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ABSTRACT 
With the evolution of Advanced Driver Assistance Systems 
(ADAS) and Autonomous Driving (AD) in vehicles, processing 
requirements in Electronic Control Units (ECUs) increase 
significantly. Traditional microcontrollers using embedded flash 
and/or embedded SRAM to store data and execute program code 
are not performant enough. These automotive microcontrollers 
have for a long time been optimized for best quality and highest 
safety standards. New architectures with high performance 
multi-core System-on-Chip (SoC) designs and significant 
external DRAM need to follow the same path to assure 
functional safety. 

In this paper, we first provide an overview over failure modes of 
DRAM devices. After this we’ll analyze the behavior of common 
Error Correcting (ECC) and Error Detecting (EDC) Codes with 
the respect to their coverage of DRAM failure modes. We will 
show that simple Single-Bit Correcting Double-Bit Detecting 
(SEC-DED) ECC codes do not provide sufficient Diagnostic 
Coverage (DC) for multi-bit (MBE) and addressing errors that 
occur in DRAM devices with significantly high FIT (Failure-In-
Time) rates. The properties of popular ECC and EDC codes for 
their MBE DC will be derived analytically and in addition 
verified through simulations. Coding schemes with sufficient DC 
to build functionally safe DRAM sub-systems will be proposed. 

We will finally provide a generic equation to calculate MBE DC 
for any linear block code including CRC, Hamming, Bose-
Chaudhuri-Hocquenghem (BCH) and Reed-Solomon (RS) codes.  

Introduction 
Functional Safety (FuSa) is defined by ISO 26262 [1] as the 

“absence of unreasonable risk … due to hazards … caused by 
malfunctioning behaviour … of E/E systems.” E/E stands for 
electrical and electronic. As a part of the efforts that need to be 
taken to certify a component under ISO 26262, a detailed 
quantitative analysis of failure modes and FIT distributions for 
so-called random HW faults needs to be conducted [2]. Two 

approaches - Failure Modes, Effects, and Diagnostics Analysis 
(FMEDA) and quantitative Fault Tree Analysis (FTA) [3] – can 
be used.  

The starting point of the FMEDA is detailed a block-by-block 
failure mode analysis. Figure 1 shows a block diagram of a 
typical LPDDR DRAM component. Next, FIT (Failure-In-Time) 
rates are assigned to each block based on its relative gate count 
or die size and to the identified block-level failure modes. More 
details about this process can be found in [2]. Finally, to simplify 
system analysis, we aggregate all individual block-level failure 
mode FIT rates up to a more manageable set of top-level failure 
modes (TLFM). The TLFM represents the failure behavior that 
the host sees in case a low-level failure occurs. 

 

 

Figure 1: Block diagram of a typical LPDDR DRAM 

DRAM Top-Level Failure Modes (TLFM) 
Table 1 shows the TLFM identified for LPDDR4 and LPDDR5 

components [4]. There are eight distinct TLFM that can be 
grouped into three main failure mode types:  

• single-bit errors – SBE (TLFM-01) 

• multi-bit errors – MBE (TLFM-02, -03, -04, -07, -08)  

• addressing errors (TLFM-05, -06) 
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Table 1: LPDDR top-level failure modes 

Note that all failure modes are single-point fault failures 
which means, for example, that a single fault event causes 
multiple bits in a read burst to be wrong (MBE failure type). 

For LPDDR DRAM, a significant percentage of the safety 
critical FIT budget is allocated to single-bit errors that can easily 
be covered by a standard ECC on DRAM or on the host side, but 
the remaining percentage of the FIT are more difficult to detect 
because they are multi-bit and addressing errors. We found that 
for a 64Gb LPDDR5x DRAM, roughly 70% of the FIT is in single-
bit errors (TLFM-01) while the other 30% are in multi-bit and 
addressing failure mode types (TLFM-02 … -08). A recent large 
scale field study on commodity servers found a distribution of 
even 50%:50% for single- vs. multi-bit faults in DDR4 
components [5]. 

Because of the significant allocation to MBE and addressing 
failure types, we found that a standard JEDEC LPDDR DRAM 
with commonly used host inline ECC schemes (e.g., 64+8 single 
error correction, double error detection (SEC-DED)) is not able 
achieve hardware Key Performance Indicators (KPIs) required 
for functional safety [2][7]. This finding has recently also been 
confirmed independently by a team of researchers from TU 
Kaiserslautern, Fraunhofer Institute and Mercedes-Benz using a 
different analysis methodology — fault tree analysis (FTA) 
instead of FMEDA [3]. The issue is the mediocre detection 
capability of traditional ECC schemes for multi-bit and 
addressing errors. We’ll analyze the characteristics of common 
error detecting and error correcting codes with respect to their 
MBE detection capability in the next chapters. 

