
Linear-Mark: Locality vs. Accuracy in Mark-Sweep Garbage
Collection

Chiara Meiohas
chiara@cs.technion.ac.il

Technion
Israel

Stephen M. Blackburn
steveblackburn@google.com

Google
Australia

Erez Petrank
erez@cs.technion.ac.il

Technion
Israel

ABSTRACT
Tracing garbage collectors are widely deployed in modern program-
ming languages. But tracing an arbitrary heap shape incurs poor
locality and may hinder scalability. In this paper, we explore an
avenue for mitigating these inefficiencies at the expense of con-
servative, less accurate identification of live objects. We do this by
proposing and studying an alternative to the Mark-Sweep tracing
algorithm, called Linear-Mark. It turns out that although Linear-
Mark improves locality and scalability, the accuracy of Mark-Sweep
outweighs the achieved enhancements. We present the Linear-Mark
garbage-collecting algorithm and provide an evaluation that high-
lights the trade-offs between the Linear-Mark and the Mark-Sweep
approaches. Our hope is that this research will inspire further algo-
rithmic improvements, ultimately leading to better garbage collec-
tion algorithms.

CCS CONCEPTS
• Software and its engineering→ Runtime environments;Garbage
collection; • Computer systems organization → Parallel archi-
tectures.

KEYWORDS
automaticmemorymanagement, garbage collection, parallel garbage
collection, Mark-Sweep garbage collector

1 INTRODUCTION
Managed programming languages have become highly popular and
are widely used in various domains, from Big-Data platforms to
mobile computing. They reduce the likelihood of memory-related
bugs and improve the development process. Managed environments
rely on a garbage collector that frees unneeded allocated memory.

A popular method for reclaiming unneeded memory is by use
of tracing collectors. Mark-Sweep garbage collectors [26] reclaim
unused memory by tracing and marking objects reachable from
the program roots (the marking phase) and then reclaiming all
unmarked objects (the sweep phase). Tracing collectors are em-
ployed in one way or another in most existing commercial environ-
ments [13, 16, 19, 25]. Most of the garbage collection time is spent
in the marking phase, especially because it traverses the heap in a
non-sequential order, which incurs higher rates of cache misses. In
this paper, we study a variant of the Mark-Sweep algorithm, called
Linear-Mark, which reduces the cache miss rate during the marking
phase at the cost of relaxing marking accuracy in a conservative
manner. Namely, we improve locality while ensuring that we never
reclaim a reachable object, but we may fail to reclaim some of the
unreachable objects.

We propose the Linear-Mark garbage collector, which replaces
the graph-traversing marking phase of the Mark-Sweep algorithm
with a linear-marking phase, that goes linearly over all objects in
the heap. The sweep phase is left untouched, reclaiming all objects
that are not marked in the marking phase (no matter whether Mark-
Sweep or Linear-Mark was previously executed). The main idea of
linear marking is to make a single sequential pass over the heap, in
which it visits each allocated object in the the heap sequentially and
marks their direct descendants. This marking is conservative; the
marked objects are a super-set of the reachable objects. It will tend
to mark some unreachable objects, simply because they are directly
reachable from allocated objects, even though the allocated objects
may themselves be unreachable. However, going sequentially over
the heap and marking descendants on a separate small bitmap
improves locality. In this paper we study this trade-off between
locality and accuracy of the collection.

To understand the inaccuracy of the marking phase, we note that
this variant ofMark-Sweep inherits properties of reference counting
[12]. Reference counting is a reclamation method that maintains for
each object a count of the pointers that reference the object. When a
reference count of an object goes down to zero, the object is clearly
not reachable and may be reclaimed. When objects are reclaimed
with the reference counting algorithm, the reference counts of their
descendants are decremented, and descendants may be reclaimed
recursively. Our Linear-Mark identifies exactly the objects that
have a zero reference count, with the notable difference that it does
not use recursive reclamation of descendants of deleted objects
because such a recursive deletion would foil the good locality of the
Linear-Mark. Consequently, Linear-Mark is less precise and more
conservative than reference counting.

Since the Linear-Mark does not reclaim all unreachable objects,
the heap may be filled with unclaimed objects, similarly to cycles
that may fill and exhaust the heap with a reference counting col-
lector. Therefore, (similarly to reference counting) we occasionally
invoke the standard marking procedure (from the Mark-Sweep al-
gorithm) in order to accurately identify all reachable objects and
adequately reclaim all other objects in order to reduce the heap size
to exactly its live object set.

The scalability of garbage collectors is hard to obtain. While
real-world architectures become more and more parallel with a
growing number of cores, production garbage collectors are not
able to scale to all available cores. Typically, beyond a predeter-
mined core threshold, garbage collectors use fewer collector threads
than the number of cores simply because they cannot efficiently
use many cores. For example, in the Parallel Collector of HotSpot
VM [27] and in G1 [3, 13], the default number of stop-the-world
collector threads is 5/8 of logical processors when there are more
than eight logical processors. On very large systems, the default

1

Chiara Meiohas, Stephen M. Blackburn, and Erez Petrank

is 5/16 of logical processors. It is shown by Gidra et al. [18] that
the OpenJDK 7 collector’s performance degrades when using more
than eight collector threads. Consequently, significant efforts have
been dedicated to improve the scalability of garbage collectors on
multicore platforms.

In light of the collection scalability difficulty, it is interesting to
note that Linear-Mark is highly scalable, and the evaluation demon-
strates a higher speedup for Linear-Mark compared to Mark-Sweep.
For Mark-Sweep collectors, the scalability of the marking phase
depends on the scalability of the heap graph’s shape [2]. In con-
trast, the sweep phase is easily parallelized: the heap can be divided
into regions, and different collector threads sweep different regions.
Linear-Mark can be similarly parallelized: each collector thread
linear-marks its assigned region. Linear-Mark’s marking phase
does not depend on the heap shape and is highly parallelizable.

To evaluate Linear-Mark, we compare Linear-Mark’s perfor-
mance to the original Mark-Sweep. And in order to understand the
impacts of the various properties of the two collectors, we further
measure various other properties on top of their performance. In
particular, we evaluate their cache miss rate, their scalability, and
handling of the different benchmarks. We compare the collectors us-
ing the DaCapo benchmark suite [6, 7] and a specialized benchmark
that demonstrates the good benefits of Linear-Mark. Our general
findings show that Mark-Sweep has shorter collection times than
Linear-Mark on the DaCapo benchmarks. However, Linear-Mark
achieves lower cache miss rates and higher parallelism. It turns
out that the accuracy of the collection is very important. While the
Linear-Mark collector does not outperform Mark-Sweep (except for
specialized cases) we hope the ideas and analysis provided here may
trigger subsequent research and may be useful to better understand
the properties of tracing collectors and their value.

