
ENTS: Flush-and-Fence-Free Failure Atomic Transactions
Yun Joon Soh
UC San Diego
San Diego, USA
yjsoh@ucsd.edu

Steven Swanson
UC San Diego
San Diego, USA

sjswanson@ucsd.edu

Jishen Zhao
UC San Diego
San Diego, USA
jzhao@ucsd.edu

ABSTRACT
Persistentmemory (PMEM) offers applicationswith high-performance
and persistent storage properties. Yet programmers must ensure
crash consistency — guaranteeing data consistency upon a sudden
power failure — when implementing PMEM programs by carefully
placing flush and fence instructions. That often introduces perfor-
mance overhead and increases the risk of bugs. Previous approaches
to reducing flush and fence instructions either require extensive
hardware modifications or are only partially successful.

We propose Extricated Non-Temporal Store (ENTS), a program-
ming library that removes explicit flush and fence instructions
and provides an easy-to-use and low-overhead interface for failure
atomic transactional PMEM programs without hardware modifi-
cation. ENTS achieves crash consistency with a novel technique,
Persist-On-Write (POW), which issues a fence-free non-temporal
store (cache bypassing store) on each volatile data object upon mod-
ification. Instead of an explicit fence instruction, ENTS leverages
fence-like instructions (e.g., lock or xchg under x86_64), which are
already prevalent in the failure atomic transactional programs’ con-
currency control mechanisms. We evaluate ENTS on seven work-
loads: four data structures (B+Tree, RBTree, Hashmap, Skiplist),
two transaction benchmarks (TPC-C, TATP), and a write-optimized
hashtable (Level-Hash). Programs gain 1.8× and 2.1× higher through-
put than Clobber-NVM (a compiler-directed crash-consistency tool)
and PMDK (an industry-standard library), respectively.

1 INTRODUCTION
Persistentmemory (PMEM) is a byte-addressable, non-volatilemem-
ory device with comparable DRAM performance, filling the per-
formance gap between fast, volatile DRAM and slow, non-volatile
storage devices. To leverage the non-volatility of PMEM, a PMEM
program must guarantee crash consistency — the data is recoverable
to a consistent state upon a sudden power failure.

Without a proper crash consistency mechanism, a sudden power
failure would leave irrecoverable inconsistent data. A typical
method for ensuring consistency after a crash is to save information
related to recovery before updating actual data. Prior works refer
to such ordering requirements as Persistent Memory Order (PMO).

Providing PMO incurs both the performance and programma-
bility overhead due to computationally expensive flush and fence
instructions. The former flushes dirty data from the CPU cache, and
the latter stalls program progress until the PMO is guaranteed, wast-
ing valuable CPU cycles. Misuse/overuse of these instructions may
cause hard-to-detect bugs, burdening the programmer to correctly
understand each instruction’s semantics for the given hardware.

Prior works attempted to reduce the PMO overhead by either
proposing hardware modification or designing a new programming
model. Although it seems natural to replace the expensive hardware

instruction at the hardware level, these works make intrusive hard-
ware modifications, such as adding volatile/non-volatile buffers or
extending existing coherency protocols [11, 14, 37, 40, 42]. Intel
also acknowledged the program and proposed the extended Asyn-
chronous Refresh Domain (eADR), which guarantees that globally
visible stores — even dirty cachelines — are persistent [21]. Unlike
the common belief, programmers still need fence instruction due
to the cache bypassing store (Section 2.2.5). Software solutions alle-
viated the programming burden with various techniques, including
speculation [26, 48] and compiler-level code injection [24, 33, 46].
However, these solutions still relied on fence instruction impacting
performance and did not consider the eADR, resulting in compli-
cated reasoning to optimize for the new hardware environment.

In an attempt to reduce PMO overhead for ADR/eADR, we made
two observations: (1) non-temporal store (NTStore) performs well
for both platforms, and (2) programs frequently execute fence-
like instructions, which are prevalent in concurrency controls and
syscalls. Instead of going through the CPU cache, NTStore pay-
loads are gathered in a Line Fill Buffer (LFB), a hardware buffer
dedicated to NTStore. For such reason, NTStore is often referred
to as a cache-bypassing store and results in better performance
than a temporal store in specific use cases (e.g., low temporal local-
ity, large consecutive writes). The NTStore behaves the same for
both ADR/eADR platforms and does not demand platform-specific
optimization. Despite these benefits, NTStore is not heavily used
in PMEM programming because it is difficult to reason about the
correctness as NTStore is weakly ordered; the NTStore may be
executed in an unintended order.

Our second observation alleviates the programming burden
when using NTStore; instead of asking the programmer to cor-
rectly insert fence instructions around NTStore, we observe that
programs frequently execute serializing instructions. The serial-
izing instructions, often used when implementing locks, syscalls,
read-modify-write instructions, etc., drain internal CPU buffers re-
lated to memory writes, including the LFB. In other words, NTStore
issued within a lock-delineated critical section is complete before
exiting the section. Such observation fits naturally with a widely
adopted PMEM programming model, lock-based Failure Atomic
SEction (FASE) transactions, in which a programmer expects all the
writes within the outermost locks to be atomically executed.

From the two observations, we propose Extricated Non-
Temporal Store (ENTS), a performant flush-and-fence-free PMEM
programming library for lock-based failure atomic transactions.
ENTS provides a compatible interface to conventional PMEM per-
sistence idioms for ease of use, does not invoke an explicit flush
or fence within the library, and exhibits high performance on both
ADR/eADR platforms without platform-specific optimization, all
without hardware modification. The ENTS APIs include pow_store
and pow_epoch to replace store-flush and store-flush-fence idioms,

1

respectively. To exempt from explicit flush and fence instruction,
ENTS relies on NTStore and implicitly executed serializing instruc-
tions. For high performance, ENTS segregates the DRAM/PMEM
usage; the programmer-defined data structure resides on DRAM,
and ENTS eagerly persists dirty data objects onto log-structured
PMEM files using fence-free NTStore. The segregated design pro-
vides faster read (DRAM read latency < PMEM read latency), better
NTStore usage (sequential NTStore on consecutive PMEM), and
less cache pollution (NTStore bypasses cache). Instead of modifying
the hardware, ENTS leverages an already implemented instruction:
NTStore and serializing instructions.

We evaluated ENTS on seven workloads, four data structures
(B+Tree, RBTree, Hashmap, Skiplist), transaction benchmarks (TPC-
C, TATP), and a widely evaluated hash table (level-hash [52]) on
ADR and emulated eADR configuration. On emulated eADR, ENTS
achieves 2.1× higher throughput than the industry standard pro-
gramming library PMDK and 1.8× higher throughput than Clobber-
NVM [46], a compiler-directed crash consistency tool. The com-
pared works are properly modified for eADR by avoiding manual
flush.

We make the following contributions:
• We observe that FASE programs execute various fence-like in-

structions, providing an opportunity to eliminate explicit fence
instructions from a PMEM program.

• We propose ENTS, a novel flush-and-fence-free programming
library with high performance regardless of the persistence do-
main (ADR/eADR).

• We retain the conventional programming idioms for programma-
bility and assume a widely adopted lock-based PMEM program-
ming model, FASE.

• We evaluate performance for various data structures and trans-
actional benchmarks (lock-based data structures, TPC-C [45],
TATP [43], and Level-Hash [52]) along with the recovery perfor-
mance study.

2 BACKGROUND
2.1 PMEM Programming Model
2.1.1 FASE Models. Prior works identified two types of Failure
Atomic SEction (FASE) programming models, where one assumes
a strict isolation in which no thread dependency within a FASE is
present, and the other relaxes the isolation requirement and permits
more complicated concurrency controls, including cross-locking
(hand-over-hand-locking). From the recovery’s perspective, the
former is easier to reason the correctness because each thread can
independently determine the last consistent state. On the other
hand, a recovery for the later model may involve rolling back a
completed FASE if at least one of the dependent threads was incom-
plete before a failure. Various solutions (especially with the idea
of committing a FASE as soon as it begins and recovering them
with recovery-via-resumption) provided failure atomicity to pro-
grams written with the later model [24, 33]. In this work, we focus
on the former model as with prior work [46], where we assume
that the programmer provided sufficient thread isolation so that a
committed transaction does not have to be rolled back.

2.1.2 Committing Failure Atomic Transaction. There are two ways
to ensure a performant, correct transaction commits: (1) syn-
chronously persist data before committing a transaction, and (2)
speculatively persist data (as in prior works [26, 42]) and fix the
wrong speculation later. The former simplifies the recovery algo-
rithm at the cost of synchronizing the data movements. The latter
improves performance with speculative stores but complicates the
recovery process. ENTS takes the benefit of both by leveraging
NTStore and fence-like instructions. ENTS relies on weakly or-
dered NTStore to asynchronously persist data for performance
until a thread executes a serializing instruction. Specifically, for the
assumed lock-based FASE model, a thread must execute the unlock
before committing a transaction.

2.2 Architectural Background
2.2.1 CPU Cache Flush. Traditional non-volatile memories passed
data through the OS page cache and thus persisted at page granu-
larity with msync(). For byte-addressable PMEM, msync() incurs
high overhead as the page must be flushed to the media as a whole,
even with a single-byte update. In order to alleviate performance
penalty, new instructions were introduced to flush data at finer gran-
ularity from the cache to the lower memory hierarchy: clflush,
clflushopt, clwb.

The flush instructions are asynchronous and thus require mem-
ory ordering instructions such as sfence, lfence, or mfence. These
instructions wait until previously issuedmemory instructions retire,
creating a global serialization point. If abused, it incurs a significant
performance penalty, causing a performance bug. If not used where
needed, hardware may reorder stores, and a sudden failure may
result in an unexpected, irrecoverable PMEM state (correctness
bug). In ENTS, misuse/overuse has a smaller performance impact
as it does not manually flush dirty cachelines.