Error Correcting and Error Detecting Codes 
An error correcting code (ECC) adds redundant information – 

check bits or symbols – on sender side. The resulting codeword 
is transmitted over a noise channel where errors occur. The 
receiver can then correct a certain number of errors based on the 
redundancy added. Commonly used ECC codes for memory 
protection are SEC (Single Error Correct) or SEC-DED (Single 
Error Correct – Double Error Detect) Hamming codes. These 
codes can correct a single-bit error per codeword. Other 
alternatives are Bose-Chaudhuri-Hocquenghem (BCH) and Reed-
Solomon (RS) codes. BCH codes can correct multiple single-bit 
errors and RS codes one or multiple symbols (e.g. bytes). 

Error detecting codes (EDC) also add redundant bits or 
symbols on sender side. Again, the codeword is transmitted over 
a noisy channel that, with a certain probability, creates an error 
in the codeword. The receiver now can detect errors without 
correcting them. An example for and EDC is the Cyclic 
Redundancy Check code (CRC) [6]. However, any Hamming 
code can also be operated in EDC mode as the decoding 
procedure consists of 3 steps: 1. detection of an error in the 
codeword, 2. determination of the location of the erroneous bit, 
and 3. flipping of the respective bit location. A Hamming code is 
operated in EDC mode if the decoding procedure is stopped after 
the 1st step. 

Multi-Bit Error Diagnostic Coverage  
Diagnostic Coverage (DC) is a KPI used in ISO 26262 to 

determine the fault detection capability of a safety mechanism. It 
is specified as the ration of detected dangerous faults to all 
possible dangerous faults [1]. 

𝐷𝐶 =
detected failures

all failures
= 1 − 

undetected failures

all failures
 

Let d be the number of data and e the number of check bits in 
an error detecting or error correcting code. The code has then 2d 
valid code words and 2d+e possible words. 

In an EDC, all arbitrary multi-bit errors that fall on a valid 
codeword cannot be detected. The error and the valid codeword 
could not be distinguished. The EDC, hence, has 2d undetectable 
failure variants and 2d+e overall possible failure variants. The 
MBE DC can be calculated as 

𝐷𝐶(𝑀𝐵𝐸)𝐸𝐷𝐶 = 1 −
2𝑑

2𝑑+𝑒 = 1 − 2−𝑒 

It is interesting to note that the MBE DC of an error detecting 
code does not depend on the number of data bits but solely on 
the number of check bits of the code. This is only valid within 
the capacity limits of the code that in turn depend on the 
number of check bits. 

A single-bit correcting ECC (SEC or SEC-DED Hamming 
code) also has 2d+e overall possible MBE and all MBE that fall on 
the 2d valid codewords cannot be detected. In addition, all (d+e)2d 
possible multi-bit error combinations that appear as a single-bit 
error cannot be distinguished from real SBE and are, hence, 
undetectable. The MBE DC of a single-bit correcting ECC can be 
calculated as 

𝐷𝐶(𝑀𝐵𝐸)𝐸𝐶𝐶 = 1 −
2𝑑 + (𝑑 + 𝑒)2𝑑

2𝑑+𝑒  = 1 − (d + e + 1)2−𝑒 

 
For the same number of check bits e, DC(MBE)EDC is larger 

than DC(MBE)ECC. Figures 2, 3, and 4 show this trade-off in a 
graphical way. The 9x9 chess board represents the code space (81 
possible words). The green boxes are the valid code words (9 
valid codewords). We assume that errors can propagate only 
vertically and horizontally. As can be seen, the minimal 
Hamming distance is 3 so that a single-bit correcting code can be 
implemented in this code space. Minimum 3 steps are required to 
get from one green field to the next one.  
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Figure 2: Hypothetical EDC 

The MBE DC of the hypothetical EDC in Figure 2 can be 
calculated as DC(MBE) = 1 – 9/81 = 89%. 

 

 

Figure 3: Hypothetical SEC-ECC 

The yellow boxes in Figure 3, being one horizontal or vertical 
step away from a green box, represent single-bit errors. There 
are 36 possible singe-bit errors. MBE DC of the hypothetical 
SEC-ECC can be calculated as DC(MBE) = 1 – (9+36)/81 = 44%. 

