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ABSTRACT
3D NAND Flash memory has been proposed as an attractive candi-
date of inference engine for deep neural network (DNN) owing to
its ultra-high density and commercially matured fabrication tech-
nology. However, the peripheral circuits require to be modified to
enable compute-in-memory (CIM) and the chip architectures need
to be redesigned for an optimized dataflow. In this work, we present
a design of 3D NAND-CIM accelerator based on the macro param-
eters from an industry-grade prototype chip. The DNN inference
performance is evaluated using the DNN+ NeuroSim framework.
To exploit the ultra-high density of 3D NAND Flash, both inputs
and weights duplication strategies are introduced to improve the
throughput. The benchmarking on a variety of VGG and ResNet
networks was performed across technological candidates for CIM
including SRAM, RRAM and 3D NAND. Compared to similar de-
signs with SRAM or RRAM, the result shows that 3D NAND based
CIM design can achieve not only 17-24% chip size but also 1.9-
2.7 times more competitive energy efficiency for 8-bit precision
inference.
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1 INTRODUCTION
Deep learning is one of the most interesting and spotlighted fields
in recent years. Deep neural network (DNN) has achieved great suc-
cesses in various tasks such as image classification and speech recog-
nition. State-of-the-art learning algorithms tend to grow larger size
and deeper network to achieve high accuracy. Larger and deeper
networks have to perform tremendous number of computations.
Therefore, huge volume of data movements between the processor
and off-chip memory are required in conventional von-Neumann
architecture. Commonly used architectures such as CPUs/GPUs
and/or FPGA are disadvantageous in terms of energy efficiency
for DNN workloads. There have been lots of efforts from industry
and academia to propose alternative computing platforms. Sev-
eral CMOS-based application specific integrated circuits (ASIC)
accelerators such as Google TPU [1] were designed to alleviate the
problem by data reuse on-chip, but the memory wall problem still
remains where the model parameters are stored in global buffer and
the actual computation is performed at the digital multiply-and-
accumulation (MAC) arrays. In aforementioned platforms, DRAM
access is still frequent due to the limited global buffer capacity.

To overcome these challenges, compute-in-memory (CIM) has
been emerged as an alternative paradigm owing to its high through-
put and energy efficiency [2]. CIM utilizes the conductance of the
memory cell to represent the weight, and conduct MAC operations
by activating multiple rows and reading out the analog current
summed up along the column. High parallelism can be achieved
since the dense array of millions of memory cells performs compu-
tation simultaneously. In addition, the computation is performed
within the memory array so the energy consumption caused by
data movement between processor and memory is reduced.

Most of the existing nonvolatile memory (NVM) devices have
been investigated as synaptic devices for vector-matrix multiplica-
tion (VMM) or weighted sum computation. Hardware accelerators
based on emerging devices such as resistive random access mem-
ory (RRAM) [2-8] and phase change memory (PCM) [9-10] have
been actively researched because of its logic compatibility and non-
volatility, but their relatively small on/off current ratio and large
on-current are not suitable for large array configuration. Floating
gate type NOR Flash [11] technology is another candidate owing
to its large on/off current ratio which can help activating a large
number of rows in a column, but the large on-current still makes
sense amplifier design of summed readout current exceedingly chal-
lenging. Moreover, embedded NOR Flash structure is hard to scale
down beyond the 28 nm node, so it is less competitive than other
device technologies in terms of the memory density.
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Very recently, NAND Flash has been proposed as a high-density
and high-bandwidth CIM candidate [12-14]. Since 3D NAND Flash
has the highest density among all the memory devices [15], the
weights of large DNN can be stored in a small form factor. Fur-
thermore, it is quite advantageous that 3D NAND Flash is already
matured today and is based on a widely commercialized fabrication
technology.