2.2.2 Memory Barrier. A fence instruction is not the only instruc-
tion that orders memory operations. Intel’s Software Development
Manual describes that the CPU avoids reordering reads and writes
with I/O instructions, locked instructions, and serializing instruc-
tions. As many programs use locks and atomic instructions for
concurrency controls, the CPU persists fence-free NTStore before
exiting a critical section. Even for a single-threaded program, a
program invokes a syscall to commit a transaction (e.g., write to
file, socket, device). Inside the syscall, kernel-level synchronization
enforces hardware buffer drainage. Therefore, the CPU drains the
fence-free NTStore before making the modification visible to other
threads.

2.2.3 ADR/eADR. The asynchronous DRAM Refresh (ADR) and
extended ADR (eADR) domains define when the data is guaran-
teed to become persistent. ADR domain guarantees that if the data
reaches the Write Pending Queue (WPQ) in the integrated memory
controller (iMC) within the CPU, it is considered persistent even
though it has not yet reached the PMEMmedia. In the ADR domain,
the cache hierarchy is still volatile, and it is up to the programmer
to flush and persist the cached data. eADR extends the persistent
domain to the CPU cache [21]. Upon a sudden power failure, hard-
ware guarantees that the globally visible stores eventually reach
the PMEM media before completely shutting down [21].

2

2.2.4 Temporal Store. Temporal stores are first stored in the cache
(after shortly residing in the store buffer) and wait to be either
evicted due to cache management or manually flushed with CPU
instructions. Under the ADR domain, data is lost if it does not reach
the Write Pending Queue (WPQ) before a sudden power failure;
data in the cache and data flushed but in-flight to WPQ are all lost.
Under the eADR domain, globally visible stores (i.e., part of the
coherency domain) are flushed with clwb-like instructions before
the power failure. Due to Total Store Ordering (TSO) under x86_64,
temporal stores are globally visible in the same order as they are
issued (stores are transitively visible).

A program that solely uses temporal stores could completely
remove sfence under eADR, but it degrades the performance under
eADR for two reasons: (1) it may fill up the cache with low temporal
locality data, and (2) NTStore outperforms temporal store for large
sequential writes [25, 50]. To avoid such issues, many programs [2,
4, 12, 33, 35] use NTStore to persist logs onto PMEM, and by default,
PMDK also uses NTStore when storing more than 256B (default
PMEM_MOVNT_THRESHOLD value).

2.2.5 Non-temporal Store. Non-temporal store (NTStore) bypasses
the CPU cache andmoves the data directly to the destination. Before
moving them to the PMEM media through iMC, they are gathered
in a small Line Fill Buffer (LFB). Intel CPUs have several LFBs, each
of 64 bytes. Upon an LFB eviction, it transfers the whole buffer in a
single bus transaction if every chunk (8 byte) is valid. Otherwise, it
performs multiple 8-byte memory bus transactions (called “partial
write”) [23]. Although LFB eviction is weakly ordered with respect
to one another, eviction is atomic for the fully filled buffers. Unlike
a temporal store, NTStore is still susceptible to reordering as Total
Store Ordering (TSO) under x86 excludes it from the scope. Mem-
ory barriers should follow NTStore for global visibility, even under
the eADR domain. For example, in PMDK, pmem_memcpy_persist
always issues fence instructions regardless of the hardware capa-
bility (ADR/eADR). It is because pmem_memcpy_persist may call
memcpy(), which leverages NTStore for large data.

2.3 Motivation
The motivation for our work stems from an observation that preva-
lent serializing instructions cause the NTStore (weakly-ordered,
cache-bypassing store) to behave as a reasonably ordered store.

Optimizing a Program for eADR The advent of the extended
Asynchronous DRAM Refresh (eADR) domain poses a new pro-
gramming challenge: a performant programming model for both
ADR and eADR. The temporal-store-only program is relatively easy
to write for both ADR and eADR (remap the flush and fence to
noop under eADR). However, it loses performance where NTStore
performs better (e.g., large sequential write). A common miscon-
ception about eADR is that every fence could be safely removed.
If the program directly or indirectly (e.g., external library) uses a
non-temporal store, the programmer must inspect closely to decide
on which fences to keep for eADR. With eADR around the corner,
PMEM programming models should consider their performance
under eADR-supporting hardware.

Natural Fit for FASE Transaction Our observation fits nat-
urally with lock-based FASE programming models because the
unlock operation is the last operation of FASE, and it internally

executes serializing instructions. We grasped onto such similarity
and created a performant failure atomic transaction library that
exhibits high performance regardless of the underlying platform
while preserving the conventional persistence idioms.

3 DESIGN
ENTS is a programming library that maintains the data structure
in DRAM and appends dirty objects to the log-structured files on
PMEM. By cleverly leveraging the non-temporal store (which does
not need an explicit flush) and prevalent serializing instructions
(fence-like hardware buffer drainage), ENTS can retain conven-
tional persistence idioms without explicit flush and fence instruc-
tions, resulting in small performance overhead.

3.1 Design Overview and Challenges
The goal of ENTS is to provide low overhead crash consistency for
the lock-based Failure-Atomic SEction (FASE) transaction model.
The FASE model guarantees Atomicity, Consistency, Isolation, and
Durability (ACID) per FASE. A programmer would enforce isolation
with locks and expects ENTS to provide atomicity, consistency, and
durability for updates within a FASE. As defined in prior works [3,
6, 24, 33], FASE is a region of code defined by the outermost locks.
Throughout the paper, we would interchangeably use “FASE” and
“transaction” to refer to the lock-based FASE transaction, and a
transaction is committed when it exits a critical section.

Unlike prior works, which relied on time-consuming flush and
fence instructions to ensure ACD property (without isolation, which
the programmer provides) before a commit, ENTS uses fence-free
NTStore to persist dirty data objects (treating them as log entries)
onto a per data structure PMEM log file. During recovery, ENTS
cleans any uncommitted log entries so that the recovered state is
at the transaction boundary. Programmer-defined recovery threads
may replay the logs using the globally consistent version informa-
tion embedded in each log entry.

We explain ENTS at a high level using the example in Figure 1. (a)
shows the initial state where there are three data structure objects
whose value is a circle. Each data structure is associated with a log
file, and a bookmark has a snapshot of the current state. In (b), one
of the data objects was updated with pow_epoch (= pow_store +
bookmark()), whichwould append the dirty object to the associated
log file and update the bookmark object. In (c), while updating two
objects, only one of them atomically persisted. However, ENTS can
recover to the (d) state using the bookmark object.

Challenges ENTS’s design challenges are (1) ensuring that the
data structure can be log-structured for feasibility, (2) retaining con-
ventional persistence idioms for programmability, (3) avoiding the
reordering that may cause false commit (committing a transaction
before data becomes durable) for correctness, and (4) designing a re-
covery algorithm that can identify invalid (incomplete or orphaned)
log entries for crash consistency.

Feasibility To ensure that a data structure can be log-structured,
ENTS enforces simple data layout rules. The rules allow ENTS to
regard each data object as a versioned log entry. We discuss data
layout rules and how ENTS leverages each rule in Section 3.2.

Programmability To comply with conventional persistence
idioms, ENTS supports two types of flush-and-fence-free APIs

3

PMEMDRAM PMEMDRAM PMEMDRAM PMEM

Bookmark

Log File

Log File

Log File

Bookmark

pow_st or e()
Log File

Log File

Log File
bookmar k()

Bookmark

Log File

Log File

Log File

Log File

Log File

Bookmark

Log File

(a) Initial State (b) Update DRAM object and POW (c) Partially successful update (d) ENTS Recovery

Figure 1: ENTS Design Overview.

(pow_store and pow_epoch), where each replaces the store-flush
and store-flush-fence, respectively. The difference between
them is that the latter persists an additional consistency track-
ing metadata transparent to the programmer. We discuss the ENTS
APIs, a high-level description of key functions, and their usability
as idiom replacements in Section 3.3.

No False Commit To avoid false commit, ENTS leverages an
observation that the unlock, which is the last operation of a transac-
tion, internally calls serializing instructions. The serializing instruc-
tions drain in-flight data residing in hardware buffers, updating
the memory [23]. We empirically concluded that out-of-order per-
sistence is unlikely for NTStore from an “emulated power unplug”
experiment on real hardware and discuss the result in Section 3.4.

Crash Consistency Without fence instruction, designing a re-
covery algorithm becomes challenging due to partial writes or
reordered writes. To detect partial writes, ENTS paves the PMEM
log files with canary values during file allocation, a predefined value
that may not appear in normal program execution (Section 4.5.3).
When the ENTS recovery thread reads a canary value, it discards the
log entries containing the canary value. To detect reordered writes,
ENTS tracks the tails of all log files. Upon calling a pow_epoch, a
store-flush-fence equivalent, ENTS persists the tail information.
The ENTS recovery algorithm discards any inconsistent log en-
tries. For concurrency, each log entry has a version ID embedded.
From the consistent log, a program can reconstruct the volatile
data representation by chronologically replaying the log entries.
We elaborate on how the proposed technique can detect/recover
a partial state to a recovered state, thus complying with the FASE
model semantics in Section 3.5.

3.2 Log-Structurability - Data Layout Rule
The key ENTS design component is persisting a dirty data object
as a versioned log entry. ENTS enforces these rules that are not
intrusive in most cases:

(1) Declare an 8-byte global variable called version ID.
(2) Each data structure can incorporate an additional 8-byte

field reserved for ENTS.
(3) Each data object is uniquely identifiable across executions.
(4) No race condition for a data object.

ENTS uses the version ID to track the global persistence order-
ing in concurrent execution. Before persisting a data object, ENTS

updates the reserved data field with the version ID. ENTS assumes
uniquely identifiable data objects to reconstruct the volatile data
structure from logs. In an actual implementation, several techniques
can ensure such requirements, such as fat pointers, volatile mem-
ory addresses without reuse, or programmer-defined unique IDs.
Without a race-free assumption, a data object may be persisted with
an incorrect version ID. ENTS accesses and updates the version ID
with read-modify-write instructions.

