
Multifidelity Memory System Simulation in SST
Patrick Lavin

Sandia National Laboratories
Albuquerque, NM, USA
prlavin@sandia.gov

Jeffrey Young
Georgia Institute of Technology
School of Computer Science

Atlanta, GA, USA
jyoung9@gatech.edu

Richard Vuduc
Georgia Institute of Technology

School of Computational Science and
Engineering

Atlanta, GA, USA
richie@cc.gatech.edu

ABSTRACT
As computer systems grow larger and more complex, it takes more
time to simulate their behavior in detail. Researchers interested in
simulating large-scale systems must choose between less-accurate
high-level models or simulating smaller portions of their bench-
mark suite, both of which are highly manual, offline approaches
that require time-consuming analysis by experts. Multifidelity sim-
ulation aims to lessen this burden by automatically adapting the
fidelity of a simulation to the complexity of the behavior occurring
at any given point in time. We show how a multifidelity memory
system model can be used to accelerate single node simulation by
up to 2x with 1-5% mean absolute percent error in the simulated
instructions per cycle across benchmark suites.

CCS CONCEPTS
• Computing methodologies→ Discrete-event simulation; •
Computer systems organization→ Architectures.

KEYWORDS
Architectural simulation, statistical simulation, memory modeling,
phase detection

1 INTRODUCTION
We consider the problem of how to speed up cycle-level simula-
tions, which attempt to capture the cycle-by-cycle behavior of the
components deemed most critical to the performance of the sys-
tem. We propose a technique, which we refer to as multifidelity
simulation, that trains and utilizes low-fidelity statistical models
during periods of easy-to-predict behavior. For memory-system
simulations, we show that it is possible to speed up end-to-end
simulations by up to 2x with 1-5% mean absolute percent error in
the simulated instructions per cycle across benchmark suites.

Our focus is on cycle-level simulation as it lies in the area be-
tween high-level analytical models [12, 27], which can be hard to
adapt to new systems and can miss the dynamic behavior that is
difficult to capture, and much more detailed RTL-level or gate-level
simulation which is far too expensive to use early in the design
cycle. Cycle-level simulation allows us to run simulations in days
or hours, but still includes a high amount of detail about the system,
making it the ideal place to work towards creating a co-design
workflow, where system designs and algorithms are changed in
tandem.

As processors grow more complex, detailed simulations too take
longer, as each processor has more components that need to be
considered, and system designers want to simulate more processors
working in parallel. While we wish to maintain the flexibility of a

170 341
Interval number

0

10

M
ea

n
la

te
nc

y

Figure 1: An example memory access latency trace of the
deriche benchmark from PolyBench. Colors denote phases
identified by the online phase detector.

detailed simulation, we can at the same time realize that we don’t
need the full detail of such a simulation for the entirety of a program.
Fortunately, there exist methods of simulating less than the entire
program in full detail, which we will cover in Section 2. However,
our approach is distinct from most existing work, in that it aims
to automatically adapt the level of detail of the simulation to the
complexity of the behavior of the simulated system. In physical
simulations, such techniques are known as multifidelity simulations
as they utilize multiple models of of the same behavior. For instance,
you may imagine a traffic simulation that has a low-fidelity model
that represents traffic as a flow, which is enough to estimate average
statistics when traffic is moving smoothly, as well as a high-fidelity
model that includes detailed descriptions of driver personality [21]
for when roads are congested. Our goal in this work is to adapt the
ideas of multifidelity simulation to memory system modeling.

To achieve a multifidelity memory system simulation, we will
adapt ideas from recent work on multifidelity cache models [14].
Our contributions include (1) the use of statistical techniques to
identify regions of programs that are suitable for use in training low-
fidelity models, (2) the implementation of multifidelity components
such as phase detection and stability detection in a widely-used
simulator, SST [25], and (3) a multifidelity memory system model.
Beyond the aforementioned 2x speedup and 1-5% average error,
we demonstrate the model’s ability to automatically capture input-
dependent behavior.

2 RELATEDWORK
Due to the popularity of simulation in the process of computer
system design, numerous attempts have been made to accelerate
it. Some techniques are focused on simulating a single node, as
our approach is, but there are even lower-fidelity models used in
the context of large-scale simulation that are related to our work
as well, as we see our work as a way to bridge the gap between
detailed single-node simulation, and the higher-level simulations
used for modeling entire supercomputers.

Patrick Lavin, Jeffrey Young, and Richard Vuduc

2.1 Single node simulation
A single node, cycle-level simulation models a processor together
with its memory system and any accelerators. We can categorize
techniques related to our own into two categories: those that reduce
the number of instructions simulated, and those that reduce the
fidelity of the simulation.

2.1.1 Reducing instruction count. To reduce the number of instruc-
tions simulated, there are popular sampling techniques: statistical
sampling and clustering-based sampled simulation. Statistical sam-
pling reduces the number of instructions simulated by choosing
intervals of the program to at random to simulate in full-detail,
fast-forwarding between them using functional simulation which
advances the program without modeling what is happening in the
simulated components1. This technique has the benefit of providing
rigorous error bars on the predicted performance of the program.
Statistical sampling was pioneered by Conte et al. [6], and the most
modern implementation is QFlex, which uses parallel simulation
and FPGAs to further accelerate simulation [22]. While we do not
provide the error bars that they do, our approach adapts online to
the complexity of the behavior of the program. It is likely that our
approach could be combined with statistical sampling to get the
benefits of both.

Related to this technique is clustering-based sampled simulation,
which first simulates the entire program in detail, and then per-
forms an offline analysis to cluster related regions of the program.
Then the program can be simulated much more efficiently by only
simulating those representative samples. The seminal work in this
area is SimPoint [24]. Barrierpoint[4] extends this method to multi-
threaded, barrier-based programs, and LoopPoint further extends
this arbitrary parallel constructs. However, these approaches are
offline, meaning that simulating the entire program after making
changes to it or changing the input will always be required, in
contrast to our work.

2.1.2 Reducing fidelity. Another approach to increasing the speed
of simulation is through the use of higher-level models which don’t
consider as much detail about the operations of the core (what
we would call a lower-fidelity model). The best example of such as
simulator is Sniper [3], which uses an “interval” core model. In their
model, they make the observation that it is very easy to predict
core performance when there are no miss events, such as TLB and
L1 cache misses. As such, they do not simulate each instruction
in detail as it moves through an out-of-order processor, rather
they model when these miss events will happen. They report an
order of magnitude improvement in runtime over cycle-accurate in
this technique. However, such techniques make many assumptions
about the design of the memory hierarchy and are therefore require
significant effort to alter if onewants to simulate a radically different
memory hierarchy.

To our knowledge, there are two existing multifidelity computer
architecture simulations: 𝐵2Sim [16], and one by Lavin et al. [14]. In
𝐵2Sim, when a basic block is first encountered, it is run in a detailed
out-of-order simulator and information is collected about the block.

1Simulators such as Gem5 [2] support this fast-fowarding by supporting both detailed
and functional core models and the ability to swap between them during simulation,
but users must decide for themselves when this switching happens.

They record the number of cycles spent in the block both in the
core and out of the core. On future invocations, the out-of-order
core model does not need to be run and only the cache is simulated
to get the off-core timings. The framework presented by Lavin et al.
is similar in it also first runs models in full-detail before switching
to lower-fidelity models. However, their framework is more general
and can be applied to more components of the simulation than just
the core, which is why it is the one we will be extending in this
work to include the entire memory system.

2.2 Large-scale simulation
In the world of large-scale simulation, such as simulations of 100’s
or 1000’s of nodes, even less fidelity is used due to the time it
would take to simulate nodes in detail. There are two approaches
to modeling the node behavior that we are aware of: SST’s Ember
library [11] and SST/Macro [1]. While these approaches do not
include much detail on the node model, they are indeed low-fidelity
models. In both Ember simulations and the skeletonized simulations
of SST/Macro, the network is simulated in detail, but the compute is
simulated with a simple delay. Calculating an appropriate delay to
represent the computation is a manual process, requiring architects
to perform studies determining how each compute region behaves
as a function of both program input and the time stamp of the
program, as the behavior may be dynamic. Thus, adapting such
studies to a co-design framework, where the program may change,
is a difficult task. Our work aims to be automated, meaning we can
create the low-fidelity components of our multifidelity models on
the fly, without needing to perform a new study each time we add
a new benchmark to the suite or change the benchmarks.

2.3 Multifidelity modeling
So far we have looked at related work in the field of computer ar-
chitecture, but there is related literature on multifidelity simulation
the world of physics simulations that is somewhat unconnected to
our area of study. However, their methods are quite relevant and we
share many of their ideas here. We will focus on multifidelity simu-
lation which is defined as either a simulation which uses data from
multiple levels of fidelity to construct a single aggregate model, or a
simulation which uses different levels of fidelity at different points
in the simulation.

