
Robert Trout
 Sadram, Inc.

 Lititz PA USA

 hrg.trout@gmail.com

Sadram
A New Memory Addressing Paradigm

ABSTRACT

The purpose of the Sadram Architecture (Self Addressing DRAM)

is to minimize CPU memory traffic used merely for address

computations. These savings are achieved by providing a symbolic

addressing mode alongside the conventional linear mode. Linear

addresses, such as 0,1,2,3,…etc. are dense, numeric, and

inextricably bound to the structure of memory; symbolic addresses,

such as ‘hi’, ‘bye’, or ‘gone’, are not linear, not dense, and closer

to real world addressing. Sadram provides direct benefits to the user

in addition to improving access efficiency.

Sadram CONCEPTS
• Memory rows in sorted order.

• Parallel processing of a row buffer.

• Pipeline data movement.

• Configuration of memory cells.

KEYWORDS
• Symbolic memory addressing.

• Sequencer-array, Sequencer-group, Sequencer-cell.

• Pipeline data movement.

1 Introduction

The traditional separation of memory from the CPU, known today

as ‘von Neumann architecture’ actually goes back to the

pioneering work of Charles Babbage. [1] His motivation was
economy of logic; the price of this economy was moving data

between memory and the CPU (‘mill’ in his terminology).

However, in modern systems data movement has become the

bottleneck and constitutes a significant fraction of the total

power budget.[2,5]To lower the cost of data movement the concepts

of PIM (process in memory), PNM (process near memory) and

PUM (process using memory)[5] arose in the 1980’s when

memory transitioned from core memory to semiconductor

memory. The challenge then, as now, is what functionality

should be embedded in the memory – too much encroaches

on tasks more suited for the CPU, too little yields no

gains. Sadram takes a middle ground which can be described as

‘address management’. Addresses are abstracted as symbolic

values and mapped inside the memory. This saves multiple CPU

accesses used merely for addressing tasks.

The importance of memory to computing was recognized as early

as the 1850’s by Charles Babbage.[1] It has been recognized for

decades that memory is a significant, if not the principal, constraint

on system performance[2,5]. Memory constitutes the largest number

of transistors in any system and is usually the largest cost element.

Seeking performance improvements in memory that do not rely

upon performing the same elementary steps more rapidly is an

obvious path to improving system performance.

Memory transistors are not well suited for processing tasks; over

the decades they have been optimized to retain data. CPU

transistors, by contrast, have been optimized to move data; the two

roles are incompatible. Accordingly, Sadram uses a logic layer

bonded to the memory and communicating using Thru Circuit Vias

(TSV’s). This hybrid architecture can be expected to improve

performance and save power (the distance between the logic and

the memory is much smaller than the distance between the memory

and the CPU). Samsung’s Acquabolt architecture, which

implements A/I primitives in a logic layer uses exactly this concept.

Samsung reports 2.5 * speed improvement and 70% reduction in

power.[4]

Most memories, including DRAM, are block devices, requiring an

entire row (block) of data be read to/written from a row buffer to

access a single bit. This is antagonistic to the very purpose of

DRAM which is to provide random access. Sadram exploits the

blockiness of DRAM to perform parallel row-wide computations.

This parallelism is expressed as multiple cells spread across the

(DRAM) row (Figure 2). Because the cells are numerous they must

be simple. Sadram cells perform only three functions: compare a

target byte against a memory byte, register a single byte, and move

a byte to a neighboring cell. A target bus running across the row

broadcasts the target (key); fully decoded control-lines are

broadcast across the row to each cell.

The function of the cells is to maintain the row in sequential order

– hence the name sequencer-cell. The row of sequencer-cells is

called a sequencer-array. The term sequencer-group denotes a

smaller set of cells encapsulating a single 64-bit word. Comparison

of memory versus target values within the group is a sequential

process, however, all other sequencer operations are highly parallel.

David Lynch
 Sadram, Inc.

 Lititz PA USA

 davidLynch@dlasys.net

mailto:davidLynch@dlasys.net

R. Trout et al.

The sequencer-groups all operate in parallel. The move function of

each cell/group exploits a pipeline move – again an inherently

parallel process.

A simple CPU (called samPU) is implemented in the logic layer to

control these sequencers; samPU incorporates specific opcodes for

row scan, move, read, write, and opcodes to access fields within the

data structures erected over the sorted rows.