Programs that cannot enforce the data layout requirements are
beyond the scope of the ENTS implementation in this paper. Some
examples are a program that cannot share a global variable among
its threads and a data structure with no room for additional data
fields, possibly due to a highly optimized data layout. ENTS cannot
deal with a data structure design where including a unique identi-
fier for each data object is infeasible. Another group of applications
beyond the scope is applications with limited visibility on concur-
rency control. If these applications update data without calling the
appropriate ENTS API, ENTS cannot track the consistency of these
modifications.

Another noteworthy assumption is that data structures are fixed-
size. Although this seems restrictive, many applications rely on such
an assumption. For example, PMEM allocators classify allocation
requests based on the requested size and opportunistically return a
slightly larger memory to reduce external fragmentation [39]. Fur-
thermore, many programs limit the maximum input size to prevent
overflows. Programmers can use these predefined maximum sizes
when designing a program with only the fixed-size data structure.

3.3 Compatible with Conventional Idioms
We designed ENTS to minimize the programmability efforts, and
thus, complying with conventional PMEM programming idioms is
important. Two widely used, conventional PMEM programming
idioms are store-flush and store-flush-fence. To replace each
idiom, we propose pow_store and pow_epoch, respectively. We
discuss what ENTS API is, when to use them, and how they retain
the conventional persistence idioms.

As listed in Table 2, API functions are categorized into three:
allocate/store/load logs. A programmer’s duty is to properly al-
locate the log files, replace conventional persistence idioms with
store-related APIs, and use the load APIs to reconstruct the DRAM
representation.

4

Allocation The most unconventional part of ENTS API is the
log file allocation. A programmer would allocate the log file per
data structure and must pass on canary values, a byte sequence that
would never appear during normal execution. The canary bit-width
is identical to the hardware-guaranteed atomic store unit, typically
8-byte in modern hardware. We discuss how a programmer can
achieve this, along with a fallback plan in Section 4.5.3.

Persist-On-Write (POW) is an asynchronous persisting tech-
nique that eagerly appends the whole dirty data object (treating
it as a log entry) to the persistent log file. Allocating memory for
a log entry is as simple as incrementing the log count. Then, the
ENTS library properly updates the object’s version ID, including
the sequence number (Section 4.1). Note that log entries from a
single transaction can have multiple sequence numbers and even a
gap among the numbers, as another concurrent thread may incre-
ment the global sequence number. This is not a problem for ENTS
because the sequence number is merely used to enforce log replay
order per thread and not for atomicity or consistency.

POW is similar to logging as it leaves a trail of modification. But
unlike logging, there is no ordering constraint for POW; POW can
be reordered and still be correct. POW is similar to copy-on-write
(COW) because both techniques leave the original object untouched.
Unlike COW, which must persist the copy before updating, POW
updates the volatile version before persisting the data object. The
closest mechanism is incremental fine-grained checkpointing [7],
but POW eagerly persists data without waiting until a program
reaches a checkpoint epoch.

pow_epoch is a store-flush-fence replacement. We referred to
the term “epoch” because it provides similar semantics to buffered
epoch persistency [10, 27, 29, 30, 41]. In buffered epoch persistency,
a set of stores within an epoch are regarded as persistent when,
in reality, the data movement may be deferred for performance
optimization.

Without an explicit barrier, an actual data movement may be
reordered with consecutive instructions (similar to how BEP defers
data movement). However, this is not a problem because the FASE
transaction does not expect to recover to the intra-FASE state. For
the last pow_epoch before the FASE commit, the trailing unlock
would have internally executed the serializing instruction.

pow_epoch is implemented as a pow_storewrapper without any
memory barriers. Instead, it transparently persists the thread-local
view of transactions, called bookmark, before returning. Bookmark,
which plays a key role during recovery, tracks the tail of all log
files. Providing bookmark consistency is not important because the
FASE transaction provides enough isolation so that a committed
transaction does not have to be rolled back; other threads can ap-
pend a new log entry to one of the log files, making the thread local
bookmark stale but the corresponding recovery thread disregards
data objects appended by others during the recovery. Like any other
data structure in ENTS, the bookmark object embeds version ID,
and a recovery thread can chronologically replay log entries using
it.

LoadA programmer can use load APIs to reconstruct the volatile
representation. ENTS guarantees that all of the log entries are valid
and consistent up to a specific transaction boundary.

3.4 Ensuring Durable Data Before Commit
We empirically prove that NTStore reordering is rare even with-
out the serializing instruction with an “emulated power unplug”
experiment. In this experiment, we emulate a power failure on a ma-
chine with threads sequentially writing to PMEM. We observed re-
ordered writes for threads executing temporal store, whereas none
for NTStore. We concluded that the small LFB, a small NTStore
buffer on the datapath to PMEM, creates the bottleneck and eagerly
flushes data to PMEM. The rate of flushing is eager enough so that
it is extremely rare to observe reordered NTStore in practice (none
in our experiments).

3.4.1 Single-threaded Single-destination. To show empirical evi-
dence that NTStore rarely persists out-of-order, we emulated power
failure with IPMITool [31] while executing sequential NTStore at
8-byte granularity (guaranteed atomic store bit-width in tested sys-
tem). We varied the guaranteed minimum NTStore loop iterations
before sending the power cycle signal. For out-of-order-persistence
detection, we leveraged our canary technique: mmap a PMEM file
and memset the whole region with a specific canary value. When
inspecting the file after the power cycle, if the canary values sur-
round a non-canary sequence, we found an out-of-order persistence.
Among the 520 files, none of them persisted out-of-order.

3.4.2 Single-threaded Multi-destination - Small. We further tested
with NTStore writing to interleaving destinations: 2, 4, and 8 differ-
ent files. All 7280 ((2+ 4+ 8) × 520) files persisted sequentially even
across the interleaved files. We know that the interleaved files did
not persist out-of-order because the maximum difference of the last
non-canary value offset was at most one. We denote an experiment
as NTStore×𝑛, where 𝑛 denotes the interleaving factor. Listing 1 is
an example of NTStore×2.

1 // Pass on different mmap'ed pmem files (pmemAddr array)

2 long long mm = 0;

3 for (size_t i = 0; baseAddr + i < fileEndAddr; i++) {

4 _mm_stream_si64 ((long long *)targ ->pmemAddr [0] + i, mm);

5 _mm_stream_si64 ((long long *)targ ->pmemAddr [1] + i, mm);

6 }

Listing 1: NTStore Experiment Sample Code

3.4.3 Single-threadedMulti-destination - Large. In NTStore×16 and
NTStore×32 experiments, where the number of files is larger than
the available LFB, we first observed the out-of-order persistence
across destinations (i.e., a file may have more persistent data than
others), but no reordering happened within each of the 6720 files.
We believe that partially filled LFBs are continuously preempted as
more threads request LFBs than are available.

3.4.4 Multi-threaded Single-destination. We emulated a multi-
threaded ENTS scenario, where each thread performed NTStore×1
to its own destination. Among 280 files, we did not observe any
reordering within a file. We did not search for reordering across
files because distinguishing an out-of-order persist from a not-yet-
executed is difficult, if not impossible; a thread may have been lucky
to get scheduled in an ideal way to fully utilize the available LFBs.

We conclude that the NTStore is good at grabbing the LFB, and
requesting a premature (before it is fully combined) preemption
may cause reordering. Furthermore, Intel SDM explicitly mentions

5

that the hardware guarantees atomic eviction of write combining
buffer [20]. From these facts, out-of-order persistence within a sin-
gle file seems extremely rare for sequential NTStore, even without
serializing instructions.

3.5 Crash Consistent Recovery
The recovery goal is to identify and erase inconsistent log entries,
allowing the programmer to reconstruct a consistent volatile struc-
ture from the consistent logs. We refer to the log entries that remain
in the recovered log files as valid logs and those that are discarded
as garbage logs.

ENTS leverages the following insight during recovery. Because a
log file is append-only, previous modification exists in chronological
order. Therefore, if recovery to transaction 𝑡 is possible for a given
log file, then recovery to an earlier transaction (≤ 𝑡) is also possible.

3.5.1 Recovery Algorithm. At a high level, there are three recovery
steps: cleanup of incomplete logs, finding a recoverable transaction
boundary, and cleanup of logs generated after it. In the tidy phase,
a recovery thread searches and cleans logs that are either partially
persisted or persisted out-of-order. In the agreement phase, a recov-
ery thread searches for the latest recoverable transaction commit.
In the truncate phase, ENTS overwrites data log entries sequenced
after the recoverable transaction. At this point, all log entries are
intact (tidy phase), are generated before the last transaction commit
(agreement phase), and are safe to replay because no incomplete
logs are lingering (truncate phase).

3.5.2 Crash Consistency Correctness. We discuss how the de-
scribed recovery provides transactional atomicity and consistency.
We argue the correctness incrementally, first showing how ENTS
checks atomicity and consistency for a single log entry, multiple
entries possibly on different files, and finally, multi-threaded execu-
tions.

Atomicity for a single log entry can be checked by (1) fixed-size
log entry per data structure and (2) detecting partially persisted data
with a persist-free consistency check (canary value, Section 4.5.3).
Fixed-size log entry hints at the log boundary. A log entry has been
persisted atomically if all of the 8-byte chunks of a log entry are
not equal to the canary value. It is consistent because a thread must
have acquired the locks before modifying and persisting it as a log
entry.

For multiple POW to possible different log files, pow_epoch
records the tail of each log file in a special data structure called
bookmark. A sequence of POW is atomically executed if all of the
log entries up to the recorded tail are atomically persisted. The
bookmark structure is allocated in thread-local storage, making it
consistent concerning other threads.

