codes for DRAM Functional Safety MEMSYS 2023, October 2023, Alexandria, VA, USA

Table 5: RS(7,3,3,5) code fault simulation

Conclusions
The main top-level failure modes (TLFM) of DRAM

components show significant FIT in multi-bit (MBE) and
addressing errors. MBE are the 2nd highest FIT contributor after
SBE in DRAM. MBE can occur in the memory array, the
periphery, and the package – with package and periphery being
the biggest contributors. Protection mechanisms on DRAM
and/or host side, hence, require a very high MBE detection
capability DC(MBE). Simple ECC schemes are often not
sufficient to achieve the required DC.

Analytical equations to calculate DC(MBE) for error detecting
(CRC, Hamming code in detection mode) and single-bit error
correcting codes (Hamming code in correction mode) have been
derived. Table 5 provides an overview of DC(MBE) for
commonly used coding schemes in ECC as well as EDC mode.

Table 5: DC(MBE) of commonly used ECC/EDC schemes

We extended the DC calculation to multi-bit (BCH) and
symbol (RS) correcting codes and derived a truly generic
equation to calculate the detection capability for uncorrectable
errors of any linear block code, be it CRC, Hamming, BCH, or
RS.

In addition, fault simulations have been conducted to analyze
the behavior in more detail and to validate the analytical
equations. Monte Carlo simulations can be added as part of
future work for higher order bit errors where exhaustive
simulations of all bit error combinations are not feasible
anymore.

While for functional safety, error detection (aka diagnostic
coverage) suffices, system availability (aka error correction or
fault prevention) is still very important in automotive embedded
systems. There are two approaches to effectively combine
(single-bit) error correction and high MBE detection for DRAM
subsystems:

1. EDC after ECC
Executing a host end-to-end EDC scheme (Hamming
code in detection mode or CRC) combined with link and
array ECC mechanisms on interface and DRAM side.

2. Overprovisioned ECC
Applying a host ECC with more check bits than
necessary to achieve the pure SEC-DED functionality.

More detailed investigations are required to assess pros and cons
of both options in different DRAM subsystems.

ACKNOWLEDGMENTS
The author would like to thank his colleagues Aaron Boehm,
Mellissa Uribe, and Scott Schaefer who were instrumental in
completing the above analysis. The author is grateful to
Alexander Griessing of Exida for his continuous training and
guidance in all aspects of functional safety and ISO 26262.
Finally, the author wants to thank Prof. Dr.-Ing. Matthias
Jung for the excellent technical discussions around DRAM RAS
capabilities and his encouragement to write this paper.

REFERENCES
[1] International Organization for Standardization (ISO). 2018. Road vehicles –

Functional safety, ISO 26262
[2] S. Buch. 2022. DRAM in Safety Critical Automotive Systems – A Micron White

Paper. Micron Technology, Inc. https://media-www.micron.com/-
/media/client/global/documents/products/white-
paper/lpddr5_safety_critical_auto_systems_white_paper.pdf

[3] L. Steiner et al. 2021. An LPDDR4 Safety Model for Automotive Applications.
MEMSYS 2021

[4] S. Buch. 2020. Questions to Ask Your Memory Supplier … About Functional
Safety for DRAM. Electronica.
https://www.youtube.com/watch?v=mzcbtXdWDcg

[5] M. V. Beigi et al. 2023. A Systematic Study of DDR4 DRAM Faults in the Field.
2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA)

[6] P. Koopman. 2018. Best CRC Polynomials. Carnegie Mellon University.
http://users.ece.cmu.edu/~koopman/crc/

[7] A. Boehm. 2021. DRAM – More Important Than You Think for Achieving
Automotive Functional Safety. Design News.
https://www.designnews.com/electronics/dram-more-important-you-think-
achieving-automotive-functional-safety

[8] Gurumurthi et al. 2021. HBM3 RAS: Enhancing Resilience at Scale. IEEE
Computer Architecture Letters 2021

https://media-www.micron.com/-/media/client/global/documents/products/white-paper/lpddr5_safety_critical_auto_systems_white_paper.pdf
https://media-www.micron.com/-/media/client/global/documents/products/white-paper/lpddr5_safety_critical_auto_systems_white_paper.pdf
https://media-www.micron.com/-/media/client/global/documents/products/white-paper/lpddr5_safety_critical_auto_systems_white_paper.pdf
https://www.youtube.com/watch?v=mzcbtXdWDcg
http://users.ece.cmu.edu/~koopman/crc/
https://www.designnews.com/electronics/dram-more-important-you-think-achieving-automotive-functional-safety
https://www.designnews.com/electronics/dram-more-important-you-think-achieving-automotive-functional-safety