Organization. In Section 2 we describe the background for this work.
In Section 3 we present the Linear-Mark algorithm, and discuss
its advantages and disadvantages with respect to Mark-Sweep. In
Section 4 we present a Synthetic micro-benchmark that exploits
the benefits of the Linear-Mark collector. In Section 5 we discuss
the implementation, and an evaluation is provided in Section 6.
Additional related work is reviewed in Section 7, and we conclude
in Section 8.

2 BACKGROUND
Garbage collectors identify and free memory that is no longer in use
by the program. In this paper we study the Mark-Sweep garbage
collector. We concentrate on stop-the-world parallel execution of
the garbage collector. Namely, when memory is running out, the
program is paused to run the collector to free memory. Multiple
collector threads execute the collection in parallel, and when the
collection completes, the program resumes.

2.1 Mark-Sweep
Mark-Sweep garbage collectors [26] trace all objects reachable
from the program roots (similar to a graph traversal) and mark all
reachable objects (also called live objects). Once finished tracing, the
collector moves into the sweep phase and scans the heap to reclaim
the space of all unmarked objects. These objects are unreachable

from the roots (also called dead objects). The reclaimed space is
then used for subsequent allocations.

Algorithm 1 Linear-Mark Algorithm

1: procedure MarkRoots()
2: for objects in Roots do
3: if !IsMarked(object) then
4: setMarked(object)
5:
6: procedure LinearMark(start, end)
7: ref = start
8: while ref < end do
9: if isAllocated(ref) then:
10: for fld in Pointers(ref) do
11: child = *fld
12: if !IsMarked(child) then
13: setMarked(child)
14: ref = getNextWord(ref)
15:
16: procedure Sweep(start, end)
17: scan = start
18: while scan < end do:
19: if !IsMarked(scan) then
20: free(scan)
21: else
22: unsetMarked(scan)
23: scan = getNextWord(scan)
24:
25: procedure LinearMarkCollection()
26: MarkRoots()
27: LinearMark(heap.start, heap.end)
28: Sweep(heap.start, heap.end)

2.1.1 Marking Locality. Locality of execution in the marking phase
is typically poor as tracing traverses objects in arbitrary memory
order, depending on the shape of the heap objects graph. Garner et
al.[17] showed that the principal bottleneck of the marking phase
is poor locality. Boehm [9] and Garner et al. [17] proposed to use
prefetching, Cohen and Petrank [11] presented a data structure-
aware garbage collector, which improves the locality of the trace
when tracing objects that belong to data structures.

2.1.2 Marking Parallelism. The scalability of the marking phase
was studied in the literature [2, 30], showing that parallelism of the
trace may be limited, depending on the shape of the live-objects
graph in the heap. As the marking phase performs a graph traversal
over the live objects in the heap, the workload of the collector
threads may be unbalanced. For example, if the live-objects graph
is a single linked-list, then only one collector thread can mark the
live objects while other collector threads remain idle. This happens
because one single collector thread discovers one descendant object
at a time and does not have any additional work to share with
other concurrent collector threads. In general, a deep and narrow
live-objects graph may cause the marking phase to be not scalable,
and the collector threads workload to be unbalanced. It was shown

2

Linear-Mark: Locality vs. Accuracy in Mark-Sweep Garbage Collection

in [2] that some of the Dacapo benchmarks [6, 7] have live-objects
graphs with low scalability.

2.1.3 Sweeping. Unlike themarking phase, the sweeping phase has
good locality and good scalability, which oftenmakes the time spent
on sweep a small part of the garbage collection process. Thememory
accesses when sweeping tend to be more sequential, which achieves
higher locality. Due to the ease of splitting sweep work, sweep can
be easily executed eagerly (at one shot at the end of the marking
phase) or lazily (incrementally, when allocation requires). An eager
sweeping can be easily parallelized by letting different collector
threads sweep different address ranges of the heap. The areas are
independent of one another, and high scalability is, therefore, easy
to achieve. Lazy sweeping [21] can be easily organized by letting
each mutator sweep an unswept area when space is needed. With
lazy sweeping, the sweep time is distributed among the mutators
and across time rather than done in a batch right after marking.
Lazy sweep may incur better locality as an area is swept just before
parts of it are allocated and used.

In this work, we refer mainly to the marking phase, which we
will replace with a linear mark. The sweeping phase may be done
eagerly or lazily. The important takeaway is how simply eager-
sweeping can be parallelized, as this is what motivated Linear-Mark
and the high scalability it achieved.

2.2 Reference Counting
Reference counting (RC) [12] collectors do exactly as the name
suggests: they count references to objects. Naive RC stores the
number of references to each object and collects an object if its
count falls to zero. When an object is reclaimed, the reference
counts of its children are decreased, which may cause additional
object reclamations and recursive reference count updates. A write
barrier is used to always store the correct reference count: when a
pointer change is detected the previously referenced object’s count
is decreased, and the newly referenced object’s count is increased.

There are two main drawbacks to Naive RC: it does not collect
cycles data structures, and it has highmutator overhead.Wewill not
discuss the latter limitation, but many optimizations were achieved
to solve this issue [15, 22–24]. The reference count of objects in a
cyclic structure is at least one; therefore, RC alone cannot reclaim
such structures. A simple solution is to run an occasional tracing
collector [14] to collect the floating garbage.

3 LINEAR MARKING
3.1 Linear-Mark algorithm
The Mark-Sweep algorithm consists of two phases: in the marking
phase all objects transitively reachable from the roots are marked,
and in the sweep phase all unmarked objects are reclaimed. The
Linear-Mark algorithm modifies the marking phase. Instead of
traversing the live objects in a DFS-style traversal, which is not
cache-friendly and not always scalable, Linear-Mark simply marks
all objects that are directly referenced by allocated objects, or from
the roots. This can be done by marking the roots, and then going
over the heap in address order and marking the children of each
allocated object. The sweep phase remains the same as in mark-
sweep.

Note the difference betweenMark-Sweep and Linear-Mark:Mark-
Sweep marks only live objects in the heap according to the traversal
order. Linear-Mark marks all reachable objects, but it tends to mark
additional objects. In particular, Linear-Mark will mark unreachable
allocated objects that are referenced by other unreachable allocated
objects. While this would prevent us from collecting some unreach-
able objects, it will never cause the reclamation of a live object.
Thus, the correctness of the execution is still guaranteed, but the
accuracy (and therefore efficiency) of the collection decreases. We
discuss this inaccuracy below.