For multi-threaded scenarios, each recovery thread is associated
with a thread ID generated before failure. Each thread disregards log
entries if its version ID indicates a mismatch. By ignoring entries
generated by other threads, a multi-threaded scenario is effectively
identical to a single-threaded scenario.

3.5.3 Recovering Volatile Structure. We assume the volatile data
structure can be reconstructed from a persisted data object array.
Specifically, a non-singleton object must include a per-object ID. A
programmer can recover the volatile structure by iterating the logs

Member Description

objname Unique name. A key for searching the file.

objsize Size of each element (Unit: Bytes)

canary
An 8-byte predefined value.
Never generated during normal execution.

pow_idx POW file index within the descriptor map

base_addr Pointer to start of the mmapped POW file.

log_cnt
Destination of the next POW call.
Unit is the number of data objects.
Only accessed with atomic Read-Modify-Write.

Table 1: Key Log File Descriptor Fields.

in increasing sequence order and copying each data object to the
proper DRAM destination. One important programmer obligation
is to swizzle the pointers and update stale pointers.

4 IMPLEMENTATION
ENTS is a crash consistent PMEM programming library that adds
atomic durability to the lock-delineated failure atomic transac-
tion for DRAM residing data structures. We elaborate on how
ENTS leverages the described requirements in Section 3.2 to persist
volatile data objects as log entries in append-only PMEM files. Then,
we discuss ENTS API semantics and their usage. ENTS semantics
builds upon extricated (fence-free) NTStore persistence and how
ENTS leverages it correctly to provide correct crash consistency.
Lastly, we describe the recovery implementation before providing
the implementation details, such as the internal log file descriptor
and canary value.

4.1 Volatile Data Object to Durable Log
ENTS treats each data object as a log entry and appends each entry
to a designated PMEM log file for crash consistency.

The key enabler is that every log entry, including the ENTS-
managed metadata, has a version ID. A version ID comprises a
canary protector, lock count, thread ID, and sequence number. A
canary protector is a reserved bit that helps the programmer easily
determine a canary value. It is defined per log file, and the value is
fixed for all entries within the file. If the canary protector is set to
0, and the canary bit is 0𝑥𝐹𝐹 ..𝐹𝐹 , the properly persisted version ID
would not coincidentally match the canary value. Lock count is
the number of locks held when calling POW. The thread ID is the
thread ID of the current thread, which is cached upon thread spawn.
A sequence number is globally visible and incremented with an
atomic operation. Thus, all log entries across log files would have a
unique sequence number.

We elaborate on how each rule in Section 3.2 contributes to the
per-object log entry. With the first rule in Section 3.2, each data
object hints at the global update order with its sequence number.
The second rule provides enough per object memory for embed-
ding the version ID. The third rule provides a means to recover
the original data structure from an array of log entries. With the
programmer-defined isolation (fourth rule), each thread updates
the version ID and treats the object as a log entry.

6

Function Semantics

A
llo

c POWFile *alloc_pf(char *name, size_t n, int64_t canary)
Use the name as the key to update the log file descriptor map.POWFile *dealloc_pf(char *name, size_t n, int64_t canary)

POWFile *realloc_pf(char *name, size_t n, int64_t canary)

St
or
e void pow_store(POWFile *pf, void *s, size_t n) Update the version ID and perform fence-free NTStore.

void pow_epoch(POWFile *pf, void *s, size_t n) Same as pow_store but additionally bookmark() before returning.

Lo
ad

POWFile *load_pf(char *name) Return log file descriptor from the map using the name the key.
void *load_data(POWFile *pf, size_t index) Return index-th entry pointer.
void *load_latest_epoch;(POWFile *pf); Return pointer to the first epoch of the last transaction.
void *load_latest_data;(POWFile *pf); Return pointer to the last epoch of the last transaction.

Table 2: ENTS API Functions

4.2 Using ENTS API
4.2.1 ENTS API Implementation. We implement ENTS as a shared
library, and it provides three categories of ENTS APIs: allocation,
storing dirty data objects, and loading log entries for reconstruction
(Table 2).

Log File Allocator The allocator functions take three parame-
ters passed on by the programmer and return a log file descriptor
(Table 1, which includes canary value, current log_cnt, data struc-
ture size, etc.). The allocation process starts with checking the name
conflict against existing descriptors. Internally, ENTS maintains a
mapping between the objname and the corresponding descriptor.
Then, it either inserts an entry to the map or updates an entry
depending on the exact API function.

Once the volatile map has been updated, ENTS creates, and
memory maps a PMEM file where the assigned memory address
is recorded in a log file descriptor. Using the recorded address, the
whole file is initialized with the canary value with an asynchro-
nous NTStore. This process is highly concurrent, and we use eight
threads by default, each working on a different portion of a file.
Lastly, it POW the updated log file descriptor to the metadata log
file to make the allocation persistent. At this point, the descriptor
can be passed on to store/load APIs for writing/reading a log entry.

POW pow_store and pow_epoch are wrappers for Intel’s
NTStore intrinsic functions. They take the log file descriptor and
a pointer to the data object, along with its size. They first update
the version ID of a data object by dereferencing the ptr parame-
ter. After atomically incrementing the log_cnt with fetch-and-add
([44]), which naturally reserves an exclusive memory region, ENTS
computes the destination pointer with the base_addr, objsize,
and log_cnt−1 1. For pow_epoch, it additionally calls bookmark(),
which atomically increments the global sequence number and per-
sists the bookmark object to the bookmark log file.

Fence-free NTStore does not pollute the CPU cache and is faster
than a temporal store for sequential writes, but it is weakly or-
dered, and aligning NTStore at the cache line has a meaningful
performance impact [22]. If the data are not properly aligned, write-
combing stores may issue multiple memory bus requests, degrading
the performance. ENTS executes piece-wise sequential NTStore
at a data object granularity (whose size is a multiple of LFB with
programmer-inserted padding) to avoid amplified bus requests.

1Minus one because we already incremented the log_cnt

Load Load functions are categorized into two: loading log
files and loading log entries. The former searches the log file
descriptor map for the targetted objname. The latter category
computes the VMA of data entry with the following formula:
base+index×objsize. We further provide helper functions that
return the first and last data object of the last epoch.

4.2.2 Log Compaction/Garbage Collection. ENTS compacts logs
and collects garbage after the recovery but before returning from
an initialization. The compacted version is created in a separate
file to preserve the original log file if a failure happens during the
compaction. Once completed, ENTS compare-and-swap the actual
log file pointer. To detect partially compacted files, ENTS keeps
a “valid” bit for each descriptor object. Any invalid log files are
treated as garbage and deleted.

The programmer is responsible for online garbage collection and
log compaction. When the program exhausts a POW file, it must
reallocate the POW file and take it as an opportunity for log com-
paction. A typical program would halt upon capacity exhaustion,
reallocate the POW file, iterate the data objects, and POW them to
the new file.

For a program that cannot afford the “stop-the-world” garbage
collection, the programmer can create background threads that
maintain the “live” objects and opportunistically persist them to
the compacted POW file. The program may maintain a “live” object
table where each entry consists of the virtual memory address
(VMA) of the object on DRAM, the VMA of mmap()’d PMEM log
file, the size of the object, and a dirty bit. Whenever the program
calls POW, it adds an entry to the list with a dirty bit set. The
background thread monitors the dirty bit and opportunistically
persists them to the garbage-free version. This implementation of
garbage collection is left for future work.

4.2.3 Concrete Example. We provide a concrete example with a
linked list. In the example, ENTS guarantees failure-atomicity upon
epoch commit. Although ENTS does not include an explicit hard-
ware memory barrier, unlock internally relies on memory synchro-
nization for correctness [19]. Therefore, any NTStore within the
critical section is persistent before exiting.

1 POWFile *listPF , *nodePF;

2 VID_T vid; // rule 1

3

4 typedef struct LinkedList {

5 VID_T vid; // rule 2

7

6 Node* head;

7 size_t len;

8 } LL; // rule 3 not needed for singleton

9

10 typedef struct Node {

11 VID_T vid; // rule 2

12 Node* curr; // rule 3

13 Node* next;

14 uint64_t value;

15 } Node;

16

17 void init() {listPF = allocPF (..);

18 nodePF = allocPF (..); /*...*/ }

19

20 void insert(Node *prev , Node *next , Node *now) {

21 pthread_rwlock_wrlock (&lock , ..);

22 prev ->next = now;

23 now ->next = next;

24 pow_store(nodePF , prev , sizeof(Node));

25 pow_epoch(nodePF , now , sizeof(Node));

26 pthread_rwlock_unlock (&lock , ..);

27 }

28

29 void update(Node *a, int newVal) {

30 pthread_rwlock_wrlock (&lock , ..);

31 a->value = newVal;

32 pow_epoch(nodePF , a, sizeof(Node));

33 pthread_rwlock_unlock (&lock , ..);

34 }

Listing 2: LinkedList Example (Insert/Update)

Listing 2 shows a linked list example implemented with ENTS.
Lines 1 and 2 declare a global pointer to the log file and global
version ID. Lines 5 and 11 reserve 8-byte for each data object. Line
12 stores a unique ID for each data object used for reconstructing
volatile data structure. Unlike Node, LinkedList does not need a
unique pointer value because it is a singleton. Lines 17-18 allocate
log files. Lines 24-25 and 32 are where the POW occurs.

