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ABSTRACT
With the increasing feasibility of die-stacked 3D memory, near-
data-processing (NDP) is being widely explored to extract greater
performance within a limited power budget. This processing can ei-
ther be at a fine-grained instruction granularity or at coarse-grained
kernel granularity. Allowing both the host processor and processing
units in the memory to operate on data concurrently can poten-
tially create coherence and consistency issues. While coherence
problems have been solved by including the NDP memory in the
coherence domain, porting parallel data structures like hash-table
to NDP memory give rise to data structure consistency issues that
have not been studied so far, as previous works do not discuss the
consistency rules that should be enforced by a NDP memory con-
troller. Instead, there is an implicit assumption that the memory
controllers in NDP systems ensure the required order for memory
requests.

In this position paper, we propose techniques to adapt a tradi-
tional parallel hash-table data structure to a NDP system while
ensuring improved performance and data structure consistency.
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1 INTRODUCTION
Recent advances in die-stacked 3D memory technology reignited
decades old near-data processing (NDP) research. In these proposed
NDP systems, computation logic is placed beneath a 3D-stacked
memory and it is accessed using high bandwidth TSVs. There are
two prominent programming models for such processing in mem-
ory systems: fine-grain instruction-level offloading and coarse-grain
kernel-level offloading. As an example of fine-grain instruction of-
floading, recent studies have evaluated extending traditional DDR
memory controllers to include computing capability [4, 8, 11, 15].
Researchers have also proposed several primitives such as atomic
add/multiply, hash-insertion [1], and bit operations [18]. These
instructions can atomically read-modify-write inside the memory
system, allowing both the host processor and the computing logic
in the memory to operate on the data concurrently. Such concurrent
modifications cause cache coherence and data consistency issues.
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Figure 1: Architecture of a NDP system with 4 memory
nodes and 2 processors. Near-Processor is referred as NDP
cores in the text and MC is the memory controller.

The solution proposed by researchers to overcome the cache
coherence challenge in NDP systems was to bring the memory
into the coherence domain of the processor which is traditionally
limited to caches and associated structures. This is achieved by
either partial or full inclusion of the NDP memory in the coherence
protocol of the processor. The other option is to implement the
NDP memory regions as non cache-able memory[1, 12, 13]. We
summarize previous works on coherence and consistency of NDP
systems in Table 1. Please note that when we refer to consistency
here, we are referring to the mechanism by which a NDP-mapped
hash-table data structure integrity is ensured. In traditional systems,
this is ensured using atomic instructions, locks, and memory barrier
instructions that are inserted as needed according to the processor
consistency model.

In this paper, we first discuss the scenarios in which NDP com-
puting violates parallel data structure consistency. Then, we discuss
how a data structure can be re-designed to avoid these consistency
violations. We analyze and evaluate a common data structure, the
hash-table, and provide a re-design to adapt it to NDP systems.

The contributions of the paper are as follows.

(1) We present a novel method to adapt traditional data struc-
tures to NDP fully exploiting the NDP specific characteristics
like serialization and sub-memory regions.

(2) We present a programming technique to redesign data struc-
tures to avoid consistency problems for hash-tables when
adapted to NDP systems.

2 ARCHITECTURE
A NDP system is made up of traditional processing cores that are
connected to memory nodes over an unordered network. Figure 1
illustrates the baseline architecture that we consider in our current
work. A brief description of this baseline follows.
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Offloading Studies Coherence Consistency* Comments
instruction level [12],[1],[14],[13] non-cached follow host consistency model use non-temporal instructions
instruction level [21],[11],[5],[4] scratch pad multicast barrier -
kernel level [22],[16],[25],[15] software-assisted barrier flush cache on modification

Table 1: Classification of previous NDP proposals on Coherence and Consistency models.

The memory system contains several memory nodes and each
memory node contains computational logic in near-data process-
ing (NDP) cores. The system memory is distributed among all the
memory nodes. This memory in-turn is divided into sub-memory
regions (which can be considered as banks). There is a memory
controller (MC) that facilitates communication between the NDP
cores and the sub-memory regions. Depending on the 3D stacking
technology, the NDP cores might be in the bottom layer of 3D stack,
or they might be connected using a 2.5D stack. Each NDP core has
a low latency, high-bandwidth access to the local memory node
and a high latency, low-bandwidth access to the remote memory
nodes.