There are two advantages to linear marking that may justify
the conservative (reduced) accuracy of the marking phase. First,
the marking is sequential. It goes over the heap in address order
and therefore incurs better locality. While making a heap pass
sequentially, the marking phase also accesses two bitmaps: the
alloc bitmap, which identifies the location of each known object
in the heap, and the mark bitmap is used to mark live objects.
Both tables hold one bit per heap word, and hence the size of each
table is 1/64 the size of the heap. Linear-Mark traverses both the
heap and the alloc bitmap in a sequential manner which improves
locality significantly. Linear-Mark accesses the mark bitmap in an
arbitrary order, depending on the descendants of each encountered
object. But since the bitmap is small, this does not have a strong
detrimental effect on the locality of the entire linear marking phase.
The evaluation shows that the cache miss rate during the traversal
is reduced on all cache levels (L1, L2, and L3).

The second advantage of linear marking is that it is easily par-
allelizable, in contrast to a regular (DFS-style) marking that may
be impossible to scale, depending on the shape of the live-objects
graph in the heap. Live-object graphs that are long and narrow in
shape may result in poor scalability [2, 30]. In contrast, linear mark-
ing is easy to parallelize: different collector threads can simply scan
separate regions in the heap. The heap can be divided into regions,
and each of these smaller regions can be traversed independently
of the other regions, except for an easy synchronization of writing
to the mark bitmap. Thus, scalability of Linear-Mark is better than
a regular marking traversal.

Algorithm 1 shows the pseudo-code of a Linear-Mark collector.
Figure 1 briefly illustrates how the linear-marking phase works.
Note the difference between Mark-Sweep and Linear-Mark: Mark-
Sweep accesses only live objects in the heap according to the tra-
versal order. Linear-Mark accesses all allocated objects in the heap,
but sequentially.

3.2 Correctness
Linear-Mark never collects a live object. An object 𝑂 is live by
definition if transitively reachable by a program root. Therefore 𝑂
is reachable by a path that starts with a program root and consists
of allocated objects. As Linear-Mark marks all objects referenced
by allocated objects, it will mark all objects in this path, including
𝑂 .

3.3 Accuracy of the collection
The disadvantage of linear marking is its inaccuracy: it conserva-
tively marks objects. To understand the inaccuracy in the identi-
fication of reachable objects, we look at the unreachable objects

3

Chiara Meiohas, Stephen M. Blackburn, and Erez Petrank

Figure 1: Linear marking phase. Linear-Mark uses a side alloc bitmap and a side mark bitmap. Objects pointed by the program’s
roots and children of allocated objects are marked.

Figure 2: Example of the levels in a directed graph.

graph from a reference-counting point of view. Linear-Mark does
not maintain reference counts, but just for this analysis, let us con-
sider the reference counts as if we knew them for each object. It
can be easily seen that linear marking marks exactly all objects
with non-zero reference count. This is because objects with zero
reference count do not have any objects referencing them in the
heap and are thus not marked by linear mark, whereas objects with
non-zero reference counts do have objects (or roots) referencing
them, which will cause the Linear-Mark to mark them. This means
that the Linear-Mark garbage collector (with a regular sweep) will
reclaim exactly all objects that have zero reference count.

Like Reference-counting, Linear-Mark does not reclaim unreach-
able cycles (or strongly connected components). To address this
limitation in practice, Linear-Mark will periodically invoke the reg-
ular Mark-Sweep garbage collector to target cycles and any floating
garbage that Linear-Mark has not been able to reclaim.

To further explain the inaccuracy of the linear marking, let us
examine the graph of unreachable objects at some specific collection.

We define the level of an object 𝑂 to be the length of the longest
path from an object to 𝑂 . Formally, denote by 𝑂 ′ ⇝ 𝑂 a directed
path (of pointers) from an object 𝑂 ′ to an object 𝑂 . And denote
the length of this path by len(𝑂 ′ ⇝ 𝑂). For any unreachable node
𝑂 , we define level(𝑂) = max{len(𝑂 ′ ⇝ 𝑂) : 𝑂 ′ is alloacted and
unreachable}. If the above set is empty, we say that level(𝑂) = 0.
Objects on Level 0 do not have any incoming edges and are not
referenced by any other dead object. Objects that are part of strongly
connected components (SCC), e.g., objects in a cycle, and objects
that are reachable from an SCC are said to have level∞. An example
of a graph and the levels of its nodes is shown in Figure 2.

Using the levels terminology, Linear-Mark will collect only the
objects on Level 0 in the unreachable objects graph. But note that
in the next Linear-Mark collection, objects in level 1 in the previous
collection can be reclaimed now, together with objects currently in
level 0. Whenever we reclaim level 0, the objects of level 1 move to
level 0. The objects on level∞will never be collected (ex. cycles will
never be collected). When many objects are on levels higher than
0, the collection accuracy decreases, resulting in floating garbage.
If most objects are on level 0, the collection accuracy is higher, and
Linear-Mark collects most unreachable objects.

Evaluation with standard benchmarks shows that most objects
are in level 0, but a non-negligible fraction of them are in higher
levels. We occasionally run the Mark-Sweep garbage collector to
collect cycles and floating garbage leftover from the previous Linear-
Mark collections.

4 A SYNTHETIC MICRO-BENCHMARK
To demonstrate the full potential of linear marking we build a
simple benchmark that highlights its advantages. The benchmark
simply executes inserts and deletes to a linked list. Over time, the
location of the nodes in the linked list becomes arbitrary, making a
normal (DFS-style) marking that needs to traverse the linked list
become cache-unfriendly. Also, scaling a regular mark is difficult,

4

Linear-Mark: Locality vs. Accuracy in Mark-Sweep Garbage Collection

because the tracing of a linked-list cannot be parallelized. Each
scan of an object discovers a single descendant, that can then be
scanned by a single thread.

We further nullify the next pointer of a deleted node, to make
sure that it does not point to a node that may later become deleted.
This assures the accuracy of a Linear-Mark is as high as possible
because a dead object that is unlinked from the list is not referenced
by any object. The resulting benchmark is very simple and is meant
to manifest the advantages of Linear-Mark.

The synthetic benchmark starts by building a substantial-sized
linked list, and it then simply repeatedly inserts a random key into
the list and then removes a random key from the list. As shown
in the evaluation, on this synthetic benchmark Linear-Mark out-
performs a highly optimized tracing collector, and it also scales
better.

5 METHODOLOGY
5.1 Hardware and Operating System
We use the Intel Xeon Gold 6338 processor, with a 2GHz clock and
two sockets with 32 physical cores each (64 physical cores overall).
Each core has a 32KB, 8-way, 64B line L1 instruction cache, 48KB,
12-way, 64B L1 data cache (overall 2MB L1i cache and 3MB L1d
cache), and a 1.25MB, 20-way, 64B line L2 cache (overall 80MB
L2 cache). Each socket has a shared 48 MB, 12-way, 64B line L3
cache (overall 96MB). The machine runs Ubuntu 20.04.5 and Linux
5.4.0-136-generic kernel.