1 void recover (){

2 listPF = loadPF (..); int lenL = sizeof(LL);

3 nodePF = loadPF (..); int lenN = sizeof(Node);

4

5 Map <uint64_t , uint64_t > map; // remapper

6 LL *list = malloc(lenL); // LinkedList

7 memcpy(list , load_latest_data(listPF), lenL);

8

9 // Recover Nodes

10 Node *nodeL = malloc(lenN * list ->len);

11 Node *ptr = nodeL;

12 for(int i = 0; i < nodePF ->log_cnt; i++, ptr++){

13 Node *node_p = load_data(nodePF , i);

14 if(map[node_p ->curr] == 0){

15 memcpy(ptr , node_p , lenN);

16 map[node_p ->curr] = (uint64_t) ptr;

17 }

18 else{memcpy(map[node_p ->curr], node_p , lenN);}

19 }

20

21 // Remap pointers

22 for(int i = 0; i < list ->len; i++){

23 Node *n = nodeL[i];

24 n->curr = n;

25 n->next = (Node*) map[n->next];

26 }

27

28 // Off -line garbage collection/log compaction

29 POWFile *pf2 = realloc_powfile (..);

30 for(int i = 0; i < list ->len - 1; i++){

31 Node *n = nodeL[i];

32 pow_store(pf2 , n, lenN);

33 }

34 pow_epoch(pf2 , nodeL[list ->len - 1], lenN);

35 }

Listing 3: LinkedList Example (Recover)

Listing 3 is an example recovery code using the same data struc-
ture as Listing 2. In the example, the programmer leverages that
the allocated node object is not reallocated to a new VMA during a
single program execution. After recovering the latest LinkedList
object from its log file in lines 6-7, the programmer allocates a large
memory on DRAM (line 10). As the program iterates the node log
file in lines 12-19, it loads data from the log file onto DRAM. When-
ever it encounters a log entry for the same unique ID, it overwrites
the whole data object, as in line 18. This is correct because ENTS
persists in an append-only fashion, and thus, log entries closer to
the end of the file reflect more recent changes. After loading the
latest data, the program must update the reference between data
objects. For example, a virtual address 0x100 may point to the head
node in the previous program execution, but it may point to garbage
in the current run. In the code, the mapping (line 5) constructed
during the node recovery process (lines 12-19) is the hint to update
the pointers correctly (lines 22-26). The last step is POW’ing the
updated data objects. We elaborate on the garbage collection/log
compaction opportunity in Section 4.2.2.

4.3 Atomic Durability — Extricated NTStore
ENTS heavily rely on NTStore without constraining them with
manual fence instructions, and thus, the name extricated (from
manual fences) NTStore. Extricated NTStore is not a silver bullet
due to potential performance and correctness hazards. We describe
the NTStore, why it may perform badly or even incorrectly, and
our approach to avoid such scenarios.

NTStore bypasses the cache and instead gathers the payload in
Line-Fill Buffer (LFB). The exact number and size of the buffer are
not architecturally defined, but modern CPUs have around 8-10
LFBs each of 64 bytes [23]. NTStore is weakly ordered because the
buffer eviction may be deferred or eagerly triggered depending on
the pressure on LFB or memory misalignment.

A rule of thumb for performant NTStore is to fully fill the LFB,
at which the hardware will evict the buffer. A partially filled LFB
would issue many more bus operations, whereas a full LFB may be
evicted with a single bus operation. For ENTS, we align data to LFB
size and pad the data objects to a multiple of LFB. We discuss the
performance impact of padding in Section 5.4.

Using fence-free NTStore to overwrite a memory region may
cause unexpected behavior impacting the correctness. NTStore is
weakly ordered, meaning that an NTStore issued earlier (older in-
struction) may be completed after the NTStore issued later (younger
instruction). ENTS avoid such scenarios with the append-only log-
structured design; persist order does not impact correctness as long
as they are all persistent before exiting the critical section.

8

4.4 Recovery Implementation
ENTS recovery works in three phases: cleanup of partially persisted
log entries, finding a recovery point, and truncating log entries
sequenced after the recovery point. ENTS spawns a recovery thread
whenever it identifies a newly discovered thread ID for metadata
or bookmark log entry. The spawned thread ignores log entries
that are not associated with its targeting thread ID. Such a design
creates a hallucination that log files are created per thread even
when the log entries with different thread IDs are mixed within the
same file.

During the tidy phase, a recovery thread iterates each log file
(which may be interpreted as per thread file by ignoring entries
irrelevant to the thread) and finds a hole VMA (the address of the
first properly aligned canary value). For subsequent entries, a recov-
ery thread overwrites log entries that match its thread ID and are
sequenced after the hole with the canary value. In the agreement
phase, the recovery procedure iterates the bookmark log file in
reverse order until it finds the first recoverable epoch. An epoch is
recoverable if the log_cnt of each log file is no smaller than the
value in the bookmark and the lock count is zero. The sequence
number of the recoverable epoch is the consensus eid. During the
truncate phase, it overwrites any data with a sequence number
larger than the consensus eid with the canary value. The recovery
procedure is resilient to failure because cleaning the partially per-
sisted logs or truncating the inconsistent data does not affect the
agreement phase.

4.5 Library Implementation
4.5.1 Library Initialization. A programmer would link to the ENTS
library dynamically when building the binary. Most of the ENTS
logic is executed upon a library load, including the recovery process.
Before initiating the recovery process, the ENTS library traverses
the file hierarchy, starting from the metadata log file information,
then the bookmark file, and finally, the associated log files. We
detail the hierarchy traversal.

MetadataThe first step during the library initialization is finding
the metadata log file containing information about all allocated
bookmark data and log files. ENTS uses the environment path
variable that points to the root ENTS folder and the entry log file
called a metadata log file. Once located, it generates a map where
a key is the name of a data structure, and the value is a log file
descriptor. The metadata file is also persisted with POW, and ENTS
reconstructs themap by copying each log entry into DRAM, treating
the entry’s object name as the key and the object itself as a value.
We refer to the reconstructed map as a log file descriptor map,
which is internally represented as an array of log file descriptors.

Bookmark File The next step is identifying the bookmark file.
Within the descriptor map, ENTS searches for a special descrip-
tor with a key value of “.bookmark.” This log file holds struct
Bookmark objects. Like any other log entry, entries have an em-
bedded version ID along with an array of log_cnt where the 𝑖-th
element indicates the thread-local log_cnt of the 𝑖-th POW File
at the moment of pow_epoch. A thread does not have to POW the
bookmark with the latest log count information because the goal is
to find the least log count needed to recover to a certain version.

Another thread may have incremented the log count but does not
impact the per-thread recovery.

Per-thread Bookmark While iterating the bookmark file, the
library initializer spawns a thread whenever it reads a bookmark ob-
ject from a previously untracked thread ID. The spawned recovery
thread is associated with the triggering thread ID and is responsible
for recovering all log entries with the same thread ID.

Each thread initiates the recovery procedure. Once recovered to
a consistent log state, ENTS executes log compaction and garbage
collection.

4.5.2 Log File Descriptor. We provide some noteworthy member
fields of struct POWFile in Table 1. This object is relevant to ENTS
bookkeeping, and the program should not directly update it. Read-
only variables (objname, objsize, canary, pow_idx) are initialized
and fixed upon POW file allocation. base_addr is the mmap()’d
address and is never overwritten during the program runtime. The
log_cnt indicates the total number of data entries within the file.
Internally, ((char∗)base_addr) + objsize × log_cnt gives the
VMA for subsequent POW.

4.5.3 Canary Value. The programmer defines a per-data-structure
canary value: an 8-byte aligned value (because PMEM supports
8-byte atomic read/write) that a program would never generate
during the normal execution. A canary value in a POWfile indicates
either a partial persistence or an end of data.

For data structures with each field smaller than eight bytes, a
programmer can round each field to 8-byte with paddings. Once
a programmer confirms that padding bits are consistently set to
zero, they can consider an 8-byte value with all bits set to one as a
canary value.

Fallback mechanism When the program may generate a se-
quence of all possible 8-byte values, intentional misalignment is not
enough. Instead, a programmer can prepend padding to a data field
and align the padded data to 8 bytes. Due to the padding, a program
can avoid accidentally generating an 8-byte aligned canary value.
We included the sub-optimal scenario in the level-hash evaluation
(Section 5.5).

4.5.4 Thread-Safety and Concurrency. ENTS is thread-safe because
it modifies shared variables (e.g., log_cnt, global sequence num-
ber) with atomic read-modify-write (RMW). If a program prevents
multiple threads from concurrently modifying the same log file, a
programmer can turn off the concurrency support for better perfor-
mance. For example, in Listing 2, the nodePF is only modified when
a thread acquires a writer lock. Turning off RMW would remove
unnecessary RMW costs.

Thread-local Bookmark Object We clarify one potential con-
cern regarding the concurrent access to the bookmark. Each thread
has its own thread-local bookmark object but persists as a log
entry onto the same Bookmark file. This may result in a non-
monotonically increasing sequence number of bookmark logs. How-
ever, during recovery, each thread concerns log entries associated
with a specific thread ID. Therefore, it does not cause a correctness
issue since a single thread (1) exhibits sequential consistency at
FASE granularity and (2) does not rely on a continuous sequence
number for correctness — but rather on the existence of all log
entries sequenced before the consensus version ID.

9

Data Structure Concurrency Source

B+Tree Reader-Writer Lock Per Node Clobber-NVM
RBTree Global Reader-Writer Lock Clobber-NVM
HashMap Reader-Writer Lock Per Bucket Clobber-NVM
Skiplist Reader-Writer Lock Per List Clobber-NVM
TPC-C Per Transaction Lock Janus
TATP Per Transaction Lock Janus
Level-Hash Single Threaded Level-Hash

Table 3: Workload Detail

Lock Count ENTS wraps the pthread lock/unlock calls to in-
crement/decrement the thread-local lock count after/before the
real execution, respectively. Inside the unlock, ENTS checks if the
current lock count is zero and bookmarks with the updated lock
count. This process is transparent to the programmer.

5 EVALUATION
We evaluated the ENTS against Intel’s PMDK [9] and software-
only PMEM programming model Clobber-NVM [46] on ADR and
emulated eADR applied to the workloads in Table 3.