In this work, we present the architectural design of 3D NAND
Flash based CIM accelerator that is optimized to the inference of
DNN, with the benchmarking results using the DNN+ NeuroSim
[16] framework. We used the electrical parameters and the physical
dimensions of a 3D NAND-CIM prototype by Macronix [13] for
the baseline of this work. This prototype of 3D NAND [13] is of
industry-grade and has been customized to support CIM paradigm.
The peripheral circuits and chip level hierarchy configuration has
been adapted to support DNN models such as VGG [17] and ResNet
[18] for image classification. Finally, we report the performance
results (energy efficiency and throughput) across technological
options for CIM.

2 DESIGN OF 3D NAND BASED INFERENCE
ENGINE

2.1 3D NAND Array Level Design
Generally, CIM architecture performs mixed-signal computation,
i.e., analog current is summed up along the column or row, then
the currents are converted from analog to digital at the edge of
the array. Figure 1 shows the VMM operation with the schematic
of the CIM in 3D NAND Flash memory. Prior Flash-based CIM
topologies [11, 12, 14] activates the wordlines (WLs) as the input
vectors of MAC, while the bitlines (BLs) are activated as input
vectors in this work similarly as proposed in [13]. While the BL
voltages are applied to the multiple BLs respective to the input
vectors, the read voltage is applied to the selected WL of the NAND
string and the pass voltage is applied to the unselected WLs. The
read-out is performed WL by WL. Because the source line (SL)
of the NAND strings within a single block are entirely connected
through the bottom substrate, the summed current can be sensed at
the end of the SL of the block. Since NAND Flash has exceptionally
large page size (several kB of BLs) in a single block, this topology
has advantage in that the huge number of string currents can be
summed at once using a single analog-digital converter (ADC).

We designed the 3D NAND block having 3 string select lines
(SSLs) to store the 2-bit weight and being computed at once. The
most significant bit (MSB) of weights are stored in the cells of SSL1
and SSL2, while the least significant bit (LSB) of weights are stored
in SSL3 only. Since the SL is connected to the all SSL together,
the output current follows the equation in Figure 1 which means
2-bit weights are computed in analog manner without the digital
adder and shifter. By using this MSB weight duplication, the total
computing operation steps decrease by half.

The electrical characteristics of NAND Flash device of our work
is based on the measured experimental data of a 32-layer 3D NAND
chip reported in [13]. The 3nm-thick polysilicon channel could
produce extremely low on current (∼2 nA) and off current (below 1
pA) owing to the low mobility and high on/off ratio of NAND Flash
device. The low on/off current are suitable for activating the very

Figure 1: Vector-matrix multiplication (VMM) operation in
3D NAND Flash in one block with MSB weight duplication.

large number of BLs at the same time with proper summed current
to design the ADC.

To determine the physical dimensions of the 3D NAND array for
one block, we used the standard 3D NAND pitch size [19], e.g., BL
pitch 40 nm and SSL pitch 0.75 µm. The number of BLs of the array
is decided according to the kernel size of the largest convolution
layer of the DNN to unroll each kernel and map into the single array.
The kernel size of the largest layer of VGG-8 and ResNet is 3×3×512,
then we will duplicate the weights to other BLs 3 times as will be
explained in section 3.1 later, so one block has total 13824 BLs and
553 µm width. Along the vertical direction, one block consists of 3
SSLs as shown in Figure 1, so the height of a block is 2.25 µm. As a
result, the number of the physical cells in one block is 13824 BL×32
WL×3 SSL, e.g., 1.27 Mb. This block size configuration follows the
general design guidelines of the commercial 3D NAND.

2.2 Subarray Architecture Design
The subarray is the minimum unit of the chip hierarchy with multi-
ple 3D NAND blocks. In our design, the subarray has 64 blocks with
144 µm BL length which is relatively much shorter than conven-
tional NAND Flash (generally several millimeters long) to achieve
small RC loading with faster BL charging speed and less energy
consumption. Following the method that 2-bit weight is represented
in one block, then 8-bit weight needs 4 blocks to be stored, so 16
kernels can be stored in a subarray with 8-bit weight. The total
capacity of a subarray is 81Mb.