5.2 OpenJDK and MMTK
Our evaluations on Java use Openjdk 11.0.17+8. We implement
Linear-Mark in the Memory Management toolkit (MMTK) [4, 5],
using the OpenJDK binding. We will make the code publicly avail-
able once anonymity is lifted. Our evaluations use Immix [8], a
highly optimized Mark-Region collector with opportunistic evacu-
ation. We do not describe the details of the Immix algorithm, but
it is a tracing algorithm that sometimes evacuates objects from
specific blocks in the heap (defragmentation). Because it is a tracing
algorithm, we could implement Linear-Mark on top of it.

5.3 Linear-Mark configuration
Linear-Mark was implemented on top of the Immix [8] collector
available in MMTK. Immix, like a Mark-Sweep collector, has a mark-
ing phase and a sweep phase. We implemented the Linear-Mark
instead of Immix’s trace, and the sweep phase remained untouched.
In addition to the metadata Immix stores, Linear-Mark also uses an
alloc bitmap, which identifies the location of each known object in
the heap at word granularity. If the current collection is a defrag
collection, we let Immix run instead of Linear-Mark.

In Linear-Mark, each worker thread takes a chunk of the heap
and searches for allocated objects to mark the referents (children) as
alive. The size of the chunk determines the unit of work processed
by each thread, which affects load balancing, and may determine
the overall performance of the linear marking phase of the collector.
If we have a small heap with large chunk sizes, only a few worker
threads will work during the linear marking phase. But if the chunks
are too small, there may be higher contention as workers race to
acquire chunks of work. We found that 32KB chunk size worked

well for the workloads we evaluate. We used that size in the results
we report here.

5.4 Benchmarks
We evaluate Linear-Mark and Immix using the DaCapo benchmark
suite [6, 7, 20] and the synthetic micro-benchmark described in
Section 4. We run each benchmark five times and average the
results; this average is represented in the figures.

5.4.1 DaCapo benchmark suite. We used a snapshot of the Chopin
release [20] of the DaCapo benchmark suite [6, 7]. We use 16 bench-
marks of the DaCapo suite: tradebeans and tradesoap are omitted
because they often fail on this version of OpenJDK. We also exclude
batik as it does not produce any collections when using 4× the
minimum heap of Immix.

For time-sensitive measurements, we perform three warmup
iterations and collect information on the 4th iteration using the
DaCapo harness. We averaged the results over five invocations.
As discussed in the introduction, running Linear-Mark solo is not
possible on many benchmarks because failing to reclaim a fraction
of the objects does sooner or later exhaust the heap. For example,
in lusearch, tomcat, graphchi, and cassandra, more than half of the
dead objects are marked as live (as shown in Figure 7). While other
benchmarks allow more object collection, we adopt a strategy that
holds for all benchmarks and execute Linear-Mark andMark-Sweep
alternately. Mark-Sweep (of Immix) reclaims cycles and floating
garbage left from the previous Linear-Mark collection.

5.4.2 The Synthetic benchmark. As detailed in Section 4, We im-
plemented a synthetic benchmark that highlights the benefits of
Linear-Mark. The benchmark uses four mutator threads that oper-
ate over a shared linked list, inserting and removing nodes in the
list for randomly selected keys.

Linear-Mark does not require an occasional backup tracing col-
lector to clear floating garbage in this micro-benchmark because
it reclaims all unreachable objects. Recall Linear-Mark does not
support defragmentation (opportunistic evacuation) collections;
therefore, we disabled Immix defragmentation. This assures that all
collections run the Linear-Mark algorithm when using the Linear-
Mark collector. We conduct the evaluation using the following
parameters: 4 mutator threads, a linked list with 216 nodes, each
mutator executed 220 random insertions and deletions and the heap
size was 52MB. We ran Immix and Linear-Mark with 1, 4, 8, 16, and
32 collector threads.

For each run, we perform three warmup iterations and collect
the information on the 4th iteration. We then average the data over
five invocations.

6 RESULTS
In this section, we provide an evaluation of the Linear-Mark collec-
tor. Its benefits are demonstrated on the synthetic micro-benchmark
in Section 6.1. The evaluation on real benchmarks appears in Sec-
tion 6.2. In each of these sections, we start by evaluating the locality
behavior of the mark phase via the cache miss rates for both Immix
and Linear-Mark. Next, we study the speedup of the two collec-
tors over a growing number of collector threads, to evaluate the
scalability of Linear-Mark against the scalability of Immix. Then,

5

Chiara Meiohas, Stephen M. Blackburn, and Erez Petrank

we report the performance of the two collectors, and finally, we
study the inaccuracy of Linear-Mark by checking the BFS-levels
of the dead objects graph. The latter signifies how much time it
will take to reclaim objects with Linear-Mark. Objects at level 0
are reclaimed immediately by Liner-Mark, whereas objects at level
1 are reclaimed at the subsequent collection cycle, after objects
of level 0 are reclaimed. In general, the reclamation of objects at
level 𝑖 is delayed for 𝑖 collection cycles. To understand the real
behavior of the dead objects, we measure the levels under the exact
identification of dead objects by the mark phase of Immix. Using
Linear-Mark to investigate the dead objects graph would create
artificial results due to the examination of floating garbage of levels
higher than 0 from previous collections.

6.1 Synthetic Micro-Benchmark
When running Linear-Mark on this benchmark, no backup Immix
collections are required, as the benchmark design assures Linear-
Mark collects all unreachable objects.

Miss rates (%) Linear-Mark Immix
L1 miss rate 2.4 1.5
L2 miss rate 22.82 61.7
L3 miss rate 18.25 4.68
Speedup Linear-Mark Immix
4 threads 2.3 1.52
8 threads 3.45 1.65
16 threads 4.872 1.75
32 threads 7.07 1.46

Table 1: Evaluation of the synthetic micro-benchmark. The
first table shows the L1, L2 and L3 cache miss rates of Linear-
Mark and Immix. The second table shows the speedup of the
collectors when using 4, 8, 16 and 32 collector threads.

6.1.1 Cache Misses. We examine the cache miss rates of Linear-
Mark compared to those of Immix. We used performance counters
to get L1, L2, and L3 cache misses and references. For L1 cache
misses, we calculate only the L1 data load cache misses, as there
isn’t a perf counter for the L1 store misses on our machine. We
analyze the miss rate (misses/references %) of the marking phase
of Immix and the linear-marking phase of Linear-Mark.