The goal of the evaluation is to answer the following questions.
• How does ENTS perform against other crash consistency

solutions?
• Does ENTS performance scale with the increased number

of threads?
• Which design factors of ENTS contribute to the perfor-

mance?
• Howwould ENTS recovery perform concerning the append-

only log file size?

5.1 Experiment Setup
We ran our experiments on a single-socket machine powered by
a 20-core Cascade Lake Intel Xeon Gold 6230 CPU. For memory,
we used the 16 GB DRAM and 128 GB PMEM per DIMM pair in a
2:2:2 configuration. We averaged over ten runs before computing
the relative throughput. For eADR emulation, we used PMDK’s
PMEM_NO_FLUSH option.

5.2 Performance
5.2.1 ADR. To show how ENTS performs against other crash con-
sistency techniques, we evaluated the single-thread 50:50 read/write
performance (Figure 2) against PMDK [9] and Clobber-NVM [46].
ENTS outperforms both PMDK and Clobber-NVM by 2.3× and 1.9×,
respectively. As we later show in Section 5.4, several factors con-
tribute to the ENTS’s performance. The idea of log structuring the
data objects and eagerly triggering the fence-free NTStore, having a
DRAM copy for faster memory access, and eliminating the manual
fence instruction all contribute to the ENTS’s high performance.

Tomeasure the crash consistency overhead of each technique, we
also compared against the volatile implementation of each bench-
mark. ENTS showed about a 35% slowdown, whereas PMDK and
Clobber-NVM showed a 70% and 65% slowdown. This indicates that
crash consistency is still a noticeable overhead even when most

memory accesses are from DRAM and requires future research to
further reduce the overhead.

All three techniques (PMDK, Clobber-NVM, and ENTS) showed
a significant slowdown for transactional benchmarks (TATP and
TPCC in Figure 2) for two reasons. First, these benchmarks are
100% write, whereas the data structure workloads (B+Tree, RBTree,
Hashmap, Skiplist) were 50:50 read/write. Write-only would incur
higher write latency on PMEM than on DRAM. Furthermore, it
deprives the opportunity to persist data concurrently, which is a
critical performance optimization for most PMEM programs.

5.2.2 Extended ADR. To understand how the eADR platform re-
duces the persistence overhead, we measured the performance
gain by eliminating the manual flushes from the program. In short,
PMDK showed a 21% performance gain on average, whereas only
4% for Clobber-NVM. This is because PMDK frequently flushes and
fences write-ahead-logging, whereas Clobber-NVM reduces the
number of logs with compiler analysis and logs only the data that
may be overwritten. As expected, ENTS and Volatile do not involve
manual flushes and thus did not benefit from the eADR. We only
show the results for single-thread execution, but multi-threaded
shows similar results.

5.3 Scalability
To understand how ENTS scales when compared to other solu-
tions, we measured the aggregated throughput as we increased
the number of threads. In general, ENTS outperformed PMDK and
Clobber-NVM by 2.1×2.1 and 1.8×, respectively, across the mea-
sured threads and workloads. For TATP, ENTS performed worse
than the other techniques because TATP is a short transactional
benchmark with a short time window to concurrently persist while
executing the main program logic.

Another interesting observation is that ENTS shows a stiff per-
formance degradation when increasing the thread beyond eight
threads. When the number of threads is larger than the number of
available LFBs, a frequent partially filled LFB eviction may occur.
As discussed in previous sections, partially filled LFB degrades the
NTStore performance with multiple bus operations. We conclude
that the ENTS’s scalability is bounded by the number of LFBs under
currently available hardware.

5.4 ENTS Variants
To understand how ENTS design components impact its huge per-
formance, we measured the performance of variant programs. To
understand the impact of placing the main data on DRAM, we com-
pare against a variant called ENTS-PMEM, which allocates the main
data on PMEM as with Clobber-NVM and PMDK. To understand
the impact of fence-free NTStore, we replaced the NTStore with
Temporal-Store-Flush-Fence (TSFF), which we refer to as ENTS-
TSFF. To understand the impact of both, we moved data onto PMEM
using TSFF and denoted ENTS-PMEM-TSFF. Lastly, to understand
how intentionally padding the data structures to catchline size can
impact the performance, we measured the padded version for each
variant.

Figure 5 shows the performance of ENTS variants. In general,
the non-temporal version running on DRAM shows the best perfor-
mance. One exception was the TPCC transaction workload, where

10

Figure 2: Single Threaded Performance on ADR

Figure 3: Single Threaded Performance Gain on eADR

Figure 4: Scalability on ADR

the workload benefitted from the temporal locality. Writes in the
TPCC workload were back-to-back to the same cacheline, and allo-
cating the cache to gather updates before flushing the fencing was
a better strategy than the default ENTS. Although default ENTS
showed better performance, TATPworkload performance also hints
that it can benefit from write allocation. When putting the main
data on PMEM (ENTS-PMEM and ENTS-PMEM-TSFF), the temporal

store performed better than the non-temporal store strategy. For
data structures, temporal locality did not benefit much because they
typically traversed to another data object rather than repeatedly
updating the same one. Regardless of whether the main data was on
DRAM or PMEM or whether the temporal or non-temporal store
was used, ENTS variants outperformed prior works.

11

Figure 5: Performance of Unpadded ENTS Variants. Note that ENTS is the same ENTS from Figure 2.

Figure 6: Speedup by Padding the ENTS Variants. Padded data structures at cacheline granularity.

Figure 6 shows the impact of padding each data structure. TATP
and TPCC benefited the most from padding the data structures. This
is because these workloads are write-only workloads with a small
time window for concurrently evicting the LFB. In such a scenario,
partially filled LFB may be evicted, incurring higher performance
overhead. Padding the data structure fills the LFB fully, resulting in
a smaller overhead.

As expected from the NTStore behavior, padding improved the
ENTS and ENTS-PMEM performance by 20% and 14%, respectively.
For temporal store-based implementations, the additional padding
bytes became a 5% overhead for ENTS-TSFF. For ENTS-PMEM-TSFF,
padding had negligible impact, resulting in a geometric mean of 0%
performance gain.

5.5 Level-Hashing
To show the benefit of ENTS under a write-optimized single-
threaded hash table, we applied ENTS to the level-hashing [52].
Level-hashing uses two-level structured KV buckets to defer the
hash expansion as much as possible by moving around the entries
using two hash functions [52]. Upon hash collision, it attempts to
relocate the existing entry to another location within the same level
using a secondary hash function. If insufficient, it makes a final
attempt to move entries across the level and avoids the expensive

0.2 0.4 0.6 0.8
Load Factor

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (M

op
s)

Uniform R: 50%

0.2 0.4 0.6 0.8
Load Factor

Zifian R: 50%

0.2 0.4 0.6 0.8
Load Factor

Uniform R: 95%

0.2 0.4 0.6 0.8
Load Factor

Zipfian R: 95%
DFLT.ADR
DFLT.EADR

ENTS
ENTS.OPT

PMDK.ADR
PMDK.EADR

VOLT

Figure 7: Level-Hash Performance using YCSB

hash expansion. We used the level-hash default configuration 31 B
KV, 10 million entries initial capacity, with a minimum of 12 M
operations per experiment, four associativities per bucket.
ENTS vs. ENTS.OPT We observed that ENTS.OPT, where each data
structure is padded to cacheline size, performs better than ENTS
for the write-heavy workload (left two subplots in Figure 7) but
shows the reversed performance for the read-heavy workload (right

12

nfile
objsize

holeat filesizeBytes 𝑙𝑜𝑔2

Tidy 0.351 0.027 0.130 -0.006 0.835
Agree 0.091 0.415 0.290 0.087 0.178
Trunc 0.903 0.005 0.098 0.172 0.209

Table 4: Correlation Coefficient Between Recovery Latency
and Various Variables

two subplots in Figure 7). This is because ENTS must write a whole
bucket per insertion, resulting in intense data movement. For a
read-heavy workload, ENTS has a slight advantage over ENTS.OPT
for small load factor where hash collision is less likely to occur.
This gap wears out as the load factor increases, incurring frequent
hash collision, thus, the data movement.
ENTS vs. othersWe make the following observations about ENTS
performance with respect to other implementations. ENTS per-
forms worse than others for Zipfian (R: 50%) workload running on
eADR. Zipfian workloads have high locality and PMDK.EADR and
DFLT.EADR takes advantage of write coalescing at the CPU cache
without touching the PMEM. The relatively larger gap between
ADR and eADR for Zipfian (R: 50%) also supports this idea; ea-
gerly flushing the modified cache line to PMEM (DFLT.ADR and
PMDK.ADR) removes the opportunity to gather the updates in the
CPU cache. ENTS shows a higher speedup for read-heavy workloads
over write-heavy compared to DFLT and PMDK. This is because ENTS
keeps a volatile copy on the DRAM for faster read access, whereas
others read from the slower PMEM. Overall, ENTS outperforms the
default (DFLT) by 2.3× and 1.4× under EADR and ADR, respectively.

5.6 Recovery Evaluation
To show ENTS recovery scales, we timed each recovery phase while
varying the following variables: nfile, filesize, objsize, and
holeat. We first initialized nfile POW Files each of filesize that
holds data objects where its size is objsize. We then performed
POW() on every file (pow_epoch on the last file) until they were half
full. After manually inserting a canary value in one of the POW
files so that data located at holeat gets cleaned up during the tidy
phase. We measured time per GB for each phase separately.

Results show that the agreement and truncate phases are neg-
ligible (< 10 𝜇s/GB) when compared to the tidy phases (from 113
to 281 ms/GB). During the library initialization, it would further
increase the tidy phase latency as it checks every 8B chunk against
the canary value. Although the actual recovery would involve addi-
tional reconstruction from the logs, recovery seldom occurs, and
iterating the logs during recovery is common in other proposed
solutions [15, 46].

Lastly, we show the correlation coefficient between the time it
takes for each phase and the variables we tested (Table 4). Results
show that the most time-consuming phase, the tidy phase, had a
high correlation with the filesize as it reads every byte in every
file.