We assume that the NDP memory controller can perform read-
modify-write (RMW), and compare-swap operations. The NDP
cores are complex enough to have their own program counters and
virtual to physical memory address translations and kernel-level
offloading on accelerators is assumed.

3 MOTIVATION
In this section, we discuss the consistency issues that arise on
NDP systems when instruction level and kernel level offloading are
implemented.

3.1 Instruction Level Offloading
High-performance memory systems that use 3D die stacking tech-
nology are in active development. Researchers are aiming not only
to increase the memory bandwidth and performance, but also to
include computing capabilities. Earlier efforts included a special-
ized memory named HMC, short for Hybrid Memory Cube, as one
example which has introduced the capability to offload certain com-
putations from the host processor to the memory system [9, 17].
Most recently, efforts have focused on adding computational logic
to traditional DIMMs so as to utilize regular DDR memory for
processing-in-memory systems. This computational logic includes
instructions that can atomically read-modify-write the memory
without having to fetch the data into the processor’s cache. In cur-
rent systems, to maintain data structure consistency, we utilize the
host processor atomic and barrier instructions and the processor
ensures the consistency without involving the memory system.
However, when memory starts to perform computations directly,
it is likely to violate these guarantees if the data structure is not
carefully designed. CPU1 Atomic operations have high overhead to
provide processors’ consistency semantics[23]. If utilizing NDP’s
atomic operations has similar overhead, the possible use cases for
such instructions will be limited by the overhead.

Since with instruction offloading, loads and stores are all per-
formed in thememory directly (by either operating on a non-cached

1We consider a CPU to be an x86 processor for this paper.

memory location or invalidating the data in cache), at a first glance,
it seems like NDP atomic instructions are free from any consistency
violations. However, as we show, this does not always hold.

NDP atomic operations execute in three steps: reading data
from DRAM, performing an operation on the data in the logic die,
and then writing back the result to the same DRAM location. These
steps occur atomically; the corresponding DRAM bank is locked
during the atomic request so that no other requests to the same
bank can be interleaved. Besides, all NDP instructions access only
one memory location (single memory operand). However, memory
requests that are operating on different banks can execute in any
order to maximize the memory bank parallelism. Furthermore, if
memory requests to the same address are issued through different
serial I/O links that connect multiple NDPs and processors, the
order between these memory requests is also not preserved [9].

3.2 Consistency issues on kernel-level
offloading systems

Figure 2 demonstrates an example of potential consistency viola-
tions with kernel-level offloading model on NDP systems. In this
example we consider operations on a linked-list data structure.
In kernel-level offloading, the entire search or delete function is
offloaded to NDP system. Nonetheless, each kernel needs to gener-
ate multiple memory requests to individual memory nodes. Since,
memory requests to the same memory node are serialized, they
do not violate the data structure consistency. However, when dif-
ferent NDP cores access the same memory node concurrently, the
illustrated inconsistency arises. 2

In this example, there are two operations (Figure 2(a)) on a linked-
list data structure that consists of two elements (with values 5 and 3).
These operations are issued concurrently by different nodes. Since
the linked-list is distributed across all the nodes, a node can send a
request to another memory node while traversing the linked list.
The first operation is a Delete operation performed by the NDP0
core whereas the second operation is a Search operation being per-
formed by the NDP1 core. These operations are composed of three
memory requests that access the elements through pointers ptr and
curr and are labeled as Req.0, Req.1, and Req.2 in the illustration.
Req.0 is checking if the value in the element matches num to delete
it. If it matches, the element to be deleted is saved in tmp and Req.1
remaps the next pointer of the element to be deleted to its following
element. A concurrent search operation, Req.2 is searching for the
element containing num by comparing the values. The two memory
nodes are issuing requests to the same sub-memory region caus-
ing an interleaving of issued requests. The correct and incorrect

2 Due to this reason, in the recent concurrent data structure algorithm for NDP did
not allow a link-list spans across multiple memory nodes [19]. However, in this paper,
we design a linked-list that overcomes this limitation.
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Figure 2: NDP consistency violation example with kernel level offloading

interleaving of these operations is given in Figure 2(b) and an illus-
tration of this incorrect order in action is given in Figure2(c). As
shown in the illustration, whenever the requests Req.0 and Req.1
are interleaved with Req.2, an element is incorrectly deleted by one
NDP when the node has a pending operation issued by another
NDP. Please note that there is no explicit synchronization to avoid
this situation because of the assumption that these operations are
serialized at the NDP memory controller.