The most relevant parameter here is the L2 miss rate, for which
Linear-Mark has a dramatic decrease to about a third of the cache
miss rate of Immix. This is where locality kicks in. The L1 cache is
small, and therefore the marking of the descendant objects in an
external mark bit-table (which incur many cache misses for such
a small cache) makes the mark phase of Linear-Mark as prone to
cache misses as any other collector. The linear traversal of the large
heap is not effective in this case. Both collectors’ L1 cache miss
rate is very small, below 2.5%. As for L3, its size is 48MB on each
socket, 96MB cache overall. The specific heap size of 52MB used
here is favorable to Immix since it allows the entire live objects and
external bit tables to fit into the cache. For Linear-Mark this specific
size puts the heap plus additional external tables outside the L3
cache, which implies more cache misses. The same phenomenon is
not typical to real-world benchmarks, as shown in Section 6.2.

0 5 10 15 20 25 30
num_threads

50

100

150

200

250

300

350

400

450

co
lle

cti
on

 ti
m

e (
m

s)

linear_mark
immix

Figure 3: Collection time of Linear-Mark and Immix on the
synthetic micro-benchmark.

6.1.2 Parallelism. The scalability of Linear-Mark is evident in this
benchmark; the collection time improves the more the collector
threads (see Figure 3). We measure the speedup of the collectors
on this benchmark: the speedup of a collector with 𝑥 threads is
the collection time on one thread divided by the collection time on
𝑥 threads. Therefore the speedup value of any collection on one
collector thread is always 1. We present the speedup of both collec-
tors in Table 1. With 32 collector threads, Linear-Mark achieves a
7× speedup, whereas Immix achieves only a 1.46× speedup. Immix
does not achieve more than a 1.75× speedup on any of the collector
threads, which supports the claim that linked lists are not scalable
heap shapes [2].

6.1.3 Performance. Figure 3 illustrates the collection time of Immix
and Linear-Mark when using 1, 4, 8, 16, and 32 collector threads.
There are two notable observations: (i) when using eight or more
collector threads, Linear-Mark performs better than Immix, (ii)
Linear-Mark’s collection time improves when using more threads,
but Immix’s collection time does not improve when using more
than four collector threads.

Linear-Mark has slower collection times than Immix when using
1 and 4 collector threads, but on 8, 16, and 32 threads, it performs
better than Immix. Linear-Mark linearly scans the heap during
the collection, whereas Immix traces only the live objects; conse-
quently, Linear-Mark is slower when using a few collector threads
because each collector thread must scan larger chunks of the heap.
Additionally, Table 1 shows Immix has better L1 and L3 cache miss
rates. Therefore, Immix performs better than Linear-Mark for a few
collector threads, but when many collector threads are available,
Linear-Mark outperforms Immix.

6.1.4 Conclusion. Linear-Mark shows better performance than
Immix on this benchmark when using eight threads or more, which
confirms Linear-Mark’s high parallelism. Although the results achieved
for the DaCapo benchmarks are dissatisfying, the results in this
section support the design inspiration.

6

Linear-Mark: Locality vs. Accuracy in Mark-Sweep Garbage Collection

Figure 4: Collection time speedup on Linear-Mark and Immix on the DaCapo benchmarks.

6.2 DaCapo Benchmarks
In this section, we report the evaluation of Linear-Mark against
Immix on the Dacapo benchmark suite.

6.2.1 Cache Misses. We start with a comparison of the locality
for the two collectors. When running Linear-Mark, we run the
Linear-Mark collector and Immix collector alternately, in the hope
of using Linear-Mark to improve locality and scalability (and there-
fore efficiency) and then using Mark-Sweep to prevent the growth
of the space used by floating garbage. We run both collectors on 4x
the minimum heap size for all benchmarks.

We examine the cache miss rates of Linear-Mark compared to
those of Immix. We used performance counters to get L1, L2, and
L3 cache misses and references. For L1 cache misses, we calculate
only the L1 data load cache miss rates. We analyze the miss rate
(misses/references %) of the marking phase of the collectors as the
sweep phase is identical. When evaluating the miss rates of the
Linear-Mark collector, we average the miss rates of the Linear-Mark
collections only (and not the Immix collections). When evaluating
the miss rates of Immix, we average the miss rates of all the collec-
tions. The miss rates were essentially the same regardless of the
number of threads. As a result, we present the cache miss rates
when running both collectors with 32 collector threads.

Figure 5a illustrates the L1 cache miss rate of Linear-Mark and
Immix. On most benchmarks, Linear-Mark has lower cache miss

rates than Immix. It is worth noting that the L1 cache miss rate of
about 3% for Linear-Mark means that L2 and L3 cache misses may
only happen for the 3% of the memory accesses that were not served
by L1. Of these memory accesses, on almost all benchmarks Linear-
Mark has better (lower percentage of) cache misses on L2 and on
L3. Linear-Mark has higher L1 miss rates in biojava and sunflow,
higher L2 miss rates in jme and biojava, and higher L3 cache miss
rates in avrora, biojava, graphchi, lusearch and zxing. The reason
for the lower L3 cache miss rates of Immix on lusearch and zxing is
that the average size of the live objects is significantly smaller than
the L3 cache. However, the overall heap size is considerably bigger
than the L3 cache, which causes more cache misses in Linear-Mark.

6.2.2 Parallelism. Next, we examine the scalability of Linear-Mark
compared to Immix on the benchmarks. We compare the speedup of
both collectors using 𝑥 ∈ {1, 4, 8, 16, 32, 64} threads. When running
Linear-Mark, we run the Linear-Mark collector and Immix collector
alternately. We ran the collectors on 4x the minimum heap size of
Immix (see Table 2).

Figure 4 illustrates Immix and Linear-Mark’s speedup on vari-
ous threads on all benchmarks. On all benchmarks except h2, jme
and pmd Linear-Mark clearly shows higher scalability. For jme the
two collectors scale at about the same pace, for h2 Linear-Mark
only wins on 64 threads, and with pmd Immix scales better until
64 threads. For the other benchmarks, Linear-Mark clearly scales

7

Chiara Meiohas, Stephen M. Blackburn, and Erez Petrank

avrora
biojava

cassandra
eclipse fop

graphchi jme
jython

luindex
lusearch h2pmd

sunflow
tomcat

xalan
zxing

0

1

2

3

4

5

l1
ca

ch
e m

iss
 ra

te

linear_mark
immix

(a) L1 cache miss rate

avrora
biojava

cassandra
eclipse fop

graphchi jme
jython

luindex
lusearch h2pmd

sunflow
tomcat

xalan
zxing

0

10

20

30

40

50

l2
ca

ch
e m

iss
 ra

te

linear_mark
immix

(b) L2 cache miss rate

avrora
biojava

cassandra
eclipse fop

graphchi jme
jython

luindex
lusearch h2pmd

sunflow
tomcat

xalan
zxing

0

10

20

30

40

50

60

70

l3
ca

ch
e m

iss
 ra

te

linear_mark
immix

(c) L3 cache miss rate

Figure 5: Cache miss rates during the marking phase of Im-
mix and the linear-marking phase of Linear-Mark (both col-
lectors used 32 collector threads).

better, where the advantage is especially noticeable when using a
higher number of collector threads.