 

 

Figure 4: Hypothetical SEC-ECC with an unused codeword 

In Figure 4, one of the possible codewords remains unused – 
one green box less. This method can be used to implement error 

correcting codes that combine the single-bit correction capability 
with high multi-bit detection as we will show later. This is 
commonly called overprovisioned ECC. The MBE DC of this 
code increases to DC(MBE) = 1 – (8+32)/81 = 51%. 

ECC and EDC Fault Simulation 
To validate the above analytical calculations, fault 

simulations of several CRC and Hamming codes in ECC and 
EDC mode have been conducted in Matlab. For all codes 
investigated, an all-0 data word yielded an all-0 codeword. 
Words with combinations of 1 could, hence be used to simulate 
errors in the all-0 codeword. All possible combinations with i bit 
errors for the binary codeword were generated and ran through 
the decode operation. Detected and undetected bit errors were 
counted. Simulations started with i=1 (SBE) and i was increased 
until the number of possible combinations was too high to be 
executed in reasonable time spans.  
A Hamming code can be described by the number total bits n, 
data bits k, and the minimum Hamming distance h. A common 
representation is Hamming(n, k, h). 
 

 

Table 2: Hamming(39,32,4) code fault simulation 

Table 2 shows a Hamming code with 32 data bits and 7 check 
bits. With its minimum Hamming distance of 4, it can correct 
100% of all single-bit errors and detect 100% of double-bit errors 
when operated in ECC mode (SEC-DED ECC). In EDC mode, it 
can detect 100% of all bit error combinations up to 3 bits (TED 
EDC). In addition to its single-bit correction and double-bit 
detection capabilities, the Hamming code can also detect a 
percentage of MBE. The simulations show that even bit errors 
are detected with a very high probability, while the DC for odd 
bit errors is rather low. 

Even bit errors can be detected because the additional parity 
bit used in h=4 Hamming codes to implement the DED function 
has the capability to detect all even bit errors - not just 2. Since 
valid codewords have the same parity as even bit errors, the 
overall DC is be bit lower than 100%.  

Certain odd bit errors can also be detected in this code since 
Hamming(39,32,4) is a so-called truncated Hamming code 
truncated from the full Hamming(64,57,4). Some MBE are 
decoded to unused (truncated) codewords and can, hence, be 
identified as uncorrectable MBE. It should be noted that 
additional logic must be implemented in the ECC decode 
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hardware to leverage the odd MBE detection capability. A simple 
textbook implementation might not have this.  

The analytical number for DC(MBE)ECC from the equations 
derived in this paper is 68.75%. To compare with the simulations, 
we need to average over odd and even MBE. We cannot use the 
weighted average to compare with the analytical number since 
the number of bit error combination differs significantly between 
i and i+1. Moreover, the coverage values simulated for individual 
i-bit errors can deviate from the ideal average as they depend on 
the actual code word selection in a truncated Hamming code. 
The higher i, the lower is the deviation from the ideal average. 
Averaging over i=8 (even MBE) and i=9 (odd MBE) gives the 
expected 68.75% from the analytical calculation. 

In EDC mode, all odd bit errors are detected with 100% 
probability. Since also here valid codewords have the same 
parity as even bit errors, even MBE falling on valid codewords 
cannot be detected. This is why the DC for even MBE is a bit less 
than 100%. The expected analytical DC(MBE)EDC is 99.6%. 
Averaging over i=8 (even MBE) and i=9 (odd MBE) gives 99.7%. 

 

 

Table 3: Hamming(72,64,4) code fault simulation 

Table 3 shows a Hamming code with 64 data bits and 8 check 
bits. Such codes are often used as an inline ECC in memory host 
controllers to protect against single-bit flips in DRAMs. In 
addition to its single-bit correction and double-bit detection 
capabilities, this Hamming code can also detect 71.48% of all 
arbitrary MBE in ECC mode. It can detect 100% of all bit errors 
up to i=3 and detect 99.6% of all higher order MBE in EDC mode. 
Averaging over i=8 and i=9 in the simulation results gives 69.95% 
in ECC mode and 99.55% in EDC mode.  

 

 

Table 4: Hamming(272,256,4) code fault simulation 

Table 4 shows the simulation results for an overprovisioned 
Hamming code with 256 data and 16 check bits. The minimal 
number of check bits required for a Hamming code with h=4 to 
protect 256 data bits would be 10. This code uses 6 additional 
check bits so that it is “overprovisioned”. The overprovisioning 
leads to many unused codewords and can, hence, be used to 
increase DC(MBE)ECC while maintaining the single-bit correction 
capability as it has been shown in Figure 4. 