6 RELATEDWORK
We discuss existing works and how naively applying our observa-
tion — relying on serializing instructions in lieu of fence instruction
— is incorrect for these works.

6.1 Crash Consistency Techniques
Previous works [17, 25, 36, 50] show that flushes and fences are ex-
pensive and degrade the overall performance. To minimize the cost,
previous works entail techniques such as batching flushes [10, 17],
performing hardware logging [16, 51], minimizing ordering require-
ments [17, 38], or performing lazy flushes [32, 34]. However, these
works target either one of the persistence domain (ADR/eADR),
modifies the underlying hardware, or can not leverage our obser-
vation.

Some works propose a separate data path, including a dedicated
buffer for PMEM writes [1, 14, 26, 30, 37, 48], and our observation
cannot be applied to these works to eliminate stalling. Even when
the serializing instruction drains the proposed buffer, the intra-
thread PMO requirement may stall the volatile execution at the
epoch boundary. For example, Strandweaver [14] extended the
existing ISA for ARMv7, which has a more relaxed consistency
model than Total Store Order (TSO). Under strand persistency, a
programmer defines a fine-grained ordering requirement (strand)
using the proposed instructions and invokes a persist barrier to
guarantee the epoch persistency within the strand. This persist
barrier order writes within a strand and causes stalling.

Any logging models rely on the ordering between persisting
log and in-place updates either explicitly through a fence-like in-
struction or implicitly handled by the hardware, causing execution
stalls. For example, Synchronization Free Region (SFR) [15] pro-
posed SFR-atomicity that batches the persist operation at the end
of a synchronization region (similar to how epoch persistency pro-
vides epoch-atomicity). Decoupled-SFR, a relaxed version, performs
asynchronous in-place updates when the undo-log is persistent.
Instead of synchronizing the in-place update, the pruner thread run-
ning in the background periodically commits and prunes the logs.
Decoupled-SFR is similar to ENTS in decoupling the VMO and PMO.
However, decoupled-SFR still relies on fences for intra-thread PMO;
the foreground thread persists (with flush-and-fence) the undo-log
before updating in-place, and the pruner thread may stall to apply
the logs in which they were generated. Unlike decoupled-SFR, the
log-free ENTS does not rely on strict intra-thread PMO.

6.2 Persistency Model
Strict Persistency (SP) couples the persistent memory ordering
(PMO)with volatile memory ordering (VMO). It removes the burden
to handle the discrepancy between the two orderings, but the lack
of concurrency hurts performance.

Buffered Strict Persistency (BSP) provides the same guarantee
as SP by allowing persist buffers to accumulate the PMEM writes
so that volatile execution proceeds without halts [1, 27, 30]. Data
in these buffers are concurrently flushed to PMEM, retaining the
VMO. A more recent work speculatively updates (i.e., PMO ≠ VMO)
the PMEM and recovers from misspeculation with a failure-atomic
transaction [26] or rewrites a cacheline with the saved data in the
memory controller [48]. Although BSP canmove some of the persist

13

operations out of the critical path, it requires detailed reasoning
about inevitable stalls to provide Strong Persist Atomicity (SPA):
writes to the overlapping PMEM locations assumes VMO [40].

Epoch Persistency (EP) permits the reordering within but not
across programmer-defined epochs [8]. Programmers define the
epoch boundary using fence instruction where the hardware thread
stalls and drains pending PMEM writes.

Buffered Epoch Persistency (BEP) gathers the writes in a
dedicated buffer so the volatile execution proceeds without stalls
at an intra-thread epoch boundary [10, 27, 29, 30, 41]. However,
BEP must stall to provide SPA, often involving intrusive hardware
modification to detect it.

Under strand persistency, programmers can articulate the PMO
within a single thread by defining a logically independent instruc-
tion sequence called a strand [14, 40]. A single thread may have
multiple strands, and each strand may concurrently persist while
retaining the programmer-defined intra-strand ordering. As other
BEP works, it stalls to drain buffer(s) and provides SPA.

Various works pointed out that inevitable stalls may occur to
provide SPA [14, 27, 40]. Our design is free from SPA as it only
appends to PMEM files.

6.3 Complicated PMEM Performance
PMEM is a byte-addressable, non-volatile memory that sits on the
memory bus along with a traditional DRAM. Many papers pointed
out that its performance is nothing like a slower DRAM [25, 49]. We
briefly discuss its non-uniform, modulated performance findings
from previous works.
Small writes result in write amplification.Many state-of-art
solutions rely on the performance observation that writes smaller
than 256B results in write amplification [5, 25, 49].
Sequential write vs. Random write. Some papers propose that
at 256B granularity, random write access to PMEM can be as fast
as sequential write access with many threads [5]. However, for a
small number of threads, sequential write has a higher bandwidth
than random write. ENTS leverages the performance of sequential
write.
Small hot-spot regions cause high tail latency. Previous work
found that overwriting a small region over and over results in a
few orders of magnitude higher tail latency [49]. They observe
latency spikes regularly, which hints that hardware wear-leveling
is triggered when writes stress one specific region. ENTS avoids
overwrites to the same memory region with append-only sequential
writes.
DRAM to PMEM copy scales best. Hildebrand et al. stated in
their paper the DRAM to PMEM data movement scales the best as
the number of threads increases, and it can reach the PMEM write
bandwidth [18]. ENTS eagerly persists data objects from DRAM to
PMEM.
Segregating DRAM/PMEM Prior works [13] also observed that
having a copy of data on both the DRAM and PMEM exhibits high
performance. Unlike prior work, which focused on lock-free data
structure, ENTS targets FASE transaction programming models.

6.4 Reducing Fences
Various works reduced the fence instructions usage [8, 27, 28, 37,
40, 42]. Nonetheless, many still need it.

(Almost) Fence-less Persist Ordering [35] suggested that NTStore
would likely persist before a temporal store so that an explicit fence
between them may be removed. They extend the x86 persistency
model to intentionally defer writebacks of the temporal stores to
handle a scenario such as slow NTStore or eagerly evicted CPU
cachelines. Unlike their model, ENTS does not need any of their
requirements: flush, persistency model extension, intentionally de-
layed writebacks, and hardware modifications. Furthermore, tuning
their model for eADR is non-trivial as they leverage the volatility
of the temporal store.

Minimally Ordered Data Structure (MOD) modifies a PMEM
shadow object and structurally shares data to reduce the shad-
owing cost [17]. MOD requires a single fence to order between
persisting the shadow object and swapping in the shadow object
when updating a group of relevant (pointers are chased from a sin-
gle data object) purely functional data structures. When updating
the isolated data objects within a single failure-atomic section, a
few fence instructions are needed for failure-atomicity.

Fence-Free Crash Consistent Design (FFCCD) [47] provides
two versions of PMEM concurrent garbage collecting solutions:
a software-only single-fence design called SFCCD) and a hardware-
assisted fence-free design called FFCCD. SFCCD allows reordering
between the data compaction and the compaction status update
as long as these two writes are atomic. Upon a failure, the SFCCD
recovery code re-executes the memcpy() to ensure both writes are
complete. FFCCD introduces a new instruction, relocate, which
records per cacheline persistence state. With such hardware sup-
port, the software removes the lingering sfence and leverages the
recorded persistence state during the recovery. ENTS is similar to
FFCCD in that both designs reduce flush and fence instructions
during the pre-failure execution but instead rely on a clever recov-
ery for correctness. Unlike FFCCD, ENTS does not need hardware
support to track fine-grained persistence. Applying our observation
to SFCCD is impossible because it must handle read requests while
concurrently performing data compaction. Without the sfence, a
reader thread may concurrently load data from the relocated mem-
ory while the data movement is in progress.

7 CONCLUSION
Weobserved that hardwarememory barriers are implicitly issued by
concurrency controls/syscalls and proposed a flush-and-fence-free,
log-structured PMEM programming model. By eagerly persisting
any modification on DRAM data with fence-free NTStore, ENTS
achieves 1.8×/2.1× performance under ADR/EADRwhen compared
against the Clobber-NVM ([46]) and the industry-standard program-
ming library (PMDK [9]), respectively. We conclude that ENTS
exhibits high performance without burdening the programmer to
perform flushes and fences manually.

ACKNOWLEDGEMENT
This paper is supported in part by NSF grants 1829524, 1817077,
2011212, and PRISM, one of seven centers in JUMP 2.0 (an SRC
program sponsored by DARPA).

14

REFERENCES
[1] Mohammad Alshboul, Prakash Ramrakhyani, William Wang, James Tuck, and

Yan Solihin. Bbb: Simplifying persistent programming using battery-backed
buffers. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 111–124, 2021.

[2] Hans-J. Boehm and Dhruva R. Chakrabarti. Persistence programming models
for non-volatile memory. In Proceedings of the 2016 ACM SIGPLAN International
Symposium on Memory Management, ISMM 2016, page 55–67, New York, NY,
USA, 2016. Association for Computing Machinery.

[3] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas: Leveraging
locks for non-volatile memory consistency. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA ’14, pages 433–452, New York, NY, USA, 2014. ACM.

[4] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas. Rewind: Recovery
write-ahead system for in-memory non-volatile data-structures. Proc. VLDB
Endow., 8(5):497–508, January 2015.

[5] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu.
Flatstore: An efficient log-structured key-value storage engine for persistent
memory. In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS
’20, page 1077–1091, New York, NY, USA, 2020. Association for Computing
Machinery.

[6] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. NV-Heaps: Making persistent objects fast and
safe with next-generation, non-volatile memories. In Proceedings of the Sixteenth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’11, pages 105–118, New York, NY, USA, 2011.
ACM.

[7] Nachshon Cohen, David T. Aksun, Hillel Avni, and James R. Larus. Fine-grain
checkpointing with in-cache-line logging. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’19, page 441–454, New York, NY, USA, 2019.
Association for Computing Machinery.