The most relevant paper [5] develops a framework for adapt-
ing simulation to be multifidelity. Largely, we agree on the tasks
involved in adapting a high-fidelity model with low-fidelity surro-
gates. Namely, it is important to determine low-fidelity candidate
models and to identify where one might switch between high and
low fidelity models. However, there are some key differences be-
tween our work and theirs:

(1) They focus on outer-loop problems, in which a single model
is repeatedly evaluated with varying parameters, meaning
simulations are independent of each other. Our work, how-
ever, is interested in the acceleration of a single simulation
with changing fidelity.

(2) They are able to determine ahead of time where their re-
gions of interest are, which is the region they need high-
fidelity simulation for, meaning their technique is offline.

Multifidelity Memory System Simulation in SST

2.4 Summary
We have covered the most relevant related work in this section, but
the field is quite large so those wishing to explore further should
turn to more comprehensive treatments of the topic [8, 10].

3 MULTIFIDELITY COMPONENTS
Before we take a look at the new components we need to add to
our simulation, let us first take a look at the system we will be
simulating. For now we will take a high-level look, and later in the
experimental results we can examine the finer details.

3.1 Simulated architecture
For this study, we have chosen a simple architecture with a trace-
based core model, a two-level cache, backed by main memory. This
is depicted in Figure 2.

Core

L1

L2

Main
memory

Memory
system

Figure 2: Simplified diagram of the simulated node architec-
ture. This work will create a multifidelity memory system
model which accelerates the components below the dashed
line.

The simulator is trace-driven, meaning the core model will sim-
ply serve to track the number of outstanding transactions. The
memory system model, which is everything in the figure except for
the core model, will serve as a timing simulator, meaning it only
needs to figure out how long each memory access takes; it does
not need to keep track of actual data being read from or written to
memory.

With the basic structure intact, we can discuss the components
we added to this simulation to (1) decompose the program into
homogeneous regions called phases, (2) find representative regions
of those phases, and (3) create low-fidelity models from those rep-
resentative regions.

3.2 Phase detection
The first problemwemust address in creating a multifidelity simula-
tion is decomposing our problem domain, both in time and in space.
In a physical simulation, how space is decomposed might change
throughout the simulation, such as eddies moving around in a fluid
simulation. Fortunately for us, computer architecture simulations
have well defined boundaries between components, so changing
the fidelity of a single component is no issue, as long as it maintains

the interfaces it uses to talk to other components. However, we still
want to decompose the problem in time as well; this is where phase
detection comes in.

In Figure 3 we can see an example of the data that we want to
replicate with our model. This figure shows the mean memory ac-
cess latency for each interval of 75,000 instructions in correlation,
a benchmark in PolyBench, a benchmark suite of simple kernels
used by compiler writers [13]. We can see that this program goes
through different phases of behavior which would be difficult to
capture in a simple model that aims to summarize the entire pro-
gram. Phase detection will help us to isolate these regions of distinct
behavior.

45 90
Interval number

0

2

4

6

8

10

M
ea

n
la

te
nc

y
(c

yc
le

s)

Figure 3: Mean memory access latency as a function of time
for the correlation benchmark. Each point represents an av-
erage over 75,000 references. Background colors indicate dif-
ferent phases identified by the phase detector. Grey regions
are transition phases, which indicate that the instruction
working set was changing too quickly at that point to declare
a new phase.

Phase detection has been used in an offline fashion by the popu-
lar SimPoint [24] technique to cluster together similar regions of
execution so that researchers can simulate a single representative
region from each cluster, instead of needing to simulate the entire
program. Our multifidelity algorithm differs significantly though,
as it is online. This led us to choose the algorithm from Dhodapkar
et al.[7], which was used in prior multifidelity work as well [14].
Readers should see Appendix A of that paper to see the algorithm
in more detail.

3.2.1 Dhodapkar algorithm. The algorithm we chose for phase
detection uses only the stream of instruction pointers to determine
the current program phase. It functions, at a high level, as follows:

(1) Break the stream of instruction pointers (IPs) into uniformly
sized, non-overlapping windows

(2) Assign each interval a signature by hashing each IP into a
bit vector

(3) Compare the signature to previous intervals using a dis-
tance function and a threshold. If a few intervals in a row

Patrick Lavin, Jeffrey Young, and Richard Vuduc

are similar, meaning their distance is below the threshold,
we can say we are in a phase.

As this algorithm relies only on IPs, it is unable to detect data-
dependent changes in behavior. For instance, a program like Spatter
[15] has memory access strides that change based on user settings,
even though the kernel being executed, and thus the stream of IPs,
does not change. This means that this particular phase detection
algorithm would not work well for programs with that behavior.
We’ll discuss potential improvements to phase detection at the end
of the paper in Section 8.

3.3 Stability detection
Armed with phase detection to decompose our program in time,
we now want to create a low-fidelity model for each phase that we
can use in place of the full memory system simulation. However,
we need to decide what data we should use to train such a model.
Furthermore, this is happening online, so we need to make the
decision of when we should stop collecting data from the phase so
that we can switch to the low-fidelity model. Prior work simply
chose the first few intervals of a phase, however, this will not work
in this implementation as the first few intervals of a phase often
have very different behavior as the cache is warming up. For this
work, we develop Stability Detection, which is going to tell us when
the distribution of latencies of memory references has stabilized,
and give us a representative region of that phase.

We will borrow the Ft-Pj-RG method from the world of Monte
Carlo simulation.

3.3.1 Ft-Pj-RG Algorithm. The Ft-Pj-RG algorithm was developed
for use in Monte Carlo simulations, where users want to run many
simulations and wait for some statistic of interest to stabilize, letting
them know they can stop running simulations. We have a similar
situation, where many phases in a program display high variability
in the latency at the beginning of a phase as the cache warms up,
and then get to a steady state. Thus, we will use this algorithm to
help us find when that steady state has begun. We will describe the
high-level aspects below, but readers can find the full algorithm in
the original paper [20].

The algorithm works by creating two consecutive windows of
data, and running a series of statistical tests on them. First an F-test
is run, to test for equal variance of the two windows. If this passes,
a t-test is run to test if the windows have the same mean. Finally, if
this passes, a series of projection tests are run to see if the data in
our windows is predictive of some number of future windows. If
any of tests fail, the algorithm advances the windows, grows them,
and returns to the F-test. Once all tests pass, we declare that we
have found a stable region and use that data to train a low-fidelity
model which we will explain in the next subsection, Section 3.4.

We had to make one change to the algorithm, which was that
our data, the latency of memory accesses, can be quite noisy on a
small scale. Thus, we average together a number of points to form
a single data point that is used as input for this algorithm. How
exactly we chose how many points to aggregate together, as well as
all the other parameters for this algorithm, is explained in Section 5.

3.4 Low-fidelity memory system model
Our low-fidelity model only needs to do one thing: model the la-
tency of a single memory access. Normally, a read or a write would
be sent to the memory system and it would return some time later
to the core. Our model will speed this up by predicting the latency
of the access and immediately scheduling it to arrive at the core
some number of cycles in the future.

For this work, we will evaluate a single low-fidelity model - a
fixed latency model. This means that for every phase in which
the stability detector finds a stable region, we will take the mean
latency of the stable region and use that value as the latency of
all future references in that phase instead of sending them to the
memory system simulator. In practice we can’t set a delay at a finer
granularity than 1 cycle, so for each memory access, we assign it a
latency of ceil(𝑥) with probability 𝑝 ≡ 𝑥 − floor(𝑥)—a value which
always lies in [0, 1)—and otherwise assign it a latency of floor(𝑥)
with probability 𝑞 ≡ 1 − 𝑝 = 1 − 𝑥 + floor(𝑥) = ceil(𝑥) − 𝑥 . The
expected value of the assigned latency is, therefore, 𝑥 , as desired.

3.5 Multifidelity system
Now that we have our components, we can take a look at where they
fit into our simulation, depicted in Figure 4. The first component,
the phase detector, needs access to the instruction pointers, so it
is placed with the core model. While instruction pointers could be
shared with the rest of the system, placing the phase detector here
means that the phase detection algorithm can easily be changed
in the future to one that uses other execution information, such as
the number of branch mispredictions.

Core

L1

L2

Main
memory

Parrot

Phase
detector

Stability
detector

Low-fi
model

Figure 4: The updated simulation model. We have added the
components in green, which are the phase detector, and the
Parrot, which itself includes the stability detector and the
low-fidelity model.

The other two components are placed within a new component
which we call the Parrot, as this is the component that will try to
mimic the behavior of the memory system with a statistical model2.
Placing the Parrot at the top of the memory hierarchy means it
can observe the memory latency behavior in each phase so that
2To avoid introducing delay to each memory access, the Parrot component is clocked
at twice the frequency of the rest of the simulation.