We estimated the latency and energy parameters of the NAND
array with RC delay model. Owing to the small dimension of WL
and BL than the conventional 3D NAND, the estimated latency
of WL setup and BL setup are 303 ns and 12 ns respectively as
shown in Table 1. We ran the HSPICE simulation to achieve the SL
charging time, and the result shows that the summed current for
the ADC sensing (in the case of max-bit input duplication which
will be introduced in section 3) requires relatively long (hundreds
of ns) stabilizing time because of the large capacitance (∼16 pF) of
the SL of the 3D NAND array. Although WL setup requires 43.5 nJ
per each time, it needs to be conducted only once for each of the
DNN layer so the ratio over the total energy of WL setup energy is
only 1-5%.
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Table 1: Latency and energy estimation for parallel read operation for CIM in 3D NAND subarray (64 block).

Latency Energy
WL setup 303 ns 43.5 nJ

BL setup @ 50% sparsity 12 ns 35.9 pJ (5.2 fJ per BL)
SL setup @ max-bit input 530-750 ns 41.7 pJ

Figure 2: Designed subarray configuration.

Figure 2 shows the subarray configuration with 3D NAND array
and peripheral circuits. Throughout this work, we assumed that the
3D NAND array cells and peripheral logic transistors are fabricated
on same wafer. As an architectural design work, we leave the fab-
rication and integration challenges for future work. Input vectors
are fetched to the BLs through the BL switch matrix, and x-decoder
(XDEC) enables the operating blocks. WL voltages are applied to
the 3D NAND of the selected blocks through the pass transistors.
The summed current flowing through the SL is sensed at the edge
and converted to digital value through ADC. Here 7-bit ADC is
used to guarantee the computational accuracy considering the large
number of BLs summation along the SL [13]. In our design, the
SAR-ADC is selected over the flash-ADC due to the relatively high
resolution required here to trade-off the latency over the power
and area [20]. The digital adder and shifters process the multi-cycle
outputs to achieve final output.

The estimated areas of each module for various peripheral logic
technology nodes are shown in Figure 3. The areas of the pass
transistors and XDEC drivers are fixed becausewe assumed the high
voltage transistor process (1 µm pitch) is applied here to drive the
programming voltage (∼20V) to the WLs. The area of WL staircase
is also fixed because it is determined by the number of WL stacks
and the staircase design rule irrespective to the logic transistor
technology node.

2.3 Chip Level Architecture Design
The top-down hierarchy of the proposed 3D NAND based CIM
architecture is defined as chip, tile, processing element (PE) and
subarray as shown in Figure 4. The chip-level consists of tiles, global
buffer and neural functional computation logics for max pooling,
activation (ReLU) and accumulation. The tile-level is composed

Figure 3: Area estimation of the subarray modules with var-
ious technology nodes for peripheral logic circuits.

of several PEs, input/output buffers, and accumulation module.
Similarly, the processing elements (PEs)-level are built withmultiple
subarrays, PE input/output buffers and accumulation module. H-
tree based routing is used for the output accumulation at each level.
The number of subarrays per PE and the number of PEs per tile
can vary by optimization with respect to the topologies of various
DNNs.

3 WEIGHT MAPPING TO 3D NAND
Owing to its ultra-high memory density, 3D NAND is not only able
to store the large size DNNs, but also able to support duplicating
the weights many times for parallel computation. Therefore, we can
take advantage of the duplication for improving the performance.
In section 2.1, we already introduced that the MSB weight dupli-
cation makes twice as fast, so we introduce the other two types of
duplication into 3D NAND in this section.

3.1 Multi-bit Input Duplication
Different from the CIM arrays with other NVM devices, the NAND
CIM array has huge number of inputs (BLs) in a single array so in
most of the cases it is larger than the input vector size. Since the
remaining empty BLs compose same block and share the ADC with
used BLs, storing (or duplicating) the weights of different kernels to
the empty cells is not meaningful in terms of latency improvement.
But we can duplicate the input and the respective weight of the
same kernel to the empty BLs and take advantage of input cycle
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Figure 4: Hierarchy of the 3D NAND based CIM chip architecture.