The functions of the sequencer-array are tailored to the size of the

user key field and supporting binary fields using a configuration

vector. Configuration is used to setup each cell/group for

subsequent read/write/scan/move operations. Configuration is the

magic by which fixed sized groups accommodate variable keys.

On this simple foundation an immense variety of tasks can be

performed. Obvious examples include sort, database index

management, and row-wide searches. Less obvious examples

include variable length records (using the record number as the key),

strings, and garbage collection in support of dynamically allocated

objects (using Sadram’s sort capability). Surprising applications

include improving numerical accuracy (summation errors can be

minimized using sorted data), high density data compression, and

encryption.

Sadram is currently implemented in an FPGA from which some

performance measurements have been obtained. Because Sadram

is implemented in logic separate from the memory, only minimal

changes are required to the memory itself. Sadram may, therefore,

be applied to any block addressed memory technology.

2 Components of Sadram

Sadram creates indexes into user data as that data is written to or

read from memory. Ideally this indexing function is completely

hidden behind the read/write of the user data. The sequencer is the

critical piece of hardware underlying indexing.

An array of sequencer-cells (C0.0, C0.1, etc.) is shown in Figure 2.

The cells simultaneously compare a single target (T[0], T[1],…)

against a vector of values stored in a DRAM row. Based on the

results of these comparisons the position of the target within the

row is determined. The sequencer then ‘right shifts’ some part of

the row and inserts the target item. The row is thereby maintained

in sorted order.

The parallelism inherent in the sequencer is the key advantage of

the Sadram architecture. There is no intrinsic limit to the width of

the sequencer (C0.0, C0.1, …).

3 The Sequencer-Cell

The cell is the lowest level component of a sequencer. Five cells

are shown in Figures 1: cells 0.0, 0.1, 0.2, 1.0, and 1.1. Each cell is

connected to 8 bits of the DRAM row and 8 bits of the target. The

compare results (cmp-I and rcmp-O) propagate diagonally within a

group: cell 0.0 cell 0.1 cell 0.2, and cell 1.0 cell 1.1, etc.

As directed by signals on the control bus (generated by the

sequencer-group described below), each cell may:

• Load its konfig register from the DRAM byte.

• Compare the target byte with the DRAM byte and

reports the results on cmp-O.

• Store the DRAM byte in its internal register.

• Send its register to the next group on the prev-I/next-O

bus (shift operation).

4 The Sequencer-Group

Sequencer-cells are aggregated into sequencer-groups. Each group

handles multiple bytes constituting a full data word; each byte is

assigned to a sequencer-cell. A group is typically 8 cells (64 bits)

wide.

Sadram: A new memory addressing paradigm

The number of cells in a group (called the ‘target_bus_size’) is a

fundamental determinant of sequencer size and performance. The

group provides control codes to each of its cells; the action of each

cell is determined by these control codes and the results of the cell’s

compare operation.

The result of each cell’s comparison is encoded on a compare-bus

which is transmitted from each cell to its neighbor on the right (see

Figure 2, cmp signals). The result of the last cell is daisy chained

back on a bus called the rcompare bus (Figure 1, rcmp signals).

cmp and rcmp are each two bits wide and encode the conditions >,

<, or == from the comparison

Sequencer-cells within the group are physically arranged on a

diagonal (see Figure 2) so that each cell has direct access to its part

of the target bus (T[i] in Figure 2) and direct access to its part of

the DRAM bus (M[i] in Figure 2). The compare bus rides this

diagonal; the group reports out the result from the last cell in the

diagonal. Transmission between cells (ie., down the diagonal) is

intrinsically sequential, however, the groups themselves all operate

in parallel.

5 The Sequencer-Array

The groups (group 0, group 1, in Figure 2) are aggregated into a

sequencer-array. The array is spread across the DRAM row. Each

group takes its opcodes from the sequencer-array and generates the

control codes for its subordinate sequencer-cells. Each sequencer-

array manages a pair of rows.

The primary purpose of the sequencer-array is to maintain these

row pairs in sorted order. The array performs this function by

orchestrating the compare and shift operations of its groups & cells.

The sequencer-array takes its instructions from a small CPU called

the SamPU (described below).