Multifidelity Memory System Simulation in SST

the stability detector can determine when it has collected enough
information. Once the stability detector has found a stable region
for a phase, it can create a new low-fidelity model for that phase
and use it to accelerate simulation.

With all of our multifidelity components in place, we are ready
to look at the full multifidelity algorithm.

4 MULTIFIDELITY ALGORITHM
Now that we have phase detection, stability detection, and a low-
fidelity model, we have everything we need for the full algorithm,
save the phase detection and stability detection parameters, which
we will discuss in the following section.

At the beginning of the program, we begin running the phase
detector, which will send messages to the Parrot component when
phases begin and end. The rest of the algorithm can be understood
on a per-phase basis. When a new phase is identified:

(1) Begin running the stability detector after enough data has
been collected

(2) If a stable region is found, create a low-fidelity model and
use that for the rest of the phase and for future invocations
of the phase

(3) If a stable region is not found, wait to collect more data
from the phase

(4) If the phase ends before a stable region is found, give up on
searching for a stable region for that phase

This algorithm is online, as phases and stable regions are identi-
fied during simulation, and low-fidelity models are used whenever
possible. While there are scenarios where stability won’t be found,
meaning we can’t use our low-fidelity model, this is by design,
as it prevents us from using the simpler models where they are
not appropriate; we only want to speed up the areas of execution
displaying behavior which can be faithfully represented by our
fixed-latency model.

One aspect we have avoided so far is the selection of the param-
eters for the phase and stability detector, but we will discuss those
next.

5 PHASE AND STABILITY PARAMETER
SELECTION

As the phase and stability detectors are both parameterized, we need
a way to choose appropriate settings. Ideally, we would find a single
setting that worked well for any combination of benchmarks and
architectures or a way to adjust these parameters online, but that is
beyond the scope of this work and is left as an open problem. For this
study, we have collected data from regular runs of the simulator
(with no multifidelity behavior enabled) and run it through an
offline optimization procedure so that we can determine appropriate
settings for these parameters. For our purposes, we will adjust three
of the phase detection parameters and five of the stability detection
parameters. See tables 1 and 2 respectively. We ignore the majority
of the Ft-Pj-RG parameters in our search as the authors of the
method note that the projection test is the most domain-dependent
aspect of the algorithm. The default values are used for the F- and
t-tests, and are listed in the original paper on the technique. For
the rest of this section, an assignment of values to those eight
parameters will be referred to as a design point.

Parameter Explanation

stable_min The number of consecutive similar phases
needed to declare a new phase

threshold The maximum distance between two signa-
tures to consider them similar

interval_len The number of instructions in an interval
Table 1: Phase detection parameters

Parameter Explanation

summarize The number of latencies averaged together
to form a single data point

window_start The initial size of a window. This changes
throughout the algorithm.

proj_dist How far out the projection test looks
proj_delta How close the projection must be to the real

point for a test success
p_j How many projection tests must succeed for

the test to pass
Table 2: Stability detection parameters

The primary focus of our evaluation will be on the PolyBench
benchmark suite [13], so we will explain the parameter search with
those benchmarks in mind, although this process was repeated
for the other benchmark suites as well. PolyBench was chosen as
it contains a large number of simple kernels which are easy to
simulate and have easily understood phases, as the code is quite
short. Thus, the latency plots in Figure 6 that we will look at later
can be interpreted much more easily. The length of the kernels
also makes running numerous simulations easier. They do limit us,
however, to single-threaded experiments.

To begin, we collected 5 traces of each of the 30 benchmarks run
on the medium inputs in PolyBench. Multiple traces are required
as Ariel grabs the traces from running programs, so each is slightly
different. Using multiple traces of each benchmark allows us to
ensure we choose parameters that are robust to small changes in
the input. We collect both the instruction pointer (IP) for every
access, as this is needed by the phase detector, and the latency of
each access, as this is needed by the stability detector and by our
low-fidelity model.

It would take prohibitively long to run many settings of our
multifidelity model, so we need a way to estimate the performance
of each design point offline. We are concerned two different metrics
in this work: speedup and accuracy. To achieve speedup, we will
want our phase detector and stability detector to quickly produce
stable regions so that we may begin using low-fidelity models early
in the program. To achieve accuracy, we want our detectors to give
us good quality stable regions that match closely with the behavior
of the rest of the phase. As such, we developed two metrics to
estimate these values from the recorded traces for a given design
point.

Patrick Lavin, Jeffrey Young, and Richard Vuduc

5.1 Estimating Speedup
We can estimate speedup by looking at the amount of time we
could potentially spend in low-fidelity models given how much
time we spend in phases after stable regions have been identified.
We collected memory traces for the PolyBench benchmarks and
estimated speedup of a single trace as follows:

Speedupest =
𝐿∑

𝑖∈phases (𝑙𝑖 − 𝑠𝑖)
where 𝐿 is the length of the trace, 𝑙𝑖 is the length of phase 𝑖 and 𝑠𝑖

is how long it takes to find a stable region for phase 𝑖 . 𝑠𝑖 is less than
or equal to 𝑙𝑖 . This means that a configuration that spends more
time in a phases where stability is quickly identified will have a
higher estimated speedup. Were this our only metric, we would end
up with configurations that have loose requirements for interval
similarity and stability detection, but not necessarily configurations
that give us good stable regions. Thus, we have an accuracy metric
as well.

5.2 Estimating Error
We can estimate the error of a configuration by calculating how
similar the stable regions identified are to the rest of the phases
they come from. As our low-fidelity model predicts the latencies
based on the mean latency of the stable region, we compare the
mean of the stable region to the mean of the entire phase to judge
accuracy. Formally, the estimated error of a configuration is:

Errorest =
∑︁

𝑖∈phases

𝑥𝑖 − 𝑥𝑖

𝑥𝑖
∗ 𝑙𝑖 − 𝑠𝑖

𝐿

where 𝐿 is the trace length, 𝑙𝑖 is the length of phase 𝑖 , 𝑠𝑖 is how
long it takes to find the stable region in 𝑖 , 𝑥𝑖 is the mean latency of
phase 𝑖 , 𝑥 is the mean latency of stable region 𝑖 if it has one, or 𝑥𝑖
otherwise. This essentially average percent error for between the
mean latency of each stable region and the phase phase it comes
from, weighted by time spent in that phase after the stable region
is identified. A perfect score is 1. 3 Were we to use this criteria
in isolation, we would end up with configurations that essentially
never detect stability, as there will always be some amount of error
when deciding to pick a stable region. Thus, we must optimize for
both metrics simultaneously.

5.3 Parameter space exploration
We swept over roughly 6.6 million parameter combinations, as
shown in Table 3. Each combination was evaluated on each of the
5 traces of each of the 30 benchmarks. To choose a single config-
uration to use in the multifidelity simulations, one option would
be to combine the scores for the benchmarks, weighting them
appropriately based on the length of each. However, this led to
configurations which were somewhat fragile, meaning they would
find a stable region for some runs of a benchmark, and sometimes
they would not. Thus, we chose a different strategy.

To pick a single configuration, we first down selected by looking
only at settings we deemed robust, meaning that if they produced
3The weights (second multiplicand) will not sum to one. This is fine because inter-
vals simulated in high-fidelity, i.e. intervals belonging to stable regions or intervals
belonging to no phase, have zero error.

multifidelity behavior in some benchmark on one trace, they pro-
duced multifidelity behavior for that benchmark for all five traces.
Here, producing multifidelity behavior means that the configuration
identified at least a single stable region in some phase. Then, we
selected only configurations which estimated less than 2% error,
and picked the one with the highest predicted speedup for each
benchmark. We found that when looking at the configurations we
were left with, there was a small range of values for each parameter.
For parameters with more than one value at this point, we picked
the one that worked well for the most benchmarks.

In Figure 5, you can see the entire parameter space we needed to
select from. Each plot shows the configurations for each benchmark,
with estimated speedup on the x-axis and estimated error on the
y-axis. Thus, the bottom right corner is most optimal. The red dots
show the Pareto optimal points. We can see that some benchmarks
with very simple behavior such as 2mm are very easy to optimize for
as we can get very close to the bottom right of the plot. However,
for others such as durbin, it can be difficult to decide what the best
trade-off between accuracy and speedup is. Examining the latency
trace in Figure 6 for this plot shows that the latency is not stable,
and thus our fixed-latency model is not a good fit so the only way
to get better accuracy is to use more restrictive stability detection
parameters, which limits speedup. Refining and automating this
procedure is left to future work.

In Figure 6, you can see the output of the phase detector for
each benchmark for the configuration we selected. We see that a
number of benchmarks have a single phase, but that there is often
complex behavior within those phases, that may not work well
for our model. This is what the stability detector aims to correct
for. Some benchmarks have seemingly simple behavior but end up
with very short fine-grained phases that don’t work well with the
stability detector such as jacobi2d and lu.