The Hamming code has been derived from the IBM-CRC-16 
polynomial (x16 + x15 + x2 + 1) which can protect up to 32751 bits 
with a minimal Hamming distance h=4 [6]. It should be noted 
that any CRC code with a given minimal Hamming distance h 
can be converted into a Hamming code with the same h. 

The analytical values are DC(MBE)ECC=99.583% and 
DC(MBE)EDC=99.998%. The simulated average for i=4 and i=5 is 
99.514% and 99.996% for ECC and EDC mode respectively.  

Extension to BCH and RS codes 
With growing memory density and bandwidth requirements, 

improved multi-bit or symbol correcting codes are likely to be 
required. HBM3, for example, uses Reed-Solomon (RS) codes for 
improved robustness [8]. 

The generic equation for the detection capability (in 
functional safety terminology Diagnostic Coverage) of 
uncorrectable errors in any linear block code is given below: 

𝐷𝐶𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑏𝑙𝑒 = 1 −

(2𝑚𝑘 − 1) ∗ ∑ (𝑛

𝑖
)(2𝑚 − 1)𝑖

𝑡

𝑖=0

2𝑚𝑛 − ∑ (𝑛

𝑖
)(2𝑚 − 1)𝑖

𝑡

𝑖=0

 

With n being the codeword size, k the data word size, m the 
symbol size, and t the number of correctable bit or symbol 
errors. It should be noted that this equation is now truly generic. 
It can be used for CRC codes (m=1, t=0), Hamming codes (m=1, 
t=1), BCH codes (m=1, t>1), and RS codes (m>1, t≥1).  
Table 5 shows the fault simulation of all possible bit errors for a 
RS(7,3,3,5) code. The code has n=7 symbols in a code word of 
which there are k=3 data symbols. The symbol size is m=3 bits. 
The code has a minimum Hamming distance of 5 so that it can 
correct up to t=2 symbol errors. The code consists of overall 
m*n=21 bits. All error combinations with 1 or 2 bit errors can be 
corrected as they cannot span more than 2 symbols. For bit error 
combinations with 3 to 6 bit errors, some combinations can still 
be corrected if they fall into maximum 2 symbols. Bit error 
combinations with more than 6 bit errors always span more than 
2 symbols and can, hence, not be corrected anymore. The 
simulation results in an average DC over all uncorrectable error 
combinations of 73.6951% which is identical to the result 
obtained with the generic equation presented above. 
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Table 5: RS(7,3,3,5) code fault simulation 

Conclusions 
The main top-level failure modes (TLFM) of DRAM 

components show significant FIT in multi-bit (MBE) and 
addressing errors. MBE are the 2nd highest FIT contributor after 
SBE in DRAM. MBE can occur in the memory array, the 
periphery, and the package – with package and periphery being 
the biggest contributors. Protection mechanisms on DRAM 
and/or host side, hence, require a very high MBE detection 
capability DC(MBE). Simple ECC schemes are often not 
sufficient to achieve the required DC. 

Analytical equations to calculate DC(MBE) for error detecting 
(CRC, Hamming code in detection mode) and single-bit error 
correcting codes (Hamming code in correction mode) have been 
derived. Table 5 provides an overview of DC(MBE) for 
commonly used coding schemes in ECC as well as EDC mode. 

 

 

Table 5: DC(MBE) of commonly used ECC/EDC schemes 

We extended the DC calculation to multi-bit (BCH) and 
symbol (RS) correcting codes and derived a truly generic 
equation to calculate the detection capability for uncorrectable 
errors of any linear block code, be it CRC, Hamming, BCH, or 
RS. 

In addition, fault simulations have been conducted to analyze 
the behavior in more detail and to validate the analytical 
equations. Monte Carlo simulations can be added as part of 
future work for higher order bit errors where exhaustive 
simulations of all bit error combinations are not feasible 
anymore.  

While for functional safety, error detection (aka diagnostic 
coverage) suffices, system availability (aka error correction or 
fault prevention) is still very important in automotive embedded 
systems. There are two approaches to effectively combine 
(single-bit) error correction and high MBE detection for DRAM 
subsystems:  

1. EDC after ECC 
Executing a host end-to-end EDC scheme (Hamming 
code in detection mode or CRC) combined with link and 
array ECC mechanisms on interface and DRAM side. 

2. Overprovisioned ECC 
Applying a host ECC with more check bits than 
necessary to achieve the pure SEC-DED functionality. 

More detailed investigations are required to assess pros and cons 
of both options in different DRAM subsystems. 
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