4 HASHTABLE DATA STRUCTURE
In this section we discuss how we redesign a parallel hash-table
data structure to efficiently and correctly map to the NDP system.

A hash table is a data structure that stores mappings of keys
generated using a hash function to values. It is used to quickly
search and uniquely identify an object among a collection of similar
objects. We describe an in-production version of a hash-table as
implemented in QEMU [7] known as the quick hash-table [10]. This
hash-table is illustrated in Figure 3. The structure consists of an
array of pointers. Each pointer points to a linked-list of buckets.
A bucket consists of an array of keys and corresponding values as
shown in Listing 1. On a traditional processor, each bucket is sized
to fit in a cache line, whereas on a NDP system, we can increase the
size of the bucket to a sub-memory region as illustrated in Figure 3.

There are two major characteristics of NDP systems that we
exploit for adapting a hash-table. The first characteristic is that NDP
operations can be performed on larger granularity memory regions
(refer Figure 1). Using sub-memory region granularity allows us to
avoid certain consistency issues and to reduce NDP communication

root

hash bucket

chained
buckets

NDP

CPU

writer reader

root

writer reader

Figure 3: Organization of a Hash Table. Each square in the
chain represents a hash bucket. On the left, a conventional
hash-table with hash bucket that has locks is sized for a
cache line of the CPU, whereas on the right a NDP-mapped
hash-table has buckets that are lock free and is sized for a
sub-memory region.

overhead when compared to cache line granularity on a traditional
processor. The other characteristic is that all operations on a sub-
memory region are serialized at the memory controller of that
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1 struct hash_bucket {
2 lock_t lock; // keep writers apart
3 seqlock_t seqlock;// retry reader on update
4 uint32_t keys[PER_BUCKET]; // keys
5 void *values[PER_BUCKET];// values
6 struct hash_bucket *next; // next bucket
7 };
8
9 struct hash_table {
10 hash_bucket *buckets;
11 int num_buckets;
12 };

Listing 1: Structures in a Hash Table

struct CPU_hash_bucket {
lock_t writer_lock;
seqlock reader_lock;
array    keys[PER_CACHE];
array    values[PER_CACHE];

};

struct NDP_hash_bucket {
struct record {
entry key;
entry value;

} records[PER_ROW];
};

Figure 4: NDP Optimal Structure Reorganization for a Hash
Table

node. As we describe later, this allows us to reduce the cost of
synchronization when compared to the traditional design.

We consider three main operations in the hash table: (i) Search
(ii) Insert and (iii) Delete.

4.1 Hash Table Organization
The hash bucket is the main structure that holds the keys (refer
Listing 1 – line 4) and their corresponding hash values (line 5). These
data are stored in two arrays, where in traditional processors, each
array is sized to fit in a cache line (PER_BUCKET ) to exploit the
spatial locality of the hash-table operations access patterns. Every
operation on a bucket acquires a lock. Readers take the seqlock
whereas writers take the lock .

To adapt this to the larger granularity memory region of a NDP
system without having to utilize locks, we utilize a well known
memory layout transformation known as Structure of Arrays to
Array of Structures [2, 3, 24](SoA to AoS 3) to effectively utilize the
organization of the NDP system. This is is illustrated in Figure 4.
This reorganization of the fields in the hash bucket allows it to (i)
co-locate the key and value pairs in the same sub-memory region
instead of them being present in different regions and having to
access the two arrays in lock-step without synchronization and
(ii) exploit the larger granularity of the sub-memory region ( 512
B) compared to the cache line size (64 B) in a processor thereby
reducing the number of accesses to each bucket by 8x (512/64).

4.2 Hash Table Operations
We describe the main hash-table operations below.

Search is one of the main operations on a hash-table. This is
implemented using the lookup and search functions as shown in
3This transformation is usually applied the other way around i.e., from AoS to SoA.
However, in this scenario SoA to AoS is interestingly beneficial.