Figure 5: Mapping scheme of a convolutional kernel with
MSBweight duplication andmulti-bit input duplication.The
next subsections provide instructions on how to insert fig-
ures, tables, and equations in your document.

reduction. Figure 5 shows the mapping scheme of a convolutional
kernel with the MSB weight duplication and n-bit input duplication.
Similar to the MSB weight duplication with SSLs, the n-bit of input
can be represented by activating 0 to 2n-1 BLs. For example, 2-bit
input can be represented with 3 BLs using one BL as LSB input and
two BLs as MSB input. The weights are duplicated 3 times to the
BLs which are sharing the same SSL, the summed up current at
SL is the multiplied result of the 2-bit input and the 2-bit weight.
Therefore, the input vector cycles are reduced by using the multi-bit
input duplication which means the throughput can be improved.

Depending on the kernel size of the layer, we could duplicate up to
255 times for the 8-bit input duplication.

We defined the max-bit input duplication as the n-bit input of a
particular convolutional kernel (size K=KC×KW×KH) is duplicated
as much as possible, where K×(2n-1) does not exceed the number
of BLs in a designed subarray. In this work, the NAND array is
designed to have 13824 BLs to duplicate the largest convolutional
kernel of VGG-8 or ResNet (3×3×512) three times, e.g., 2-bit input
duplication. The max-input duplication could adaptively adjust the
copies of input vectors depending on the kernel size and the number
of BLs. In the case of fully connected (FC) layers, we used 2-bit
input duplication for all FC layers for simplicity.

3.2 Subarray Duplication
Owing to the high memory density of 3D NAND, one subarray
already has 81 Mb cells. Our chip hierarchy defines the minimum
number of subarrays per PE and the minimum number of PEs per
tile as four, so the minimum tile capacity is 1296 Mb which is large
enough to store the today’s large DNNs such as VGG-16 (138MB
with 8-bit weight). Our selected VGG-8 model for CIFAR-10 dataset
contains 12.37MB weight, so we can duplicate the weights to the
other subarrays, PEs, and tiles even after SSL duplication and multi-
bit input duplication. How many times to duplicate the subarray (or
PE, tile) depends on the targeted total chip size. We can compute
the different input vectors in parallel with such duplication.

4 BENCHMARKING RESULTS
We defined the 3D NAND subarray dimension and on/off current as
discussed in section 2, then the widely used open-source simulator
DNN+ NeuroSim [16] version 1.1 was customized as a benchmark-
ing framework to estimate the area, memory utilization, latency
and energy consumption of the designed 3D NAND based CIM
architecture.

Table 2 shows the input feature map and kernel size information
of the VGG-8 network on CIFAR-10 dataset. The images of CIFAR-
10 dataset have 32×32×3 input feature map (IFM). VGG-8 network
has six convolution (Conv) layers and three 2×2 max-pooling layers
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Table 2: VGG-8 network topology

Layer Type IFM Kernel size
1 Conv 32×32×3 3×3×3, 128
2 Conv 32×32×128 3×3×128, 128

Pool 32×32×128 2×2
3 Conv 16×16×128 3×3×128, 256
4 Conv 16×16×256 3×3×256, 256

Pool 16×16×256 2×2
5 Conv 8×8×256 3×3×256, 512
6 Conv 8×8×512 3×3×512, 512

Pool 8×8×512 2×2
7 FC 8192 8192×1024
8 FC 1024 1024×10

Table 3: Total chip area and peripheral circuit breakdown
result with various peripheral logic technology nodes.