The sequencer-array, groups, and cells are capable of maintaining

a row in sorted order. They perform these functions by comparing

in parallel an incoming target (key) against each datum in their row

buffers, right shifting some elements of these rows, and inserting

the target in the space thus created.

Overflow of the row pairs is handled by a process called mitosis

(described below). Maintaining a pair of rows in sorted order is the

most elementary part of the Sadram architecture. Mitosis and

higher level tasks such as sort are more complex and not well suited

to direct hardware implementation. Accordingly, Sadram splits into

two components – a hardware component and a software

component: hardware for speed and software for complex

functions. The software is supported by a custom designed CPU

called a SamPU (described below).

The sequencer-array adds entries to the DRAM row-pair under its

control. When these rows becomes full mitosis switches the

partners of each row-pair with empty rows (see Figures 4,5&6).

Thus two half-full row-pairs are created. These are integrated into

the indexbase. Mitosis involves no data movement - it is all done

with pointer shifting. Mitosis may provoke a secondary mitosis of

the parent page or a tertiary mitosis of the parent book (Figure 3).

6 SamPU

SamPU is a conventional register machine with a 16-bit opcode and

data width equal to the target bus size (typically 64 bits). SamPU

incorporates specialized opcodes to control the sequencers and

opcodes to read/write fields of the indexbase. These opcodes are

speed critical and are implemented directly in the logic layer. Other

opcodes such as conditional jumps and arithmetics are less

demanding of speed. SamPU executes the opcodes from a program

store. Both SamPU and the program store are implemented in the

logic layer.

7 The Program Store

The program store is a combination of read only memory (ROM)

and read-write memory (R/W). The ROM memory is required to

provide basic services at boot-up and the R/W memory is loaded

from DRAM after the operating system is loaded. Both the ROM

and the R/W memory are part of the same 16-bit address space.

Overlays allow programs to exceed the SamPU 16-bit (65536)

address range.

R/W memory is intrinsically more costly than ROM but has several

advantages:

• R/W mem allows changes to be implemented in the field.

• R/W mem can be overlayed from DRAM if required.

This makes the size of a program essentially unlimited.

o Code can be loaded for manufacturing or diagnostics.

o Code can be loaded for special tasks like encryption.

SamPU opcodes are designed to support multiple indexes

simultaneously; this could be implemented using multiple

sequencers or by the (slower) technique of multiplexing target keys

through a single sequencer.

8 The Indexbase

A database of indexes, called an indexbase, is created in SRAM

implemented in the logic layer. The indexbase allows access to

acquire some ‘understanding’ of the data it is storing rather than

operate as a blind clerk storing and retrieving data at absolute

addresses. This understanding is encapsulated in the indexbase. The

indexbase allows the user to access the data in sorted order, access

by key, and perform other functions. The logical structure of the

indexbase is illustrated in Figure 3.

R. Trout et al.

The lowest level in Figure 3 contains user data. This is not part of

the indexbase. The data is naturally organized into records, such as

{“jack”, “car”}; one of these fields (“jack”) is designated as the key

field and the remainder are non-key fields such as “car”. The three

levels of index erected over this data are:

• cINDXs - containing the key and the address of the user-

data record.

• cPAGEs - containing the addresses of two cINDX[]s and

a copy of cINDX[0].key.

• cBOOKs - containing the addresses of two cPAGE[] and

a copy of cPAGE[0].key.

All three structures are stored in SRAM but they are paged to

DRAM if necessary; the priority of retention in SRAM is:

cBOOK and cPAGE have identical structures. The physical layout

of the sequencers is dictated by the hardware but they are

configured differently by software to support cINDX[], cPAGE[],

or cBOOK[]s, and keys of different sizes.

9 Mitosis

The number of cINDXs, cPAGEs, or cBOOKs that can be stored in

a single DRAM row is limited by the size of that row. The addition

of a new key to the indexbase will cause a new cINDX entry to be

added to a cINDX[] array. If that row is already full a process called

Mitosis is invoked.

Mitosis expands the space available to the cINDXs. Mitosis at the

cINDX level may provoke mitosis at the cPAGE level, which may

in turn provoke mitosis at the cBOOK level. cPAGE comprises a

pair of cINDX[] arrays called loP and hiP (ABCJ and KLXY in

Figure 4). (A cBOOK comprises a pair of cPAGE[] arrays rows

called pageL and page H; the cBOOK is not shown in Figure 4 but

mitoses the same way as a cPAGE). The paired arrays loP and hiP

are inter-connected to operate like a single array for most purposes.