1 /* Conventional lookup */
2 void *lookup(table, hash)
3 {
4 int index = map_hash_to_index(hash);
5 int version;
6 void *result = NULL;
7 bucket *bucket = table->buckets[index];
8
9 do {
10 version = seqlock_read_begin(bucket);
11 // how do you map search to NDP?
12 result = search(bucket, hash, PER_BUCKET);
13 } while (seqlock_read_end(bucket) != verison);
14
15 return result;
16 }

Listing 2: A lookup operation in a Hash Table

1 /* Conventional Search */
2 void *search(hash_bucket *bucket, uint32_t hash, int

num_entries)↩→
3 {
4 for (int i = 0; i < num_entries; i++) {
5 if (bucket->hashes[i] == hash)
6 return bucket->pointers[i];
7 }
8
9 /* hash not found */
10 return NULL;
11 }

Listing 3: Search operation in Hash Table

Listing 2 and Listing 3. A key is used to search for a particular hash
value. It returns the corresponding value if such an entry exists.

Sequence locks (seqlock [20]) are used to separate the readers
and the writers in the traditional version of the hash-table. If the
seqlock version changes before the reader is finished reading, there
must have been a writer active who updated the structure. In this
case, the reader might have read stale data and hence will retry the
search operation.

In a conventional search, we iterate over all the hashes in the
bucket and check for a matching entry. If such an entry is found, the
index of the found hash entry is used to return the corresponding
value pointer. If such a hash entry is not found, the entry does not
exist and we return NULL.

4.3 Mapping Search Operation to NDP
In an NDP mapped search, we use the NDP-compare operation
which searches for a value in a entire sub-memory region. No
other operations are allowed to overlap with this operation i.e., it is
atomic. This compare instruction returns the offset/index at which
a match was found. If it does not find a match, it returns the offset
of end of the memory region indicating failure. This operation is
shown in Listing 4.

Using such a NDP-mapped search function will allow us to re-
move the sequence lock since the readers and writers are now
serialized at the NDP. The entire search operation of the reader is
finished before updating the bucket with the newly inserted pointer
by operation of the writer. This allows us keep the reader and writer
from interfering with each other, ensuring the hash-table integrity.
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1 /* NDP mapped Search */
2 void *search(hash_bucket *bucket, uint32_t hash, int

num_entries)↩→
3 {
4 int offset = NDP_search(bucket->hashes, hash, sizeof(hash),

num_entries);↩→
5
6 int index = offset / sizeof(hash);
7 /* Found the hash */
8 if (index != num_entries)
9 return bucket->pointers[index];
10
11 /* hash not found */
12 return NULL;
13 }

Listing 4: NDP mapped Hash Table Search Operation

1 /* Conventional Insertion */
2 void insert(node, hash)
3 {
4 int index = map_hash_to_index(hash);
5 hash_bucket *bucket = table->buckets[index];
6
7 // disallow other writers
8 lock(bucket.lock);
9 // inform readers
10 seqlock_write_begin(bucket.seqlock);
11 bool success = insert_in_bucket(bucket, hash, node);
12 seqlock_write_end(bucket.seqlock);
13 unlock(bucket.lock);
14 }

Listing 5: Insert Operation for a Hash Table

1 bool insert_in_bucket(hash_bucket *bucket, uint32_t hash, void
*ptr)↩→

2 {
3 for (int i = 0; i < PER_BUCKET; i++) {
4 if (bucket->hashes[i] == NULL) {
5 bucket->pointers[i] = ptr;
6 bucket->hashes[i] = hash;
7 return true;
8 }
9 }
10
11 // insertion failed
12 return false;
13 }

Listing 6: Inserting an element into a Hash Bucket

4.4 Insertion
In a conventional implementation, an insert into the bucket takes
two locks. One lock is to disallow modification by other writers and
the other is a sequence lock to inform the readers currently reading
to retry their search. The function insert_in_bucket in Listing 5
and Listing 6 iterates over the bucket looking for an empty slot to
insert the pointer.

4.5 Mapping Insert Operation to NDP
Earlier, we’ve seen that the sequence lock can be removed since
both the readers and writers are serialized at the NDP boundary.