This method of choosing parameters relies on some simulations
run in full-detail. In Section 7, we will describe when we had to re-
peat this technique and when we found we could share parameters
between simulator configurations. In the future, we hope to sim-
plify this process so that full-detail simulations are not required. We
also expect that these benchmarks will experience better speedup
with a more advanced technique, which will discuss in Section 8.

Parameter Explanation

stable_min [3, 4, 5]
threshold [0.5, 0.6, 0.65]
interval_len [10,000, 50,000, 100,000]

summarize [20, 25, 50, 75, 100]
window_start [1000, 1500, 2000]
proj_dist [5, 10, 15, 20]
proj_delta [0.25, 0.5, 1.0, 2.0, 2.5, 3.0]
p_j [4, 6, 8, 10]

Table 3: Parameter search space. The configuration chosen
for multifidelity PolyBench simulations is shown in bold.

Multifidelity Memory System Simulation in SST

0

10

20

30 2mm 3mm adi atax bicg

0

10

20

30 cholesky correlation covariance deriche doitgen

0

10

20

30 durbin fdtd-2d floyd-warshall gemm gemver

0

10

20

30 gesummv gramschmidt heat-3d jacobi-1d jacobi-2d

0

10

20

30 lu ludcmp mvt nussinov seidel-2d

1.0 1.5 2.9
0

10

20

30 symm

1.0 1.5 2.9

syr2k

1.0 1.5 2.9

syrk

1.0 1.5 2.9

trisolv

1.0 1.5 2.9

trmm

Figure 5: Phase detector/stability detector parameter search. Each point in each small plot is an an average score across 5 runs
of a benchmark. The score on the x-axis is estimated speedup (defined in Section 5.1) and the score on the y-axis is estimated
error (defined in Section 5.2). The best score would be in the lower right corner of the plot, meaning a high speedup but a low
error. The Pareto front is shown in red.

Patrick Lavin, Jeffrey Young, and Richard Vuduc

634 12690

5

10

15

2mm
553 1106

3mm
392 784

adi
34 68

atax
30 61

bicg

331 6630

5

10

15

cholesky
453 906

correlation
453 907

covariance
341 682

deriche
513 1026

doitgen

17 350

5

10

15

durbin
418 836

fdtd-2d
620 1240

floyd-warshall
581 1163

gemm
60 121

gemver

12 240

5

10

15

gesummv
451 903

gramschmidt
300 601

heat-3d
8 17

jacobi-1d
565 1130

jacobi-2d

324 6490

5

10

15

lu
394 789

ludcmp
34 68

mvt
603 1206

nussinov
338 677

seidel-2d

436 8720

5

10

15

symm
404 808

syr2k
426 852

syrk
8 17

trisolv
434 869

trmm

Figure 6: Mean memory access latency per 75,000 instruction interval. The background of each plot denotes the program phase,
as determined by the phase detector.

Multifidelity Memory System Simulation in SST

6 EXPERIMENTAL DESIGN
In our evaluation, we are interested in two metrics, error and
speedup. Error will be measured by the percent error in the simu-
lated instructions per cycle (IPC), as this is a metric that is not lost
when we replace the detailed memory simulation with our low-
fidelity model, as opposed to something like the number of cache
hits. We will be comparing multifidelity simulations with normal
simulations, which is just the same simulator configuration with
no phase detection or Parrot component. While our simulations are
traced-based, we will see in this section that the traces are gener-
ated from running programs by the Ariel component. This means
that each trace is a little bit different, so the simulated IPC for each
program is a random variable. Thus, both normal and multifidelity
runs have to be repeated to get bounds on the simulated IPC. Let us
now take a closer look at the configuration of the simulated system.

6.1 SST Components
The overall structure of our simulator was described in Section 3.5.
We have implemented this system in the Structural Simulation
Toolkit (SST) [25], which is a collection of simulation components
and interfaces, so we must decide which models we use and how
they are connected together. Table 4 lists all the parameters we
used for our simulation components.

6.1.1 Core model. We use Ariel as our core model, which is a
Pin-based trace-driven model. Pin is a binary instrumentation tool
which allows users to inspect and modify executing binaries [18].
Ariel uses Pin to collect the memory references of running pro-
grams and send those references to simulated cores, which then
pass them on to the memory system simulator. Ariel’s core model is
very simple; it does not track dependencies between instructions, it
only keeps track of howmany outstanding references there are, and
issues a maximum number of references per cycle. It is primarily
used as a lightweight frontend for memory simulators. For all the
experiments in this paper, Ariel will be scoped to only collect mem-
ory references for the kernel under study, which greatly reduced
variability between runs.

6.1.2 Caches. We use the standard cache model for our simulation,
which is memHierarchy.Cache.

6.1.3 Main memory. For main memory, we use SST’s memory
controller memHierarchy.MemController, which connects to a
backend to provide detailed timing simulation for different types
of DRAM. For the backend, our default will be DRAMSim3 [17],
but we will also run experiments with a simpler simulator that is
included with SST, memHierarchy.timingDRAM. DRAMSim3 sup-
ports a number of different DRAM models, so we picked the 8GiB
HBM2 model for our experiments as it is a modern technology. This
model is referred to by DRAMSim3 as HBM2_8Gb_x128.ini. For
the timingDRAM experiments, we used the default settings with a
size of 8GiB.

6.2 Host system
Our experiments were conducted on a server with an Intel Xeon
Gold 6338, a 32-core, 64-thread processor built on the Ice Lake
architecture with 512 GB of RAM. SST runs in a single process and

Component Parameter Value

Core Cores 1
Outstanding transactions 16
Frequency 2.0 GHz
Issue rate 1

L1 Cache Frequency 2.0 GHz
Size 32 KiB
Line size 64 bytes
Access latency 2 cycles
Coherence MESI
Replacement LRU
Associativity 4
Banks 8

L2 Cache Frequency 1.0 GHz
Size 1 MiB
Line size 64 bytes
Access latency 20 cycles
MSHR latency 5 cycles
Coherence MESI
Replacement LRU
Associativity 4
Banks 8

Main Memory Size 8GiB

Parrot Frequency 4.0 GHz
Table 4: Simulator parameters. Neither cache uses prefetch-
ing. All links have a latency of 100ps, except those connecting
the Parrot component which have a latency of 50ps.

the traced program runs in a separate process. Thus, the two can run
in parallel, but SST still spends a lot of time waiting for instructions
to be available from the traced process. However, as our work only
concerns the memory system simulation, that parallelism will not
affect our timings.

6.3 Benchmarks
The first benchmark suite we will look at is PolyBench, a set of
30 simple kernels used by compiler writers for the evaluation of
polyhedral optimizations [13]. They are useful for evaluating phase
detection as they display a variety of phase behaviors, which pro-
vides additional variability for our system to detect and evaluate
when it should and should not use a low-fidelity model.

Before we run our benchmarks, we will take a look at how well
we can expect to do, given our simulator design and our fixed-
latency low-fidelity model.

6.4 Potential speedup
As our model only affects the memory system, the speedup we can
achieve is limited by howmuch time our simulation actually spends
in the cache and main memory models.

We ran each benchmark in the original simulator without any of
the multifidelity components. Each was run for a maximum of 100
simulated milliseconds. We were able to trace the amount of time

Patrick Lavin, Jeffrey Young, and Richard Vuduc

spent in each SST component with their built-in profiler. If SST-
Core is compiled with --enable-profile, then each component
can be timed when invoking sst.

For these runs, Table 5 shows how much time is spent in the core
model and in the memory system simulation. A simple Amdahl’s
law calculation shows us that in the best case, we can achieve an
average speedup of 2.58 speedup for the entire benchmark suite.
While not shown in this chart, there is some overhead imposed
by the Parrot component. Taking this into account, the maximum
possible speedup we can achieve with the current Parrot implemen-
tation is 2.17. The data for individual benchmarks is included in
Table 5.