0 10 20 30 40 50 60
num_threads

2

4

6

8

lin
ea

r_
m

ar
k

no
rm

al
ize

d
to

 im
m

ix

avrora
biojava
cassandra
eclipse
fop
graphchi
jme
jython
luindex
lusearch
h2
pmd
sunflow
tomcat
xalan
zxing

Figure 6: Linear-Mark collection time normalized to Immix
collection time.

6.2.3 Performance. We evaluate Linear-Mark and Immix’s collec-
tion time on the DaCapo benchmarks. The settings are the same as
in Section 6.2.2.

The performance of Linear-Mark is lower than Immix. Figure 6
illustrates the Linear-Mark collector time normalized to Immix’s
collector time. The black line is 1; when the ratio is higher than
1, above the black line, Immix outperforms Linear-Sweep. These
results show that Immix outperforms Linear Mark on almost all
benchmarks.

Linear-Mark shows very long collection times compared to Im-
mix on h2 and pmd. These two benchmarks have the largest mini-
mum heap: h2 requires 2𝐺 min heap, and pmd requires almost 1𝐺
min heap; therefore, we run these benchmarks with an 8𝐺 heap
and a 4𝐺 heap (see Table 2), respectively. Linear-Mark performs
poorly on these benchmarks when using a few collector threads,
but the gap reaches its minimum when using 64 collector threads.
We can conclude that Linear-Mark should use the most collector
threads available when the heap size is huge.

The gap between Linear-Mark and Immix is almost always (ex-
cept for pmd, h2 and graphchi) the highest when running a single
collector thread. However, this gap decreases as more threads are
utilized for the collection. This further confirms the results shown
in Section 6.2.2: Linear-Mark is more scalable than Immix.

While Linear-Mark has better scalability and locality, the inac-
curacy of identifying the unreachable objects is detrimental to the
performance of Linear-Mark. It should be noted that Immix is a
highly optimized collector, whereas Linear-Mark is an addition that
could be further optimized. However, the difference in performance
seems large enough to indicate that the implementation issue is
not the main factor.

6.2.4 Inaccuracy of the Collection. Recall that we defined level(𝑂)
as the length of the longest path from any object to 𝑂 . This section
analyzes the levels of the graph spanned by the unreachable ob-
jects of a collection. Any unreachable object can only have paths
leading to it from other unreachable objects. Thus, the level of an

8

Linear-Mark: Locality vs. Accuracy in Mark-Sweep Garbage Collection

level0
level1

level2
level3

cycles
other

0

20

40

60

80

pe
rce

nta
ge

 of
 de

ad
 ob

jec
ts

in
ea

ch
 le

ve
l

avrora
biojava
cassandra
eclipse
jython
jme
luindex
lusearch

level0
level1

level2
level3

cycles
other

0

20

40

60

80

pe
rce

nta
ge

 of
 de

ad
 ob

jec
ts

in
ea

ch
 le

ve
l

fop
graphchi
pmd
sunflow
tomcat
xalan
zxing

Figure 7: Percentage of the unreachable objects on each level for the DaCapo benchmarks lusearch, graphchi, pmd, jme, and
zxing. The "other" level represents all unreachable objects on levels above 3, excluding cycles.

unreachable object𝑂 is the length of the longest path from any un-
reachable object to 𝑂 . The levels are computed by running Immix,
recording the unreachable objects at the end of a collection, and
analyzing the graph spanned by these objects and the references
between them. We ran the benchmarks on 4x the minimal heap of
Immix and ran only one iteration, as these are not time-sensitive
evaluations. We averaged the results over 5 invocations. As there
are multiple collections in each execution, there may be different
numbers of objects at Level 𝑖 for each collection. Thus, we report
the statistics on level percentages: mean and standard deviation.
H2 is not included in this evaluation, as it has a large heap, and we
faced many difficulties retrieving the levels information.

Figure 7 shows the percentage of objects on each level: the bars
in the figure represent the mean of the percentage of unreachable
objects on this level, and the line shows the standard deviation. For

example, jme and zxing both have, on average, 80% of all unreach-
able objects on Level 0. We display the first four levels (0,1,2,3) and
then cycles (level=∞). The objects on levels higher than 3 and not
contained in cycles are reported in "other".

For all benchmarks except cassandra, lusearch, graphchi and tom-
cat, most unreachable objects are on level 0. This means that Linear-
Mark reclaims about 70% of the unreachable objects immediately.
About 15% of the objects need to wait for the subsequent collection,
and others wait more. Objects in a cycle, or reachable from a cycle,
cannot be reclaimed by Linear-Mark. The benchmarks cassandra,
lusearch, graphchi and tomcat suffer the most from the inaccuracy
as fewer objects appear in Level 0. Therefore Linear-Mark marks
most unreachable objects as live, resulting in its poor performance
on this benchmark. Another benchmark on which Linear-Mark per-
forms poorly is pmd (see Figure 6). Interestingly, the layout of the
levels in pmdmay seem acceptable: over 70% of unreachable objects

9

Chiara Meiohas, Stephen M. Blackburn, and Erez Petrank

are on level 0, meaning Linear-Mark properly identifies over 70% of
the unreachable objects. After analyzing pmd’s heap behavior, we
noticed it has a low live objects count during collections, mainly be-
cause most objects in this benchmark have a low survival rate. This
means that during the collections, Immix (and any tracing collector)
needs to trace few live objects, which makes it very efficient. In
contrast, Linear-Mark marks the reachable objects plus 30% of the
unreachable objects, which in this case is a substantial overhead.

Linear-Mark performs the best on the benchmarks jme and zxing
(Figure 6). On these benchmarks, the accuracy of Linear-Mark is
high; 80% of unreachable objects are on level 0 (Figure 7).

We conclude that if many objects are on levels higher than zero,
this harms Linear-Mark’s performance, as it reduces its garbage
identification accuracy and creates floating garbage.

Inaccuracy of traced objects. To understand why Linear-Mark
fails to perform well, we further report in Table 2 how many objects
are traced by each of the collectors for the Dacapo benchmark suite.
Note the difference from Figure 7, where we check how many of
the unreachable objects are reclaimed. Here, we check howmany of
the (reachable and unreachable) objects are traced. The first column
specifies the heap size used for both Immix and Linear-Mark. The
heap size was determined as 4× the minimum heap size required
by Immix for the benchmarks. The following columns show the
average number of traced objects and the average size of all the
objects traced by Immix and Linear-Mark, where the average is
taken over the multiple garbage collections in the execution. While
we ran Linear-Mark and Immix (as a backup tracing collector)
alternately, the statistics of Linear-Mark are taken only from the
Linear-Mark collections. The last columns show the ratio of the
size and number of the traced objects in Linear-Mark and Immix.
For example, in Avrora, the space of the objects traced by Linear-
Mark is 5× the space of the objects traced by Immix. All numbers
represent the average on five invocations and the average over the
multiple collections in each invocation.