[8] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin
Lee, Doug Burger, and Derrick Coetzee. Better I/O through byte-addressable,
persistent memory. In Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, SOSP ’09, pages 133–146, New York, NY, USA, 2009.
ACM.

[9] Intel Corporation. Persistent Memory Development Kit, 2017. http://pmem.io/
pmdk.

[10] Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, and Vijay Nagarajan. Lazy
release persistency. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’20, page 1173–1186, New York, NY, USA, 2020. Association for Computing
Machinery.

[11] Kshitij Doshi, Ellis Giles, and Peter Varman. Atomic persistence for scm with a
non-intrusive backend controller. In 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 77–89, 2016.

[12] Kshitij Doshi and Peter Varman. Wrap: Managing byte-addressable persistent
memory, 2012.

[13] Michal Friedman, Erez Petrank, and Pedro Ramalhete. Mirror: Making lock-free
data structures persistent. In Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation, PLDI
2021, page 1218–1232, New York, NY, USA, 2021. Association for Computing
Machinery.

[14] V. Gogte, W. Wang, S. Diestelhorst, P. M. Chen, S. Narayanasamy, and T. F.
Wenish. Relaxed persist ordering using strand persistency. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA), 2020.

[15] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy,
Peter M. Chen, and Thomas F. Wenisch. Persistency for synchronization-free
regions. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018, page 46–61, New York, NY,
USA, 2018. Association for Computing Machinery.

[16] Siddharth Gupta, Alexandros Daglis, and Babak Falsafi. Distributed logless
atomic durability with persistent memory. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2019, Columbus,
OH, USA, October 12-16, 2019, pages 466–478. ACM, 2019.

[17] Swapnil Haria, Mark D. Hill, and Michael M. Swift. Mod: Minimally ordered
durable datastructures for persistent memory. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’20, page 775–788, New York, NY, USA, 2020.
Association for Computing Machinery.

[18] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and Venkatesh
Akella. Autotm: Automatic tensor movement in heterogeneous memory systems
using integer linear programming. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 875–890, New York, NY, USA, 2020. Association for

Computing Machinery.
[19] IEEE and The Open Group. The open group base specifications. https://pubs.

opengroup.org/onlinepubs/9699919799.2018edition/.
[20] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3,

Chapter 15, 2016. https://software.intel.com/sites/default/files/managed/a4/60/
325384-sdm-vol-3abcd.pdf, Version December 2016.

[21] Intel. Eadr: New opportunities for persistent memory applications, Jan
2021. https://www.intel.com/content/www/us/en/developer/articles/technical/
eadr-new-opportunities-for-persistent-memory-applications.html.

[22] Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference
Manual, June 2016.

[23] Intel Corporation. Intel® 64 and IA-32 architectures software developer manuals,
Jun 2021.

[24] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-Atomic Persistent
Memory Updates via JUSTDO Logging. In Proceedings of the Twenty-First In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, pages 427–442, New York, NY, USA, 2016. ACM.

[25] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir Saman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. Basic performance measurements of the intel optane
DC persistent memory module. CoRR, abs/1903.05714, 2019.

[26] Jungi Jeong and Changhee Jung. Pmem-spec: Persistent memory speculation
(strict persistency can trump relaxed persistency). In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’21, page 517–529, New York, NY, USA, 2021.
Association for Computing Machinery.

[27] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. Efficient persist
barriers for multicores. In Proceedings of the 48th International Symposium on Mi-
croarchitecture, MICRO-48, page 660–671, New York, NY, USA, 2015. Association
for Computing Machinery.

[28] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen, and T. F.
Wenisch. Delegated persist ordering. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–13, Oct 2016.

[29] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M. Chen,
Satish Narayanasamy, and Thomas F. Wenisch. Language-level persistency. In
Proceedings of the 44th Annual International Symposium on Computer Architecture,
ISCA ’17, page 481–493, New York, NY, USA, 2017. Association for Computing
Machinery.

[30] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven Pelley, Sihang
Liu, Peter M. Chen, and Thomas F. Wenisch. Delegated persist ordering. In The
49th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-49.
IEEE Press, 2016.

[31] Duncan Laurie. Ipmitool. https://github.com/ipmitool/ipmitool.
[32] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin

Zheng, and Jinglei Ren. Dudetm: Building durable transactions with decoupling
for persistent memory. SIGPLAN Not., 52(4):329–343, April 2017.

[33] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung. ido: Compiler-
directed failure atomicity for nonvolatile memory. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 258–270, 2018.

[34] Teng Ma, Mingxing Zhang, Kang Chen, Zhuo Song, Yongwei Wu, and Xuehai
Qian. AsymNVM: An Efficient Framework for Implementing Persistent Data Struc-
tures on Asymmetric NVMArchitecture, page 757–773. Association for Computing
Machinery, New York, NY, USA, 2020.

[35] Sara Mahdizadeh-Shahri, Seyed Armin Vakil-Ghahani, and Aasheesh Kolli. (al-
most) fence-less persist ordering. 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 539–554, 2020.

[36] Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. Pronto: Easy
and fast persistence for volatile data structures. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’20, page 789–806, New York, NY, USA, 2020.
Association for Computing Machinery.

[37] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and
Kimberly Keeton. An Analysis of Persistent Memory Use with WHISPER. In
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’17, pages 135–148,
New York, NY, USA, 2017. ACM.

[38] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H. Noh, and Beomseok Nam.
Write-optimized dynamic hashing for persistent memory. In 17th USENIX Con-
ference on File and Storage Technologies (FAST 19), pages 31–44, Boston, MA,
February 2019. USENIX Association.

[39] Pbalcer. Pmdk allocator. Intel PMEM IO Blog. https://pmem.io/blog/2016/02/
persistent-allocator-design-fragmentation.

[40] Steven Pelley, Peter M Chen, and Thomas F Wenisch. Memory persistency. In
2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA),
pages 265–276. IEEE, 2014.

[41] Azalea Raad and Viktor Vafeiadis. Persistence semantics for weak memory:
Integrating epoch persistency with the tso memory model. Proc. ACM Program.

15

http://pmem.io/pmdk
http://pmem.io/pmdk
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://github.com/ipmitool/ipmitool
https://pmem.io/blog/2016/02/persistent-allocator-design-fragmentation
https://pmem.io/blog/2016/02/persistent-allocator-design-fragmentation

Lang., 2(OOPSLA), oct 2018.
[42] Seunghee Shin, James Tuck, and Yan Solihin. Hiding the long latency of persist

barriers using speculative execution. In Proceedings of the 44th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’17, page 175–186, New York,
NY, USA, 2017. Association for Computing Machinery.

[43] tatp. Telecom application transaction processing benchmark. https://
tatpbenchmark.sourceforge.net/.

[44] GCC team. Gcc atomic memory access. https://gcc.gnu.org/onlinedocs/gcc-
4.1.1/gcc/Atomic-Builtins.html.

[45] TPC-C. Tpc-c. https://www.tpc.org/tpcc/.
[46] Yi Xu, Joseph Izraelevitz, and Steven Swanson. Clobber-nvm: Log less, re-execute

more. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2021, page
346–359, New York, NY, USA, 2021. Association for Computing Machinery.

[47] Yuanchao Xu, Chencheng Ye, Yan Solihin, and Xipeng Shen. Ffccd: Fence-
free crash-consistent concurrent defragmentation for persistent memory. In
Proceedings of the 49th Annual International Symposium on Computer Architecture,
ISCA ’22, page 274–288, New York, NY, USA, 2022. Association for Computing
Machinery.

[48] Sujay Yadalam, Nisarg Shah, Xiangyao Yu, and Michael Swift. Asap: A specu-
lative approach to persistence. In 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 892–907, 2022.

[49] Jian Yang, Juno Kim,MortezaHoseinzadeh, Joseph Izraelevitz, and Steve Swanson.
An empirical guide to the behavior and use of scalable persistent memory. In 18th
USENIX Conference on File and Storage Technologies (FAST 20), pages 169–182,
Santa Clara, CA, February 2020. USENIX Association.

[50] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swan-
son. An empirical guide to the behavior and use of scalable persistent memory.
In Proceedings of the 18th USENIX Conference on File and Storage Technologies,
FAST’20, page 169–182, USA, 2020. USENIX Association.

[51] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. Kiln:
Closing the performance gap between systems with and without persistence
support. In Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-46, pages 421–432, New York, NY, USA, 2013. ACM.

[52] Pengfei Zuo, YuHua, and JieWu. Write-optimized and high-performance hashing
index scheme for persistent memory. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 461–476, Carlsbad, CA,
October 2018. USENIX Association.

16

https://tatpbenchmark.sourceforge.net/
https://tatpbenchmark.sourceforge.net/
https://gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/Atomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/Atomic-Builtins.html
https://www.tpc.org/tpcc/

	Abstract
	1 Introduction
	2 Background
	2.1 PMEM Programming Model
	2.2 Architectural Background
	2.3 Motivation

	3 Design
	3.1 Design Overview and Challenges
	3.2 Log-Structurability - Data Layout Rule
	3.3 Compatible with Conventional Idioms
	3.4 Ensuring Durable Data Before Commit
	3.5 Crash Consistent Recovery

	4 Implementation
	4.1 Volatile Data Object to Durable Log
	4.2 Using ENTS API
	4.3 Atomic Durability — Extricated NTStore
	4.4 Recovery Implementation
	4.5 Library Implementation

	5 Evaluation
	5.1 Experiment Setup
	5.2 Performance
	5.3 Scalability
	5.4 ENTS Variants
	5.5 Level-Hashing
	5.6 Recovery Evaluation

	6 Related Work
	6.1 Crash Consistency Techniques
	6.2 Persistency Model
	6.3 Complicated PMEM Performance
	6.4 Reducing Fences

	7 Conclusion
	References