However, they operate as two separate arrays when mitosis is

invoked. Mitosis takes loP & hiP (or pageL & pageH) and pairs

them with empty rows, then adjusts the pointers in the parent

structure to reflect this new reality. Mitosis is merely pointer

shuffling; it neither moves, adds, or deletes user data.

The steps involved in mitosis are illustrated in Figures 4, 5, & 6.

The indexbase comprises a single cPAGE pointing to a pair of

cINDX[]s (ie., ABCJ and KLXY).

• cPAGE[0] contains a total of 8 cINDXs.

• Both cINDX[]s are full.

• Addition of ‘record M’ triggers mitosis.

After Mitosis the indexbase comprises two cPAGEs.

• Each cPAGE points to two cINDX[]s.

• Half of the cINDX[]s are full and half are empty.

After mitosis is complete the indexbase can accept the new entry:

• M is inserted in cPAGE[1]

• ‘Y’ moves from cPAGE[1].loP[3] to cPAGE[1].hiP[0]

• cPAGE[0] now has 4 cINDXs

cPAGE[1] now has 5 cINDXs

As Figures 4 and 5 illustrate mitosis leaves rows partially filled.

Subsequent writes may fill up these partially filled rows (Figure 6),

but in the worst case they will remain half full indefinitely.

cBOOK > cPAGE > cINDX

Sadram: A new memory addressing paradigm

10 SamCompile

The software for SamPU is written in a high-level ‘register transfer

language’. The language includes constructs such as if … then …

else, while statements, do statements, and for statements. Raw

opcodes are also part of the language including call and return.

Register transfer languages use the syntax $0 = $1; and $0 = $4 +

$5 etc. (where $number refers to one of the SamPU registers).

Programs are written in a plain ASCII file and translated to object

code using a compiler called SamCompile.

SamCompile incorporates a macro expander, using an extended

version of the C++ #define syntax. The compiler outputs binary or

hex code directly and performs the function of a linker. The output

code can either be incorporated into ROM, loaded into SamPU

program storage, used by software emulation, or loaded onto an

FPGA emulation board.

The code may incorporate overlays. The code space for a SamPU

program is limited by the 16-bit address, ie., 216 bytes; this is

divided into a root area of 49152 bytes and an overlay area of 16384

bytes. A maximum of 255 overlays may be loaded into the overlay

area. The maximum size of a SamPU program is therefore 49152

+ 255 * 16384 = 4,227,072 (0x408000) bytes. The root module may

be implemented in ROM, however, overlays must be implemented

in R/W memory. Both types of memory are implemented in the

logic layer.

11 SamPU.exe, SamPU, and Complicit Coding

SamPU.exe is a GUI debugger which runs on a PC host; SamPu.exe

communicates with the CPU using a number of different

mechanisms depending upon the $platform:

• Direct software access for the software emulation.

• USB for the FPGA emulation.

• Direct port access for hardware implementation.

The print and $assert opcodes are executed on the host. The two

processors (host and SamPU) are complicit in these opcodes – a

technique called complicit coding. Complicit opcodes pass binary

packages of information to the host for interpretation. These

opcodes are for debugging purposes only; no text data, symbol

table, or line maps are stored in the SamPU processor.

Test programs loaded into the overlay area are heavy users of the

print and $assert opcodes. These programs are used to verify the

operation of the microcode, for manufacturing tests, for

development, and are available for custom user routines.

12 Applications of Sadram

There are many applications of Sadram. Obvious applications

include sort, database functions, and row lookup. Less obvious

applications include variable length records (the record number is

used as a key and the records are ‘sorted’ based on this key), sparse

array storage, and file directory management.

Some surprising applications include numerical accuracy control;

sort is free, so a vector of values can be automatically stored in

absolute magnitude order. Summation from lowest to highest

avoids rounding losses.

String processing (using the garbage collection paradigm) are

another opportunity for improvement under Sadram.

Even more surprising is that sequencers can be used for certain

arithmetic functions such as integer division and record packing.