7 RELATEDWORK
7.1 Tracing Garbage Collectors
Most of the related work was covered throughout the paper, and
we will now mention additional relevant studies.

McCarthy presented the first Mark-Sweep garbage collector [26]
in 1960 for the LISP programming language. Mark-sweep has since
been improved, and most modern collectors use tracing in one form
or another [8, 13, 16, 19, 25]. As mentioned in Section 2, machines
are getting more and more parallel, managed languages are increas-
ingly used on large-scale multicore environments [10]. Therefore
much effort has been put into optimizing scalability in garbage
collectors. For example, load-balancing between collector threads
is partially achieved using work-stealing [1, 22]. The Mark-Split
collector [28] enhances the sweep phase making it proportional to
the live data size.

7.2 Reference Counting
A different way of reclaiming space is reference counting [12]. A
reference count is maintained for each object and objects whose
reference count is decremented to zero can be reclaimed. When an

object is reclaimed, the reference counts of all its descendants are
decremented, possibly leading to further recursive reclamation. For
many years reference counting has been considered inferior, be-
cause of its high overhead, and its inability to reclaim cycles (or any
strongly connected components). Three dramatic reductions were
obtained in deferred reference counting [15, 22], update coalescing
[23, 24], and combining reference counting with copying [29]. Fur-
thermore, parallelism with low overhead was enabled by [23, 24].
As a result, modern reference counting collectors deliver high per-
formance, sometimes higher than tracing collectors [31]. Cycles
are reclaimed by an accompanying concurrent tracing collector.

8 CONCLUSION
Tracing garbage collectors are widely used. However, tracing collec-
tors have poor locality and fundamental limits to their scalability.
In this paper, we investigated a mitigation of these disadvantages
by introducing Linear-Mark, a Mark-Sweep variant that trades col-
lection accuracy in order to improve locality and scalability. The
evaluation shows a nice reduction in cache miss rates and improved
parallelism by up to 2.75x. But the reduction in accuracy makes this
collector less performant in typical scenarios. We hope this study
of alternatives will inspire further algorithmic improvements that
may eventually lead to better garbage collector algorithms.

9 ACKNOWLEDGMENTS
We thank Kunshan Wang from the MMTK team for the insight-
ful discussions. This work was supported by the Israel Science
Foundation Grant No. 1102/21.

REFERENCES
[1] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 1998. Thread Scheduling

for Multiprogrammed Multiprocessors. In Proceedings of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures (Puerto Vallarta, Mexico)
(SPAA ’98). Association for Computing Machinery, New York, NY, USA, 119–129.
https://doi.org/10.1145/277651.277678

[2] Katherine Barabash and Erez Petrank. 2010. Tracing Garbage Collection on
Highly Parallel Platforms. SIGPLAN Not. 45, 8 (jun 2010), 1–10. https://doi.org/
10.1145/1837855.1806653

[3] Monica Beckwith. 2013. Garbage First Garbage Collector Tuning.
https://www.oracle.com/technical-resources/articles/java/g1gc.html#:~:
text=-XX%3AParallelGCThreads%3Dn [Accessed: June 2023].

[4] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. 2004. Myths and
Realities: The Performance Impact of Garbage Collection. SIGMETRICS Perform.
Eval. Rev. 32, 1 (jun 2004), 25–36. https://doi.org/10.1145/1012888.1005693

[5] Stephen M Blackburn, Perry Cheng, and Kathryn S McKinley. 2004. Oil and
water? High performance garbage collection in Java with MMTk. In Proceedings.
26th International Conference on Software Engineering. IEEE, 137–146.

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dinck-
lage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-Oriented Programing, Systems, Languages, and
Applications (Portland, OR, USA). ACM Press, New York, NY, USA, 169–190.
https://doi.org/10.1145/1167473.1167488

[7] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dinck-
lage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking
Development and Analysis (Extended Version). Technical Report TR-CS-06-01.
ANU. http://www.dacapobench.org.

[8] Stephen M Blackburn and Kathryn S McKinley. 2008. Immix: a mark-region
garbage collector with space efficiency, fast collection, and mutator performance.
ACM SIGPLAN Notices 43, 6 (2008), 22–32.

[9] Hans-J Boehm. 2000. Reducing garbage collector cache misses. ACM SIGPLAN
Notices 36, 1 (2000), 59–64.

10

https://doi.org/10.1145/277651.277678
https://doi.org/10.1145/1837855.1806653
https://doi.org/10.1145/1837855.1806653
https://www.oracle.com/technical-resources/articles/java/g1gc.html#:~:text=-XX%3AParallelGCThreads%3Dn
https://www.oracle.com/technical-resources/articles/java/g1gc.html#:~:text=-XX%3AParallelGCThreads%3Dn
https://doi.org/10.1145/1012888.1005693
https://doi.org/10.1145/1167473.1167488

Linear-Mark: Locality vs. Accuracy in Mark-Sweep Garbage Collection

Heap Size Immix LM Immix LM Size LM/Immix LM/Immix
(MB) Count Count Size (MB) (MB) Size Count

avrora 36 73255 561568 5 25 5 7.66
biojava 776 129278 14921309 161 519 3.22 115.4

cassandra 1014 904103 14765875 127 796 6.26 16.33
eclipse 1972 998969 15887950 228 1179 5.17 15.9
fop 144 151014 1706111 10 98 9.8 11.3

graphchi 1300 467286 6296656 155 957 6.17 13.47
h2 9472 19866405 123127858 953 8721 9.15 6.12
jme 196 65107 1042051 6 53 8.83 16

jython 312 509610 4144156 32 249 7.78 8.13
luindex 116 54448 525424 14 30 2.14 9.65
lusearch 484 208696 4476037 27 421 15.59 21.44
pmd 3700 6463828 43597272 429 2151 5.01 6.74

sunflow 528 710217 9825628 57 450 7.89 13.83
tomcat 440 525515 4398874 42 308 7.33 8.37
xalan 264 188192 1632704 48 125 2.6 8.67
zxing 880 87435 3185518 39 305 7.82 36.4

Table 2: DaCapo benchmark marking statistics for Immix and Linear-Mark. Including the heap size, the average number of
traced objects and average overall size of traced objects in the executions of the two collectors. The last columns represent the
ratio of the Linear-Mark count/size and the Immix count/size.