benchmark tAriel tmemH tParrot MPS A-MPS
2mm 2418.17 4007.74 465.62 2.66 2.23
3mm 2125.32 3604.09 417.44 2.70 2.25
adi 1489.42 2260.56 275.69 2.52 2.12
atax 71.03 109.22 13.80 2.54 2.12
bicg 69.43 100.47 13.11 2.45 2.06
cholesky 1296.58 1742.86 236.74 2.34 1.98
correlation 1877.55 3278.77 334.69 2.75 2.33
covariance 1852.30 3196.09 325.89 2.73 2.32
deriche 800.28 1182.60 142.24 2.48 2.10
doitgen 1944.98 2904.72 355.72 2.49 2.11
durbin 34.00 58.04 7.05 2.71 2.24
fdtd-2d 1578.39 2296.50 296.15 2.45 2.07
floyd-warshall 2259.06 3122.27 430.24 2.38 2.00
gemm 2132.90 2695.64 384.02 2.26 1.92
gemver 132.38 209.96 25.96 2.59 2.16
gesummv 26.05 39.97 5.02 2.53 2.12
gramschmidt 1739.03 3300.87 330.91 2.90 2.43
heat-3d 1295.96 1550.21 217.31 2.20 1.88
jacobi-1d 18.99 28.18 3.53 2.48 2.09
jacobi-2d 2144.12 3135.47 415.04 2.46 2.06
lu 1300.37 2196.92 250.44 2.69 2.26
ludcmp 1551.79 2854.33 304.74 2.84 2.37
mvt 72.94 125.01 14.53 2.71 2.26
nussinov 2327.72 3796.01 450.41 2.63 2.20
seidel-2d 1308.19 1797.04 246.35 2.37 2.00
symm 1690.12 3023.76 331.05 2.79 2.33
syr2k 1619.18 2855.17 314.99 2.76 2.31
syrk 1626.11 2702.28 308.13 2.66 2.24
trisolv 18.10 28.98 3.55 2.60 2.17
trmm 1372.07 2554.15 262.74 2.86 2.40
Mean 1273.08 2025.26 239.44 2.58 2.17

Table 5: Maximum potential speedup of multifidelity mem-
ory system simulation. PolyBench medium inputs simulated
for a maximum of 100ms. The time spend in the core, the
memory system, and the Parrot are given in seconds. MPS
is the maximum potential speedup without considering the
overhead imposed by the Parrot, and A-MPS is the adjusted
maximum given the current Parrot implementation.

6.5 Accuracy estimates
Before we begin, we want to ensure that we are improving on sim-
pler methods. For this, wewill compare against a theoretical method
that knows the mean memory latency access for the program before

it begins, and uses that as the low-fidelity for the entire simulation,
with no detailed memory simulation whatsoever. We will calcu-
late how much error we expect from such a method by examining
traces collected from our simulation instead of implementing this
technique.

To create an error number for this theoretical fixed-latency
method, we calculate the mean absolute percent error, or MAPE, as
follows:

MAPEfixed =

𝑁∑︁
𝑖=1

����𝑥 − 𝑙𝑖

𝑥

���� ∗ 100
𝑁

where 𝑥 is the mean latency for the program, 𝑙𝑖 is the latency
of access 𝑖 , and 𝑁 is the number of accesses in the program. To
calculate an error number for our multifidelity simulation, we use a
trace from a regular simulation, but we calculate what phases and
stable regions would be identified by using the same parameters as
we have chosen for multifidelity simulation. We then calculate a
MAPE value for each phase by comparing the mean of the stable
region to the accesses after the stable region, as these are the only
accesses that would use that value in a multifidelity simulation. The
rest of the values have zero error, as they would be run through
the actual memory system simulator. As you can see in Table 6, we
improve upon the error in the vast majority of cases. Importantly,
even though our approach has less information, it is able to improve
upon the error by better matching the dynamic behavior of the
program under study. These error numbers may look large, but we
will see in the next section that we still achieve high accuracy in
the overall IPC of the simulation. A number of benchmarks have
zero estimated error, meaning they are not predicted to have any
stable regions that we can create low-fidelitymodels from.

7 RESULTS
We ran experiments on the PolyBench benchmark suite as well as
matrix multiply and Spatter. The results are summarized at the end
of this section in Table 7.

7.1 PolyBench
Our first three experiments were conducted with the 30 benchmarks
in PolyBench. We ran each benchmark 5 times with and without
the multifidelity components enabled.

7.1.1 Initial experiments. Using the methodology described in Sec-
tion 5.2, we selected parameters for phase detector and stability
detector. Thus, we used the five normal runs of the benchmarks to
find suitable parameters for the multifidelity runs. The error and
speedup results are in Figure 7. As we can see from the speedup
plots, 16 of the benchmarks did not speedup, as the stability detector
did not find any stable regions to create low-fidelity models from.
Thus, the overall average speedup is limited to 1.46 for this set of
experiments. We do, however, achieve a high degree of accuracy,
with a MAPE of only 1.98% in the simulated IPC. The numeric
values of these plots can be seen Table 8 in Appendix B.

7.1.2 System modifications. We wished to examine the generality
of the parameters we had found in the first set of experiments, so
we change our model in two different ways: changing the issue
rate of the core and changing the DRAM model. When changing

Multifidelity Memory System Simulation in SST

2m
m

3m
m ad

i
ata

x
bic

g

cho
les

ky

cor
rel

ati
on

cov
ari

an
ce

de
ric

he

do
itg

en
du

rbi
n

fdt
d-2

d

flo
yd

-wars
ha

ll
ge

mm
ge

mve
r

ge
sum

mv

gra
msch

midt

he
at-

3d

jac
ob

i-1
d

jac
ob

i-2
d lu

lud
cm

p
mvt

nu
ssi

no
v

sei
de

l-2
d

sym
m

syr
2k syr

k
tris

olv
trm

m
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

IP
C

IPC (issue rate = 1)
Normal
Multidelity

2m
m

3m
m ad

i
ata

x
bic

g

cho
les

ky

cor
rel

ati
on

cov
ari

an
ce

de
ric

he

do
itg

en
du

rbi
n

fdt
d-2

d

flo
yd

-wars
ha

ll
ge

mm
ge

mve
r

ge
sum

mv

gra
msch

midt

he
at-

3d

jac
ob

i-1
d

jac
ob

i-2
d lu

lud
cm

p
mvt

nu
ssi

no
v

sei
de

l-2
d

sym
m

syr
2k syr

k
tris

olv
trm

m
0

1

2

3
Speedup (issue rate = 1)

Figure 7: Accuracy and speedup results for PolyBench with a core issue rate of 1 (top and bottom, respectively). The red dashes
in the accuracy plot represent the minimum and maximum of the five runs, and the bar itself is the mean. In the speedup plot,
the red line is at 1; benchmarks near this line did not undergo multifidelity behavior.

the issue rate of the core, we found that while the variability of the
multifidelity runs increased, we still achieve a comparable speedup
of 1.47 and MAPE of 4.67% in the IPC.

We also examined changing the model of the DRAM from the
HBM2 model from DRAMSim3 to the timingDRAMmodel included
with SST while retaining our original single issue core. Overall, this
led to a 8% average difference in the IPC of the normal simulations,
so the effect of the DRAM model is considerable. We found that we
achieved slightly better average speedup in this case, at 1.59, likely
due to the fact that SST is able to disable the timingDRAM’s clock
when it is not in use, which is not true of the DRAMSim3 backend.
The MAPE of the IPC for these runs is 1.50.

The full results for these two experiments are in Tables 9 and 10
in Appendix B.

7.2 Other benchmarks
To demonstrate the usage of multifidelity simulation for microar-
chitectural studies, we perform a matrix multiply cache blocking
study and take a look at the Spatter uniform stride inputs.

7.2.1 Matrix multiply. To continue our evaluation, we wished to
examine how the method would work for the purposes of a microar-
chitectural study, such as examining the effect of cache blocking
on the overall IPC. We ran a basic matrix multiply (𝐴 = 𝐵 ∗ 𝐶)
on 180x180 matrices with varying block sizes. We re-ran the op-
timization procedure to find new settings for the phase detector
and the stability detector. Due to the simplicity of the behavior, we
found that a looser constraint on the projection test in the stability

detector allowed for slightly more speedup. The optimal phase de-
tection parameters remained unchanged. The experiments achieved
an average speedup of nearly 2x and very low error of only 0.78%.
However, we found that even with the small error, our multifidelity
simulations produced an IPC curve that was too noisy to estimate
the optimal block size from. We believe that this architecture was
not ideal for demonstrating the usage of matrix blocking as the per-
formance of different block sizes was very tightly grouped. Thus,
we also examined a benchmark which better demonstrated the
performance aspects of this architecture.

7.2.2 Spatter. Our final evaluation is on the uniform stride bench-
mark suite from Spatter. Spatter is an irregular memory access
benchmark that can be configured to run many different memory
access patterns, either created by hand or generated from traces of
other benchmarks [15]. For our purposes, we will use only a simple
input, the uniform stride gather input. The uniform stride pattern
is quite simple: a stride-1 gather is akin to STREAM [19], reading
every element of an array, except it only performs reads, not writes.
A stride-N gather will read every Nth element of an array. An ele-
ment here is an 8 byte double. Each kernel will perform a total of
128,000 reads.