Technology node
(LSTP)

32nm 14nm 7nm

Number of Tiles 4 9 12
Total Area [mm2] 17.91 18.12 19.50
Cell Array [mm2] 5.10 11.48 15.30

Cell Array Efficiency 28.5% 63.2% 78.4%
Chip Capacity 1.13 Gb 2.53 Gb 3.38 Gb

Interconnect [mm2] 2.11 1.49 0.90
ADC [mm2] 1.26 0.44 0.15
Accum [mm2] 2.33 1.30 0.67
Other [mm2] 7.08 3.39 2.48

where every two convolutional layers are followed by one max-
pooling layer, and 2 FC layers at the end. The input and weight
precisions are both 8-bit.

Table 3 shows the designed chip area and breakdown result
with various logic transistor technology nodes. Because we limited
the total chip size under 20mm2 in this estimation, the number of
tiles and total chip capacity vary with technology node. The 32WL
3D NAND process with 32 nm logic process has 28.5% cell array
efficiency, while 7 nm logic process has 78.4%.

Basically, we mapped the weight of the one layer of DNN to the
one WL of 3D NAND unless the number of layers is larger than
the number of total WLs. Table 4 shows the layer-by-layer weight
duplication strategy of VGG-8 network on the designed architecture
with 32 nm technology node. The shallow layers can be duplicated
many times because the kernel size of the layers is small. The layer
1 has 128 kernels which means 512 blocks (8 subarrays) are required
to store 8-bit weight. Consequently, the layer 1 can be duplicated
8 times to the other subarrays in the 32nm technology node, so 8
times faster parallel computing is possible.

In terms of the max-bit input duplication, the layer 1 has only 27
of kernel size so the weights can be duplicated 255 times to other
BLs for 8-bit input duplication. The 8-bit input can be computed
in only one cycle. The layer 2 and 3 are duplicated 7 times (3-bit
input, 3 cycle), and other layers are duplicated 3 times (2-bit input, 4

Figure 6: Simulated layer-by-layer latency result on VGG-8
network for CIFAR-10 dataset.

cycle). The shallow layers have large IFM size so that they can fully
take the advantage of duplication in terms of latency improvement.
Finally, total duplicated weights are stored in 110.25MB cells which
is 8.9 times larger than the original size (12.37MB).

The memory utilization of each layer is also shown in Table 4.
Since the subarray duplication method duplicates the weight to
whole blocks of the chip, 100% of the blocks are utilized irrespective
of the kernel size of the layer. On the other hand, the number of
activated BLs always depends on the kernel size and multi-bit input
duplication, so it is the key factor for the memory utilization. For
instance, the layer 4 activates 6912 BLs in subarray of the entire
chip, then the memory utilization is 50% as same as the number of
activated BLs (6912) over the number of BLs in subarray (13824).

Figure 6 and Figure 7 show the simulated layer-by-layer latency
and energy consumption on VGG-8 network for CIFAR-10 dataset
with a uniform 2-bit input duplication and an adaptive max-bit
input duplication. The shallow layers cause slow latency and large
energy consumption because their large IFM size needs many times
of computation. The max-bit input duplication can not only signif-
icantly reduce the latency of the first layer (8-bit input), but also
decrease the energy consumption by 5%. The number of activated
BLs is 85 times larger than that of 2-bit input duplication, so the
energy consumed in single input cycle for charging the BLs and BL
switch matrix increases as duplicated. However, the energy con-
sumption in other modules does not change compared to the single
input cycle, therefore the total energy rather decreases because the
number of input cycles decreases 4 times.

Figure 8 shows the breakdown of the energy consumption of
the max-bit input duplication case. Owing to the multi-bit input
duplication which can effectively reduce the number of NAND
array operations, NAND array only consumes 22.29% of total energy
while 46.64% is consumed in interconnect buses in H-tree routing. It
implies that input/output energy is also critical for CIM chip design,
so further optimization of the interconnect bus and the input/output
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Table 4: Weight duplication and speed up of VGG-8 on total chip (32nm) and memory utilization of each layer.