[10] Maria Carpen-Amarie, Patrick Marlier, Pascal Felber, and Gaël Thomas. 2015.
A Performance Study of Java Garbage Collectors on Multicore Architectures.
In Proceedings of the Sixth International Workshop on Programming Models and
Applications for Multicores and Manycores (San Francisco, California) (PMAM
’15). Association for Computing Machinery, New York, NY, USA, 20–29. https:
//doi.org/10.1145/2712386.2712404

[11] Nachshon Cohen and Erez Petrank. 2015. Data structure aware garbage collector.
In Proceedings of the 2015 International Symposium on Memory Management.
28–40.

[12] George E Collins. 1960. A method for overlapping and erasure of lists. Commun.
ACM 3, 12 (1960), 655–657.

[13] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. 2004. Garbage-
First Garbage Collection. In Proceedings of the 4th International Symposium
on Memory Management (Vancouver, BC, Canada) (ISMM ’04). Association for
Computing Machinery, New York, NY, USA, 37–48. https://doi.org/10.1145/
1029873.1029879

[14] John DeTreville. 1990. Experience with concurrent garbage collectors for Modula-2+.
Digital Equipment Corporation Systems Research Center.

[15] L. Peter Deutsch and Daniel G. Bobrow. 1976. An Efficient, Incremental, Au-
tomatic Garbage Collector. Commun. ACM 19, 9 (sep 1976), 522–526. https:
//doi.org/10.1145/360336.360345

[16] Christine H. Flood, Roman Kennke, Andrew Dinn, Andrew Haley, and Roland
Westrelin. 2016. Shenandoah: An Open-Source Concurrent Compacting Garbage
Collector for OpenJDK. In Proceedings of the 13th International Conference on
Principles and Practices of Programming on the Java Platform: Virtual Machines,
Languages, and Tools (Lugano, Switzerland) (PPPJ ’16). Association for Computing
Machinery, New York, NY, USA, Article 13, 9 pages. https://doi.org/10.1145/
2972206.2972210

[17] Robin Garner, Stephen M Blackburn, and Daniel Frampton. 2007. Effective
prefetch for mark-sweep garbage collection. In Proceedings of the 6th international
symposium on Memory management. 43–54.

[18] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. 2012. Assessing
the scalability of garbage collectors on many cores. ACM SIGOPS Operating
Systems Review 45, 3 (2012), 15–19.

[19] Google. [n. d.]. Golang GC guide. https://tip.golang.org/doc/gc-guide June,
2023.

[20] DaCapo Group. 2021. DaCapo Benchmarks Evaluation Snapshot 29a657f. https:
//doi.org/10.5281/zenodo.6475255

[21] R. J. M. Hughes. 1982. A semi incremental garbage collection algorithm. Software
- Practice and Experience (1982). https://doi.org/10.1002/spe.4380121108

[22] Richard Jones, Antony Hosking, and Eliot Moss. 2016. The garbage collection
handbook: the art of automatic memory management. CRC Press.

[23] Yossi Levanoni and Erez Petrank. 2001. An On-the-Fly Reference Counting
Garbage Collector for Java. SIGPLAN Not. 36, 11 (oct 2001), 367–380. https:
//doi.org/10.1145/504311.504309

[24] Yossi Levanoni and Erez Petrank. 2006. An On-the-Fly Reference-Counting
Garbage Collector for Java. ACM Trans. Program. Lang. Syst. 28, 1 (jan 2006),
1–69. https://doi.org/10.1145/1111596.1111597

[25] Per Liden and Stefan Karlsson. [n. d.]. ZGC: A Scalable Low-Latency Garbage
Collector. https://openjdk.org/jeps/333 June, 2023.

[26] John McCarthy. 1960. Recursive functions of symbolic expressions and their
computation by machine, part I. Commun. ACM 3, 4 (1960), 184–195.

[27] Oracle. 2023. HotSpot VM, Parallel Collector GC tuning. https:
//docs.oracle.com/en/java/javase/17/gctuning/parallel-collector1.html#GUID-
5A7866BE-59DF-44AD-B51A-274DE3F2BF59 [Accessed: June 2023].

[28] Konstantinos Sagonas and Jesper Wilhelmsson. 2006. Mark and split. In Proceed-
ings of the 5th international symposium on Memory management. 29–39.

[29] Rifat Shahriyar, Stephen Michael Blackburn, Xi Yang, and Kathryn S McKinley.
2013. Taking off the gloves with reference counting Immix. ACM SIGPLAN
Notices 48, 10 (2013), 93–110.

[30] Fridtjof Siebert. 2008. Limits of parallel marking garbage collection. In Proceedings
of the 7th international Symposium on Memory Management. 21–29.

[31] Wenyu Zhao, Stephen M Blackburn, and Kathryn S McKinley. 2022. Low-latency,
high-throughput garbage collection. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation.
76–91.

11

https://doi.org/10.1145/2712386.2712404
https://doi.org/10.1145/2712386.2712404
https://doi.org/10.1145/1029873.1029879
https://doi.org/10.1145/1029873.1029879
https://doi.org/10.1145/360336.360345
https://doi.org/10.1145/360336.360345
https://doi.org/10.1145/2972206.2972210
https://doi.org/10.1145/2972206.2972210
https://tip.golang.org/doc/gc-guide
https://doi.org/10.5281/zenodo.6475255
https://doi.org/10.5281/zenodo.6475255
https://doi.org/10.1002/spe.4380121108
https://doi.org/10.1145/504311.504309
https://doi.org/10.1145/504311.504309
https://doi.org/10.1145/1111596.1111597
https://openjdk.org/jeps/333
https://docs.oracle.com/en/java/javase/17/gctuning/parallel-collector1.html#GUID-5A7866BE-59DF-44AD-B51A-274DE3F2BF59
https://docs.oracle.com/en/java/javase/17/gctuning/parallel-collector1.html#GUID-5A7866BE-59DF-44AD-B51A-274DE3F2BF59
https://docs.oracle.com/en/java/javase/17/gctuning/parallel-collector1.html#GUID-5A7866BE-59DF-44AD-B51A-274DE3F2BF59

	Abstract
	1 Introduction
	2 Background
	2.1 Mark-Sweep
	2.2 Reference Counting

	3 Linear Marking
	3.1 Linear-Mark algorithm
	3.2 Correctness
	3.3 Accuracy of the collection

	4 A Synthetic Micro-Benchmark
	5 Methodology
	5.1 Hardware and Operating System
	5.2 OpenJDK and MMTK
	5.3 Linear-Mark configuration
	5.4 Benchmarks

	6 Results
	6.1 Synthetic Micro-Benchmark
	6.2 DaCapo Benchmarks

	7 Related work
	7.1 Tracing Garbage Collectors
	7.2 Reference Counting

	8 Conclusion
	9 Acknowledgments
	References