We ran strides 1 through 8, and achieved an average error of
2.45% with a speedup of 1.33. In Figure 8, we see that except for
an issue with the stride-1 simulation, we faithfully represent the
slope of the regular simulations. The modest speedup is due to the
fact that the Spatter runs are quite short and so we do not spend as
much time using the low-fidelity model. Limitations in the current
implementation of the benchmark prevented us from extending

Patrick Lavin, Jeffrey Young, and Richard Vuduc

Benchmark MAPE𝑓 𝑖𝑥𝑒𝑑 MAPE𝑚𝑓

2mm 59.62 55.75
3mm 60.86 65.81
adi 86.89 0.00
atax 63.57 0.00
bicg 79.63 0.00
cholesky 9.13 7.67
correlation 99.25 94.14
covariance 99.21 90.66
deriche 97.97 0.00
doitgen 36.83 34.84
durbin 25.89 14.03
fdtd-2d 75.49 0.00
floyd-warshall 11.47 7.20
gemm 9.48 7.84
gemver 72.56 0.00
gesummv 77.54 0.00
gramschmidt 101.35 96.18
heat-3d 10.61 16.57
jacobi-1d 26.36 20.02
jacobi-2d 20.35 17.95
lu 54.37 13.82
ludcmp 77.02 5.25
mvt 85.14 0.00
nussinov 51.10 0.00
seidel-2d 37.02 0.00
symm 68.11 63.24
syr2k 74.93 69.19
syrk 50.94 11.53
trisolv 95.65 0.00
trmm 100.03 97.86

Table 6: Estimated dynamic error for each of the PolyBench
benchmarks. The MAPE𝑓 𝑖𝑥𝑒𝑑 column represnts the mean
error for each reference if we knew the mean latency for the
program ahead of time. MAPE𝑚𝑓 represents an estimated
error for our multifidelity runs.

Experiment MAPE Speedup
single-issue 1.96% 1.46
double-issue 4.49% 1.47
timingDRAM 1.50% 1.59
Matrix multiply 0.78% 1.98
Spatter 2.45% 1.33

Table 7: Summary of results from Section 7. MAPE is the
mean absolute percent error in the IPC between normal and
multifidelity runs.

these runs, but for a longer running pattern they can achieve the
same speedup we saw with matrix multiply. The interesting take-
away is that even though Spatter is an input-dependent program,
we are able to automatically create models that reflect this behavior,
without needing to do any analysis on how program input affects
the simulated behavior.

1 2 3 4 5 6 7 8
Stride

0.56
0.58
0.60
0.62
0.64
0.66
0.68

IP
C

Normal
MF

Figure 8: Spatter experiment results. On the x-axis, is the
stride of the memory access pattern, and simulated IPC is on
the y-axis. The overall mean error is 2.45%.

8 DISCUSSION AND FUTUREWORK
In this work, we presented 3 contributions: (1) a novel addition to
the multifidelity algorithm, stability detection, (2) an implementa-
tion of components that can be re-used in other SST simulations,
the phase detector and Parrot components, and (3) a new appli-
cation of multifidelity methods to the memory system. We found
that while the algorithm, in its current state can achieve reasonable
speedup on a number of benchmarks, the overall speedup is limited
by benchmarks that we could not identify stable regions for with
our stability detector. While we could have used more lenient sta-
bility detection parameters, we chose parameters that we estimated
would keep the error around 2%. We found that while this level
of accuracy was useful in the simulation of Spatter, it may be too
high for some studies, as we found with matrix multiply. Thus, we
believe that our technique is most useful in contexts where users
would want an automated, simpler model, such as in the case of
large-scale simulation or in co-design studies.

The area of multifidelity computer architecture simulation is
new, meaning there are plenty of places to explore improvements,
both in the accuracy of the technique and the possible speedup.

8.1 Accuracy
A limitation of the work in its current state is its inability to produce
error bars on the accuracy of the simulation without knowledge of
the ground truth. This limits its ability to fully replace traditional,
non-multifidelity simulation. We believe there are two promising
avenues to address this: statistical sampling and changes to the
phase detection algorithm.

As we mentioned in Section 2, some approaches use statistical
sampling to produce error bars on the final IPC. This technique
could be combined with a multifidelity algorithm to apply sampling
per-phase. The combination of the two would give us the ability to
detect complex phases and keep them from being simulated in low-
fidelity, potentially improving the accuracy of sampled simulation.

The other approach would be to change the phase detector to
use signals more closely aligned with the behavior under study.
For example, if the phase detector had locality information, then a
phase change would indicate that a new low-fidelity memory model
should be trained, as the old one is likely now incorrect. In our study,

Multifidelity Memory System Simulation in SST

we used the instruction pointer working set, so we were unable to
detect these changes in programs where kernel behavior changes
throughout, but we corrected for it with the stability detector. A
stronger phase detector may obviate the need for stability detection
altogether.

8.2 Speedup
Our technique will benefit as more simulators are integrated into
the SST ecosystem. As more models become available, we will be
able to use the techniques discussed here to choose when it may
make sense to switch between them during simulation to get the
speedup of the faster model while maintaining high accuracy. For
example, while we used DRAMSim3 in this paper, there are other
simulators such as DRAMSys4.0 that act as other levels of fidelity
for the DRAM [9, 26]. However, there are other bottlenecks we
must consider than the models themselves.

As we noted in Section 6, the maximum potential speedupwe can
achieve with a multifidelity memory system is around 2.5x, as we
are bottlenecked by waiting on Ariel to generate traces. Thus, work
on creating a multifidelity trace generation model has the potential
to speed up simulation further. This would require researchers to
find a way to disable and re-enable tracing, allowing the native
program to run at full speed while the simulation used its own
memory reference generator. Such a generator may use statistical
techniques to create a simplified memory stream, such as a Spatter
pattern.

Even with an accelerated memory reference generator, there will
still be a fundamental bottleneck of needing to do something with
every single instruction. To achieve an order of magnitude speedup,
it may be necessary to introduce even simpler models, perhaps
where sections are not simulated in anyway, but where statistics are
re-used from previous executions of those regions. This is similar to
how 𝐵2Sim and SimPoint work, as mentioned in Section 2. It would
also sense to use our multifidelity memory system in conjunction
with other simulation acceleration techniques, such as Pinballs [23]
or statistical sampling.

We also believe this work can extend naturally to the world of
network simulation. Networks already have a number of models
available for them, such as models that incorporate congestion, or
those that only model the number of hops each packet takes. A
multifidelity network model could detect when the simpler model
would be useful and switch between in response to network behav-
ior, giving researchers the benefit of a faster model without needing
to characterize network traffic themselves.

8.3 Conclusions
With further research into multifidelity simulations, we believe
they will become an important part of continuing to scale com-
puter system simulations. Currently, researchers must perform
time consuming studies for each program they are interested in
to characterize the node-level and network-level behavior, which
limits the number of experiments that can be simulated. Multifi-
delity algorithms automate the process of creating faster models,
meaning they will be vital in enabling us to simulate tomorrow’s
supercomptuers.

ACKNOWLEDGMENTS
The authors would like to thank the SST team for the help with
this project, particularly Gwendolyn Voskuilen and Scott Hemmert
for the help in developing the models.

Sandia National Laboratories is a multimission laboratory man-
aged and operated by National Technology and Engineering So-
lutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA-0003525.

This research was supported in part through research infras-
tructure and services provided by the Rogues Gallery testbed [28]
hosted by the Center for Research into Novel Computing Hier-
archies (CRNCH) at Georgia Tech. The Rogues Gallery testbed
is primarily supported by the National Science Foundation (NSF)
under NSF Award Number #2016701. Any opinions, findings and
conclusions, or recommendations expressed in this material are
those of the author(s), and do not necessarily reflect those of the
NSF.

REFERENCES
[1] Tae-Hyuk Ahn, Damian Dechev, Heshan Lin, Helgi Adalsteinsson, and Curtis L

Janssen. 2011. Evaluating Performance Optimizations of Large-scale Genomic
Sequence Search Applications using SST/macro.. In SIMULTECH. 65–73.

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (aug 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[3] Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven Eeck-
hout. 2014. An Evaluation of High-Level Mechanistic Core Models. ACM
Transactions on Architecture and Code Optimization (TACO), Article 5 (2014),
23 pages. https://doi.org/10.1145/2629677

[4] Trevor E Carlson, Wim Heirman, Kenzo Van Craeynest, and Lieven Eeckhout.
2014. Barrierpoint: Sampled simulation of multi-threaded applications. In 2014
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 2–12.

[5] Seon Han Choi, Kyung-Min Seo, and Tag Gon Kim. 2017. Accelerated simulation
of discrete event dynamic systems via a multi-fidelity modeling framework.
Applied Sciences 7, 10 (2017), 1056.

[6] T.M. Conte, M.A. Hirsch, and K.N. Menezes. 1996. Reducing state loss for effective
trace sampling of superscalar processors. In Proceedings International Conference
on Computer Design. VLSI in Computers and Processors. 468–477. https://doi.org/
10.1109/ICCD.1996.563595

[7] Ashutosh S. Dhodapkar and James E. Smith. 2002. ManagingMulti-Configuration
Hardware via Dynamic Working Set Analysis. In Proceedings of the 29th Annual
International Symposium on Computer Architecture (Anchorage, Alaska) (ISCA
’02). IEEE Computer Society, USA, 233–244.