Weight size(8-bit
weight precision)

Subarray
duplication

max-bit
input
duplication

MSB
weight
duplicate

1cell is
duplicated

Required
number of
cells

Memory
Utilization of
each layer

TotalSpeed-
up

Layer1 27 Byte × 128 8× 255× (8bit) 1.5× 3060× 10.09 MB 49.8% 128×
Layer2 1152 Byte × 128 8× 7× (3bit) 84× 11.81 MB 58.3% 48×
Layer3 1152 Byte × 256 4× 7× (3bit) 42× 11.81 MB 58.3% 24×
Layer4 2304 Byte × 256 4× 3× (2bit) 18× 10.12 MB 50.0% 16×
Layer5 2304 Byte × 512 2× 3× (2bit) 9× 10.12 MB 50.0% 8×
Layer6 4608 Byte × 512 2× 3× (2bit) 9× 20.25 MB 100.0% 8×
Layer7 8192 Byte × 1024 1× 3× (2bit) 4.5× 36 MB 88.9% (2WL) 4×
Layer8 1024 Byte × 10 1× 3× (2bit) 4.5× 0.044 MB 22.2% 4×
Total 12.37Mbyte 110.25 MB 62.94%

Figure 7: Simulated layer-by-layer energy consumption on
VGG-8 network for CIFAR-10 dataset.

feature map dataflow is essential future work to achieve even higher
energy efficiency.

Table 5 shows the benchmarking result comparison across the
state-of-the-art device technologies. Evaluated SRAM and RRAM
based CIMs have 128×128 cell array size [16]. Although all the
duplication methods are applied on 3D NAND array, the total chip
size is only 17.91 mm2 which is significantly smaller than the CIM
chips with other technologies (73.53 mm2 for RRAM and over 100
mm2 for SRAM). Thanks to the multiple duplication methods in
3D NAND array, 3D NAND Flash based accelerator has shown the
1545.6 frame per second (FPS) which is the highest throughput
compared to the SRAM and RRAM technology at the same 32 nm
technology node with the low-standby power (LSTP) library.

For SRAM, there are two designs, one is the conventional row-
by-row read out with the digital adders at the edge of the array
to perform near-memory compute, and the other is the SRAM-
CIM mode where the peripheral circuits are modified to support
parallel read-out in SRAM array, as recently demonstrated in several

Figure 8: Energy consumption breakdown of 3D NAND
based accelerator on VGG-8 network for CIFAR-10 dataset
with max-bit duplication. Accum logic contains accumula-
tion, max pooling and activation logic.

silicon prototypes [21-22]. Originated from its large Ron in the 3D
NAND array, the large number of BL inputs results in the huge
parallelism with 37.1 TOPS/W energy efficiency, outperforming
other technologies at the same technology node. It is noted that
the TOPS/W reported here is for 8-bit input by 8-bit weight MAC
operations, and it is equivalent to 148.4 TOPS/W for 4-bit input
by 4-bit weight operations if using the same precision definitions
in some of the prior works. For example, the 28nm SRAM-CIM
macro reported 68 TOPS/W [22]; and the 22nm RRAM-CIM macro
reported 29 TOPS/W [23]. Our proposed 3D NAND-CIM design
showed 2.2-5.1 times improvement in energy efficiency to state-of-
the-art CIM designs.

5 DEEPER NETWORK BENCHMARKING FOR
3D NAND

As explained in the previous sections, we mapped each layer of the
VGG-8 network to the single WL (except layer 7 which is the largest
FC layer that does not fit into a single WL). Because multiple WLs



Architectural Design of 3D NAND Flash based Compute-in-Memory for Inference Engine MEMSYS 2020, September 28–October 01, 2020, Washington, DC, USA

Table 5: Benchmark results of various DNN accelerators on VGG-8 for CIFAR-10 based on SRAM (both sequential and parallel
read-out) and RRAM-CIM, 3D NAND-CIM at 32nm technology. 8-bit input and 8-bit weight precision were used.