1 /* NDP Insertion */
2 bool insert_in_bucket(hash_bucket *bucket, uint32_t hash, void

*ptr)↩→
3 {
4 int offset = NDP_compare_swap(bucket->hashes, NULL, hash,

sizeof(hash));↩→
5
6 int index = offset/sizeof(hash);
7
8 if (index != PER_BUCKET) {
9 // succesfully swapped
10 bucket->pointers[index] = ptr;
11 return true;
12 }
13
14 // insertion failed
15 return false;
16 }

Listing 7: NDP mapped Hash Table Insert Operation
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Figure 5: Performance of a NDP-mapped Hash Table

Similarly, we can also remove the writer lock using NDP atomics
to prevent data races.

Using the memory region NDP compare and swap instruction
allows us to perform this action without taking any lock. This
instruction compares the contents of each location in a memory
region at a given granularity and swaps the value with the new
given value on a match. If the value does not match, the NDP
instruction returns the offset of the end of the memory region
indicating failure. This code is given in Listing 7.

4.6 Benefits
To summarize, the major advantages of mapping a hash-table to a
NDP system are as follows:

(1) Increasing the bucket size from cache line size to sub-memory
region size (64B to 512B) and eliding taking any locks in-
creases throughput of operations

(2) Bandwidth requirement reduction by not having to bring
data into the cpu

(3) Improving the search latency, since it is performed on NDP
directly

5 NDP-MAPPED HASH TABLE EVALUATION
We evaluate the performance of the NDP-mapped hash-table and
compare it to a traditional CPU only hash-table as shown in Figure 5.
We model a 4-node NDP-mapped hash-table (8GB, 4 MC, 512B
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sub-memory region) and a conventional implementation on a 16-
core processor (32KB L1, 256KB L2, 16 MB LLC, 2GHz). The hash-
table is populated with 4 GB entries mapped evenly over 512B
sub-memory regions. We create a benchmark that spawns threads
to generate concurrent traffic to the hash-table from all the CPU
cores. This traffic can be a mix of read-only look-ups or write-only
update/delete operations.

When only readers operate on the hash-table (i.e., the update
ratio is 0), the NDP version of the hash-table is able to sustain
ten percent more operations than the corresponding conventional
processor only implementation. This performance improvement
is due to the elimination of contention on the sequential lock in
the hash bucket being accessed by the readers, increasing the gran-
ularity of the search in each bucket, and not having to fetch the
memory into the processors’ cache. However, if all operations are
updating the hash-table (the update ratio is 100) the NDP version
can sustain double the number of operations as the conventional
implementation. The major portion of this performance gain is
achieved by eliminating the writer lock contention and increasing
the granularity of the search from a cache line in the conventional
implementation to a row granularity in the NDP implementation.

6 RELATEDWORK ON NDP
The work that is very closely related to the current work is on
accelerating linked-list operations using NDP [16]. In their work,
to avoid consistency problems, a lock is acquired on the host at a
fine granularity before sending any memory updates. This causes
serialization on the host side, whereas the design we present avoids
acquiring locks altogether by relying on NDP serialization of com-
mands at sub-memory region granularity.

In other proposals, NDP memory is assumed to be non cache-
able, because of which a coherence protocol is not needed to be
implemented between the core and the NDP. In such proposals,
non-temporal instructions are used whenever the core modifies the
memory. These instructions update the memory directly instead
of fetching the cache line into the processor. This ensures that the
updates are seen by the NDP core without changes to the coherence
protocol. In other studies, NDP memory is cached in the processor
core, but upon an update to the locations, the cached memory is
either flushed and updated or write-through caching is employed.
Although these techniques satisfy the coherence issue, consistency
is not thoroughly handled in the proposals. In [1], a fence instruc-
tion is used to enforce consistency without any details of the cost or
granularity of such instructions. Research in which the offloading
granularity is greater like [4, 6, 25] also focus on bandwidth savings
and do not consider consistency. This is because there is an im-
plicit barrier at the end of the offloading granularity. In Epiphany, a
many-core processor [21], a multi-cast hardware barrier is used to
ensure consistency. In this implementation, a mesh network is used
for connecting the NDP cores and each NDP core is responsible to
propagate the barrier within its local row. A per-core multi-cast
register is set which interrupts the NDP core which waits until
the register is cleared before processing any further instructions
ensuring consistency.

7 CONCLUSION
In the current work, we detail the challenges faced in adapting
parallel data structures to NDP systems.We ported a real-world data
structure, hash-table, to NDP and identified the possible consistency
issues and proposed multiple ways to avoid such consistency issues,
by bundling NDP instructions and modifying the data structure
layout.
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