[8] Lieven Eeckhout. 2010. Computer architecture performance evaluation methods.
Morgan & Claypool Publishers.

[9] Johannes Feldmann, Kira Kraft, Lukas Steiner, Norbert Wehn, and Matthias Jung.
2020. Fast and Accurate DRAM Simulation: Can we Further Accelerate it?. In
2020 Design, Automation Test in Europe Conference Exhibition (DATE). 364–369.
https://doi.org/10.23919/DATE48585.2020.9116275

[10] Qi Guo, Tianshi Chen, Yunji Chen, and Franz Franchetti. 2016. Accelerating
Architectural Simulation Via Statistical Techniques: A Survey. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 35, 3 (March 2016),
433–446. https://doi.org/10.1109/TCAD.2015.2481796

[11] Simon David Hammond, Karl Scott Hemmert, Michael J Levenhagen, Arun F
Rodrigues, and Gwendolyn Renae Voskuilen. 2015. Ember: Reference Communi-
cation Patterns for Exascale. Technical Report. Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States).

[12] Mor Harchol-Balter. 2013. Performance modeling and design of computer systems:
queueing theory in action. Cambridge University Press.

[13] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2019. Polybench: The first
benchmark for polystores. In Performance Evaluation and Benchmarking for the
Era of Artificial Intelligence: 10th TPC Technology Conference, TPCTC 2018, Rio de
Janeiro, Brazil, August 27–31, 2018, Revised Selected Papers 10. Springer, 24–41.

[14] Patrick Lavin, Jeffrey Young, Richard Vuduc, and Jonathan Beard. 2021. Online
model swapping for architectural simulation. In Proceedings of the 18th ACM
International Conference on Computing Frontiers. 102–112.

https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2629677
https://doi.org/10.1109/ICCD.1996.563595
https://doi.org/10.1109/ICCD.1996.563595
https://doi.org/10.23919/DATE48585.2020.9116275
https://doi.org/10.1109/TCAD.2015.2481796

Patrick Lavin, Jeffrey Young, and Richard Vuduc

[15] Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason Riedy, Aaron Vose, and Daniel
Ernst. 2020. Evaluating Gather and Scatter Performance on CPUs and GPUs. In
The International Symposium on Memory Systems. 209–222.

[16] Wonbok Lee, Kimish Patel, and Massoud Pedram. 2006. B 2 Sim:: a fast micro-
architecture simulator based on basic block characterization. In Proceedings of the
4th international conference on Hardware/software codesign and system synthesis -
CODES+ISSS ’06. ACM Press, Seoul, Korea, 199. https://doi.org/10.1145/1176254.
1176303

[17] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. 2020.
DRAMsim3: A Cycle-Accurate, Thermal-Capable DRAM Simulator. IEEE Com-
puter Architecture Letters 19, 2 (July 2020), 106–109. https://doi.org/10.1109/LCA.
2020.2973991

[18] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
SIGPLAN Not. 40, 6 (jun 2005), 190–200. https://doi.org/10.1145/1064978.1065034

[19] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (Dec. 1995), 19–25.

[20] Chris Nellis, Thomas Danielson, Aditya Savara, and Celine Hin. 2018. The ft-pj-rg
method: an adjacent-rolling-windows based steady-state detection technique for
application to kinetic monte carlo simulations. Computer Physics Communications
232 (2018), 124–138.

[21] Daiheng Ni. 2011. Multiscale modeling of traffic flow. Mathematica Aeterna 1, 1
(2011), 27–54.

[22] EPFL Parallel Systems Architecture Lab (PARSA). 2020. QFlex. https://qflex.
epfl.ch

[23] Harish Patil and Trevor E Carlson. 2014. Pinballs: portable and shareable user-
level checkpoints for reproducible analysis and simulation. In Proceedings of the
Workshop on Reproducible Research Methodologies (REPRODUCE), Vol. 2.

[24] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood,
and Brad Calder. 2003. Using SimPoint for Accurate and Efficient Simulation.
In Proceedings of the 2003 ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems (San Diego, CA, USA) (SIGMET-
RICS ’03). Association for Computing Machinery, New York, NY, USA, 318–319.
https://doi.org/10.1145/781027.781076

[25] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. Weston,
R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. The Structural
Simulation Toolkit. SIGMETRICS Perform. Eval. Rev. 38, 4 (March 2011), 37–42.
https://doi.org/10.1145/1964218.1964225

[26] Lukas Steiner, Matthias Jung, Felipe S. Prado, Kirill Bykov, and Norbert Wehn.
2020. DRAMSys4.0: A Fast and Cycle-Accurate SystemC/TLM-Based DRAM
Simulator. In Embedded Computer Systems: Architectures, Modeling, and Simu-
lation, Alex Orailoglu, Matthias Jung, and Marc Reichenbach (Eds.). Springer
International Publishing, Cham, 110–126.

[27] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (2009), 65–76.

[28] Jeffrey S. Young, Jason Riedy, ThomasM. Conte, Vivek Sarkar, Prasanth Chatarasi,
and Sriseshan Srikanth. 2019. Experimental Insights from the Rogues Gallery. In
2019 IEEE International Conference on Rebooting Computing (ICRC). 1–8. https:
//doi.org/10.1109/ICRC.2019.8914707

A AVAILABILITY
Our simulator is available on GitHub at this link: https://github.
com/plavin/multifidelity/releases/tag/memsys23.

B EXPERIMENT DATA

Benchmark IPCtrue IPCmf Pct. Error Speedup
2mm 0.86 ± 0.03 0.87 ± 0.03 -1.04 2.18
3mm 0.85 ± 0.03 0.88 ± 0.03 -2.91 0.96
adi 0.88 ± 0.01 0.86 ± 0.01 2.27 0.99
atax 0.76 ± 0.01 0.76 ± 0.01 -0.11 0.97
bicg 0.75 ± 0.01 0.75 ± 0.01 -0.22 0.98
cholesky 0.76 ± 0.01 0.75 ± 0.01 0.75 1.00
correlation 0.86 ± 0.02 0.90 ± 0.02 -3.60 2.33
covariance 0.86 ± 0.01 0.88 ± 0.01 -1.73 1.99
deriche 0.85 ± 0.01 0.84 ± 0.01 1.81 1.01
doitgen 0.86 ± 0.02 0.88 ± 0.02 -2.32 1.99
durbin 0.67 ± 0.00 0.65 ± 0.00 1.71 0.98
fdtd-2d 0.87 ± 0.01 0.85 ± 0.01 1.90 1.00
floyd-warshall 0.84 ± 0.03 0.87 ± 0.03 -2.54 1.86
gemm 0.84 ± 0.02 0.88 ± 0.02 -4.68 1.94
gemver 0.83 ± 0.01 0.83 ± 0.01 0.41 0.97
gesummv 0.61 ± 0.00 0.61 ± 0.00 0.96 0.97
gramschmidt 0.86 ± 0.03 0.88 ± 0.03 -2.74 2.29
heat-3d 0.91 ± 0.01 0.90 ± 0.01 0.93 1.70
jacobi-1d 0.57 ± 0.00 0.56 ± 0.00 1.51 0.97
jacobi-2d 0.85 ± 0.03 0.87 ± 0.03 -2.49 2.02
lu 0.76 ± 0.01 0.73 ± 0.01 3.97 1.01
ludcmp 0.75 ± 0.01 0.76 ± 0.01 -1.40 1.83
mvt 0.78 ± 0.01 0.78 ± 0.01 -0.13 0.97
nussinov 0.86 ± 0.03 0.88 ± 0.03 -3.04 0.94
seidel-2d 0.89 ± 0.01 0.86 ± 0.01 3.31 0.99
symm 0.87 ± 0.01 0.88 ± 0.01 -1.33 2.14
syr2k 0.88 ± 0.01 0.90 ± 0.01 -2.25 2.13
syrk 0.88 ± 0.01 0.87 ± 0.01 0.41 1.36
trisolv 0.57 ± 0.00 0.56 ± 0.00 1.94 0.96
trmm 0.86 ± 0.02 0.90 ± 0.02 -4.32 2.32
Mean 1.96 1.46

Table 8: Single issue experiment results, averaged over 5 runs.
Runs in red experienced no multifidelity behavior.