12.1 Sort

Sort is a fundamental algorithm that consumes a very large

percentage of computer resources. In the 1960’s Knuth estimated

that 25% of all computer power was used for sort and in some

installations it was as much as 50% [3]. Many algorithms (such as

databases) do not use sort overtly but still organize their data in

sorted structures.

Sort is a straightforward application of Sadram. The indexing is

done as the data is written to memory, ie., indexing is overlapped

with writing. At the end of the write-process, the data can then be

accessed in sorted order. Sort is nothing more than writing with a

direct addressing protocol and reading back with a different (ie.,

symbolic) protocol.

12.2 Database Functions

Databases are innate users of sort. A database is organized so that

any datum can be quickly retrieved without resorting to a breadth-

first search. This implies that the data is ordered according to some

principle (key hashing, time stamp, quick key, etc.); but sorted

order is the most common principle. A database is typically a block

of user data with indexes (often in separate files) that point to the

user data. Databases permit record deletion and record

replacement; these operations require the indexes be adjusted. Such

operations differentiate databases from sort. But the central

advantage of the Sadram architecture remains – the indexing is

done at the hardware level and does not require external CPU

‘address computations’.

12.3 Variable-Length Data

Conventional DRAM addressing can only access an array of data

by organizing that data in fixed length records. The address of an

individual record is computed with a simple linear equation.

Hidden behind this simplicity is virtual addressing which remaps

the linear address to the physical address. Sadram condenses these

two operations into a single symbolic address and performs the

address resolution in the memory itself. Sadram uses a table-lookup

paradigm so records can be variable in length – an architecture

which dramatically reduces memory requirements.

12.4 String Processing

String processing is uniquely difficult for fixed length processors.

CPU architecture does not naturally support variable length items

(such as strings). In addition, string processing often involves

creating multiple substrings each of which points to a part of a

longer string. There are a number of techniques for handling

R. Trout et al.

variable length strings. One of the oldest, and most efficient, relies

upon a technique called garbage-collection. Strings are allocated,

subdivided, and combined in a large area of memory called a string

pool. The pool eventually fills with active and dead entries – dead

in the sense that there are no active references to the string or part

thereof. At this point a process called garbage collection is invoked.

Garbage-collection involves compacting the string pool and

removing unreferenced strings. The process is non-trivial because

references may be overlapping as a consequence of the substring

operation noted above.

Garbage-collection requires a sort of valid references. This is an

obvious candidate for Sadram Sort. However, Sadram can do much

better than merely improving the performance of sort. As described

in earlier sections the concept of Sadram is that the references to

data (keys) are extracted as the data is handled for other purposes.

In the Sadram architecture these references are maintained in a

sorted structure, so that when garbage-collection becomes

necessary the sort is already done; garbage-collection can focus on

the compaction phase. The compaction phase itself exploits the

shifting operations of the sequencer.

13 Compiler Integration

It is not sufficient to create a new memory addressing paradigm and

expect the public to embrace the paradigm without also providing

the tools to exploit this technology. Sadram is intended to be

implemented in hardware and anticipates layers of software to take

advantage of Sadram functions. This can be provided at two levels:

• By way of C++ library calls.

• Extending one of the standard languages to incorporate

syntax to exploit the Sadram architecture. Strings are a

case in point and notably absent in the standard C/C++

language.

Integrating Sadram style strings in a standard C++ or Perl compiler

is under active development.

REFERENCES
[1] Doron Swade, 2001. The Cogwheel Brain, ISBN 978-0-349-11239-8, Abacus,

London.

[2] R.L. Sites, 1996. “It’s the Memory Stupid!” Microprocessor Rep. 10, 10 (Aug.

1996).

[3] Donald E. Knuth, 1998. The Art of Computer Programing, Volume 3, 3, ISBN 0-

201201-89685-0, Addison-Wesley, Boston, MA.

[4] Samuel K. Moore, 2021. “Memory Chips that Compute will Accelerate AI”,

https://spectrum.ieee.org/processing-in-dram-accelerates-ai

[5] Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

“A Modern Primer on Processing in Memory”, https://people.inf.ethz.ch/omutlu/pub/

ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf

https://spectrum.ieee.org/processing-in-dram-accelerates-ai
https://people.inf.ethz.ch/omutlu/pub/