Technology node 32nm (LSTP)
Device SRAM RRAM [8] 3D NAND (max-bit input)

ADC Precision Sequential: 1-bit CIM: 4-bit 5-bit 7-bit
Cell Precision 1-bit 2-bit 1-bit
Ron (ohm) - - 6k 100M

On/Off Ratio - - 17 2000
Area (mm2) 109.00 103.12 73.53 17.91

Memory Utilization (%) 98.73% 98.73% 96.86% *62.94% (**17.70%)
Latency (ms) 1.25 0.76 1,262 0.65

Dynamic Energy (uJ) 147.64 42.70 30.27 16.5
Leakage power (mW) 2.61 2.25 0.58 0.12

Energy Efficiency (TOPS/W) 4.08 13.79 19.76 37.10
Throughput (FPS) 797.77 1318.77 792.3 1545.6

*This memory utilization is calculated at used WLs only.
**Percentage in whole WLs (32WLs).

cannot be read at the same time in the 3D NAND array, duplicating
the weights to other WLs (WL10-32) does not have any advantage
for the speed up, so the large number of WLs remain empty and
have not been fully exploited on the relatively shallow DNNs.

Therefore, we have considered the deeper network such as the
ResNet [18] families for ImageNet dataset to be mapped to the 3D
NAND based CIM. First, we mapped our 32WL 3D NAND CIM
on the various ResNet networks, from ResNet-18 to ResNet-152.
The deeper the network is, the more WLs can be exploited, so we
could achieve higher memory utilization of whole 3D NAND array
as shown in Table 6. Because ResNet-34 to ResNet-152 have more
than 32 layers, some (or whole) of the WLs store the weight of
more than two layers. As can be seen in the memory utilization
in Table 6, ResNet-18 to ResNet-50 have enough storage space to
fully utilize max-bit input duplication. However, ResNet-101 and
152 cannot utilize the max-bit input duplication for whole layer so
we optimized the number of input duplication layer by layer. The
layers with large kernel size (3×3×512 and 1×1×1024) were not
duplicated to other BLs for multi-bit input duplication.

Irrespective of the number of layers in the network, the energy
efficiency on ResNet is relatively lower than that on VGG-8. The
energy efficiency of individual layer is strongly related to the kernel
size. Regardless of the kernel size, thewhole 3DNANDarray and the
7-bit ADC should operate once for one weighted sum computation
without significant variation in energy consumption. Therefore,
the small convolution kernels such as 3×3×64 in the shallow layers
and 1×1 convolutional kernels (only in ResNet-50, ResNet-101 and
ResNet-152) tend to have low energy efficiency. Not only the 3D
NAND based design, other technology based designs also have
lower energy efficiency on ResNet (Table 7) over VGG-8 with same
reason.

Second, we evaluated the area and performance on ResNet-18
for ImageNet dataset with various device technologies the same as
VGG-8 case, as shown in Table 7. Because 3D NAND based CIM
could utilize more WLs and duplicate more than the case of VGG-8,
the throughput is 3.4 and 5.5 times higher than that of SRAM and

RRAM respectively (1.2 and 1.9 times higher for VGG-8). We could
also achieve the energy efficiency which is 87% and 78% higher
than that of SRAM and RRAM. Again, the 3D NAND chip area is
just 17.91mm2, but the SRAM-CIM chip are exploded to over 100
mm2.

6 CONCLUSION
In this paper, we designed the architecture of 3D NAND Flash
based CIM accelerator and evaluated the inference performance on
representative DNN models using the modified DNN+NeuroSim
framework. The high density of 3D NAND array is exploited by
duplicating both the weights and the inputs for the throughput
improvement. The outstanding energy efficiency has been achieved
through the summing large input vectors at once for the highly par-
allel computing, showing tremendous chip area benefits than other
device technologies. 3D NAND based CIM has also shown higher
performance especially on the convolutional neural networks with
larger kernel size, and suitable for mapping the very large-scale
networks. Therefore, it is of great interests to explore the mapping
of GB-scale models for speech recognition, language translation
and recommendation system in the future work.
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