Benchmark IPCtrue IPCmf Pct. Error Speedup
2mm 1.63 ± 0.01 1.66 ± 0.01 -1.54 2.01
3mm 1.64 ± 0.01 1.74 ± 0.01 -5.90 0.99
adi 1.60 ± 0.02 1.63 ± 0.02 -1.84 1.03
atax 1.27 ± 0.01 1.31 ± 0.01 -3.38 0.99
bicg 1.22 ± 0.02 1.28 ± 0.02 -4.71 1.00
cholesky 1.44 ± 0.02 1.48 ± 0.02 -2.65 1.01
correlation 1.61 ± 0.03 1.75 ± 0.03 -8.10 2.47
covariance 1.64 ± 0.03 1.49 ± 0.03 10.15 2.77
deriche 1.49 ± 0.02 1.55 ± 0.02 -3.38 1.03
doitgen 1.63 ± 0.02 1.73 ± 0.02 -5.67 2.25
durbin 1.00 ± 0.02 1.08 ± 0.02 -6.79 0.99
fdtd-2d 1.59 ± 0.02 1.62 ± 0.02 -2.24 1.02
floyd-warshall 1.64 ± 0.03 1.63 ± 0.03 1.02 1.25
gemm 1.60 ± 0.02 1.59 ± 0.02 0.62 2.09
gemver 1.45 ± 0.01 1.51 ± 0.01 -4.14 1.01
gesummv 0.87 ± 0.02 0.94 ± 0.02 -7.60 0.98
gramschmidt 1.61 ± 0.01 1.73 ± 0.01 -6.95 2.45
heat-3d 1.72 ± 0.03 1.70 ± 0.03 0.97 1.38
jacobi-1d 0.78 ± 0.02 0.84 ± 0.02 -6.89 1.00
jacobi-2d 1.64 ± 0.04 1.74 ± 0.04 -5.98 2.15
lu 1.45 ± 0.02 1.47 ± 0.02 -1.20 1.03
ludcmp 1.42 ± 0.02 1.46 ± 0.02 -3.08 1.02
mvt 1.32 ± 0.01 1.38 ± 0.01 -4.45 0.99
nussinov 1.64 ± 0.03 1.77 ± 0.03 -7.55 0.97
seidel-2d 1.67 ± 0.01 1.74 ± 0.01 -4.10 1.26
symm 1.65 ± 0.02 1.69 ± 0.02 -2.00 2.29
syr2k 1.68 ± 0.03 1.64 ± 0.03 2.48 2.26
syrk 1.65 ± 0.03 1.75 ± 0.03 -5.85 1.02
trisolv 0.79 ± 0.02 0.85 ± 0.02 -7.19 0.98
trmm 1.67 ± 0.03 1.58 ± 0.03 6.27 2.54
Mean 4.49 1.47

Table 9: Double issue experiment results

https://doi.org/10.1145/1176254.1176303
https://doi.org/10.1145/1176254.1176303
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1145/1064978.1065034
https://qflex.epfl.ch
https://qflex.epfl.ch
https://doi.org/10.1145/781027.781076
https://doi.org/10.1145/1964218.1964225
https://doi.org/10.1109/ICRC.2019.8914707
https://doi.org/10.1109/ICRC.2019.8914707
https://github.com/plavin/multifidelity/releases/tag/memsys23
https://github.com/plavin/multifidelity/releases/tag/memsys23

Multifidelity Memory System Simulation in SST

Benchmark IPCtrue IPCmf Pct. Error Speedup
2mm 0.90 ± 0.00 0.88 ± 0.00 1.87 2.39
3mm 0.89 ± 0.00 0.92 ± 0.00 -3.33 0.97
adi 0.90 ± 0.00 0.90 ± 0.00 0.19 1.01
atax 0.68 ± 0.01 0.69 ± 0.01 -1.43 0.97
bicg 0.67 ± 0.00 0.68 ± 0.00 -0.98 0.97
cholesky 0.64 ± 0.00 0.63 ± 0.00 1.31 1.01
correlation 0.89 ± 0.01 0.91 ± 0.01 -2.36 2.37
covariance 0.89 ± 0.00 0.90 ± 0.00 -1.20 2.16
deriche 0.87 ± 0.00 0.88 ± 0.00 -0.94 1.43
doitgen 0.89 ± 0.00 0.90 ± 0.00 -1.05 2.17
durbin 0.52 ± 0.01 0.53 ± 0.01 -2.03 0.96
fdtd-2d 0.90 ± 0.00 0.90 ± 0.00 0.22 1.00
floyd-warshall 0.89 ± 0.00 0.89 ± 0.00 -0.43 2.12
gemm 0.89 ± 0.00 0.89 ± 0.00 -0.80 2.07
gemver 0.80 ± 0.00 0.78 ± 0.00 2.00 1.13
gesummv 0.47 ± 0.00 0.48 ± 0.00 -3.27 0.97
gramschmidt 0.89 ± 0.00 0.91 ± 0.00 -1.50 2.34
heat-3d 0.91 ± 0.00 0.92 ± 0.00 -0.88 1.90
jacobi-1d 0.41 ± 0.00 0.40 ± 0.00 2.09 0.96
jacobi-2d 0.89 ± 0.00 0.90 ± 0.00 -1.05 2.21
lu 0.64 ± 0.01 0.62 ± 0.01 2.40 1.03
ludcmp 0.63 ± 0.00 0.64 ± 0.00 -1.28 1.24
mvt 0.72 ± 0.00 0.71 ± 0.00 0.53 1.11
nussinov 0.89 ± 0.01 0.92 ± 0.01 -2.89 0.97
seidel-2d 0.91 ± 0.00 0.92 ± 0.00 -1.15 2.17
symm 0.90 ± 0.00 0.91 ± 0.00 -1.11 2.26
syr2k 0.90 ± 0.00 0.91 ± 0.00 -1.24 1.98
syrk 0.90 ± 0.00 0.92 ± 0.00 -1.82 2.38
trisolv 0.42 ± 0.00 0.42 ± 0.00 1.69 0.97
trmm 0.89 ± 0.00 0.91 ± 0.00 -2.04 2.44
Mean 1.50 1.59

Table 10: TimingDRAM experiment results

Block size IPCtrue IPCmf Pct. Error Speedup
1 0.88 ± 0.01 0.88 ± 0.01 -0.12 2.26
2 0.88 ± 0.00 0.88 ± 0.00 -0.25 2.13
3 0.88 ± 0.00 0.89 ± 0.00 -1.10 2.09
4 0.87 ± 0.01 0.89 ± 0.01 -1.68 2.09
5 0.88 ± 0.00 0.89 ± 0.00 -0.75 2.07
6 0.88 ± 0.00 0.89 ± 0.00 -0.96 2.02
9 0.88 ± 0.00 0.89 ± 0.00 -0.81 1.99
10 0.88 ± 0.00 0.88 ± 0.00 -0.51 1.96
12 0.88 ± 0.00 0.89 ± 0.00 -0.76 1.94
15 0.88 ± 0.00 0.88 ± 0.00 -0.01 1.95
18 0.88 ± 0.01 0.87 ± 0.01 1.18 1.88
20 0.88 ± 0.01 0.88 ± 0.01 -0.43 1.92
30 0.88 ± 0.01 0.88 ± 0.01 -0.34 1.86
36 0.87 ± 0.01 0.87 ± 0.01 1.09 1.92
45 0.88 ± 0.00 0.91 ± 0.00 -3.01 1.05
60 0.88 ± 0.00 0.89 ± 0.00 -0.20 2.16
90 0.89 ± 0.00 0.89 ± 0.00 -0.06 2.35
Mean 0.78 1.98

Table 11: Matrix multiply experiment results

Stride IPCtrue IPCmf Pct. Error Speedup
1 0.62 ± 0.00 0.61 ± 0.00 1.80 1.46
2 0.62 ± 0.00 0.62 ± 0.00 -0.42 1.00
3 0.61 ± 0.00 0.60 ± 0.00 1.02 1.38
4 0.61 ± 0.00 0.61 ± 0.00 0.74 0.99
5 0.59 ± 0.00 0.53 ± 0.00 11.90 1.46
6 0.60 ± 0.00 0.59 ± 0.00 2.21 1.51
7 0.58 ± 0.00 0.58 ± 0.00 -0.04 1.35
8 0.58 ± 0.00 0.58 ± 0.00 1.49 1.46
Mean 2.45 1.33

Table 12: Spatter experiment results

Received 8 August 2023; revised 7 September 2023

	Abstract
	1 Introduction
	2 Related Work
	2.1 Single node simulation
	2.2 Large-scale simulation
	2.3 Multifidelity modeling
	2.4 Summary

	3 multifidelity components
	3.1 Simulated architecture
	3.2 Phase detection
	3.3 Stability detection
	3.4 Low-fidelity memory system model
	3.5 Multifidelity system

	4 Multifidelity Algorithm
	5 Phase and stability parameter selection
	5.1 Estimating Speedup
	5.2 Estimating Error
	5.3 Parameter space exploration

	6 Experimental Design
	6.1 SST Components
	6.2 Host system
	6.3 Benchmarks
	6.4 Potential speedup
	6.5 Accuracy estimates

	7 Results
	7.1 PolyBench
	7.2 Other benchmarks

	8 Discussion and Future Work
	8.1 Accuracy
	8.2 Speedup
	8.3 Conclusions

	Acknowledgments
	References
	A Availability
	B Experiment data

