RAOP: Recurrent Neural Network Augmented Offset Prefetcher

Pengmiao Zhang
University of Southern California
Los Angeles, California, USA
pengmiao@usc.edu

Rajgopal Kannan
US Army Research Lab-West
USA
rajgopal kannan.civ@mail. mil

ABSTRACT

The rapid development of Big Data coupled with slowing down of
Moore’s law has made the memory performance a bottleneck in the
von Neumann architecture. Machine learning has the potential to
provide opportunities to address the memory performance issues,
specifically through data access prediction. While recent works
focusing on the prediction of memory accesses have used recurrent
neural networks (RNN), there is a lack of a framework utilizing
such prediction in a prefetcher. This paper introduces the RNN Aug-
mented Offset Prefetcher (RAOP) framework, which consists of two
parts: an RNN-based predictor and an offset prefetching module. By
leveraging the RNN predicted access as a temporal reference, RAOP
improves prefetching performance by executing offset prefetch-
ing for both the current address and the RNN predicted address.
We implement the RNN in the predictor with a compressed long
short-term memory (LSTM) model and demonstrate the effect of
augmenting an RNN predictor to a simple next-line prefetcher in the
prefetching module results in 3.22x, 4.2x, and 15.6% improvement
in prefetch accuracy, coverage, and speedup. We further implement
a best-offset prefetcher (BOP) in RAOP and compare it to several
state-of-the-art prefetchers. Results show that RAOP achieves a
mean 4.05% speedup by prefetching in last level cache, outperform-
ing state-of-the-art prefetchers. By augmenting an RNN predictor to
BOP, RAOP results in 6.5%, 9.2x, and 12.8% improvement in prefetch
accuracy, coverage, and speedup.

CCS CONCEPTS

+ Computer systems organization — Processors and mem-
ory architectures; Neural networks; « Information systems
— Data mining.

KEYWORDS

machine learning, RNN, offset prefetcher, augmentation effect

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8899-3/20/09....$15.00
https://doi.org/10.1145/3422575.3422807

Ajitesh Srivastava
University of Southern California
Los Angeles, California, USA
ajiteshs@usc.edu

Benjamin Brooks
University of Southern California
Los Angeles, California, USA
bjbrooks@usc.edu

Viktor K. Prasanna
University of Southern California
Los Angeles, California, USA
prasanna@usc.edu

ACM Reference Format:

Pengmiao Zhang, Ajitesh Srivastava, Benjamin Brooks, Rajgopal Kannan,
and Viktor K. Prasanna. 2020. RAOP: Recurrent Neural Network Augmented
Offset Prefetcher. In The International Symposium on Memory Systems (MEM-
SYS 2020), September 28-October 1, 2020, Washington, DC, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3422575.3422807

1 INTRODUCTION

Memory performance is becoming the bottleneck of computation
due to the increasing gap between CPU and memory speed [2],
especially with the rapid development of Al accelerators such as
GPUs and TPUs. This problem is partly addressed by the develop-
ment of larger and deeper cache hierarchies in the past decades.
New memory technologies like Intelligent RAM, 3D-stacking, and
Non-volatile memory are in active research, but they focus on the
memory hardware with a compromise of high cost and power con-
sumption.

Prefetching techniques are widely used to hide memory latency
and improve instructions per cycle (IPC). It looks at a pattern of
memory accesses and uses the past information to forecast the near
future access pattern so as to start fetching the data before the
miss occurs [24]. A prefetching process is a form of speculation
that aims to predict the next one or several instructions or data
addresses. Simple hardware prefetchers exploit obvious memory
access patterns, such as the adjacent spatial locality and constant
stride. Offset prefetching has been proposed recently as a dynamic
stride approach. Sandbox method is introduced by Pugsley et al.
in [17] as the first offset prefetching method, which aims to find
offsets that improve prefetching accuracy. Offset prefetching is
an evolution of both next-line prefetching and stride prefetching.
When a request happens for a cache block X, offset prefetcher
prefetches the cache line X + k, where k is a dynamic offset.

Recently, machine learning-based prefetching methods have
gained increasing attention [22]. One way of using machine learn-
ing (ML) to address the prefetching problem is using ML to help
an existing prefetcher, such as deciding the configuration of a
prefetcher or a combination of several different prefetchers [11, 18].
Another branch of research is using machine learning directly to
learn and predict the memory access pattern [7, 22]. In this case,
the prefetching problem can be reduced to the sequence prediction
problem. Due to the complexity of the memory access pattern, this
type of method requires more powerful learning models.

https://doi.org/10.1145/3422575.3422807
https://doi.org/10.1145/3422575.3422807

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

RNN (recurrent neural network) has emerged as a powerful tool
for learning from time-series data. In particular, LSTM (Long Short-
Term Memory) [6],a popular RNN variant, has shown extraordinary
performance in sequence problems, such as natural language pro-
cessing [13] and speech recognition [8]. Inspired by the capacity
on sequence processing of RNN, some efforts have applied RNNs
to memory access prediction [22, 23]. While these research focus
mainly on the accuracy of memory access prediction, little effort has
been made in constructing an appropriate framework to implement
such a model-based prefetcher.

In this paper, we propose an RNN Augmented Offset prefetcher
(RAOP) that makes use of both the RNN predicting accuracy and
the principle of spatial locality. By performing offset prefetching for
both the current and the predicted memory addresses, the prefetch-
ing performance is significantly improved. We implemented this
prefetcher through the ChampSim [3] simulator and SPEC CUP
2017 traces and conducted experiments to evaluate our proposed
approach compared to popular state-of-art prefetchers.

To summarize, our contributions are as follows:

e We propose a framework of implementing the RNN model
that can predict next memory access in the microarchitecture,
which serves as a part of the predictor for RAOP.

e We propose a spatio-temporal prefetching approach that
makes use of both the prediction of the RNN model and the
spatial offset pattern in memory.

e We present the RNN augmentation effect through an ablation
study. A simple next-line prefetcher is implemented and the
performance is evaluated under different configurations.

e We present experiments on the proposed prefetcher and
compare it with several state-of-the-art prefetchers. RAOP
achieves a mean 4.05% speedup by prefetching in last level
cache, outperforming state-of-the-art prefetchers. Over BOP,
RAOP results in 6.5x, 9.2x, and 12.8% improvement in prefetch
accuracy, coverage, and speedup.

2 RELATED WORK

Offset prefetchers have been studied recently in the literature [12,
19]. Best-Offset prefetching approach proposed in [12] not only
provides prefetch offset but also takes into account prefetch time-
liness. [19] presents a multi-lookahead offset prefetcher that con-
siders both miss coverage and timeliness when issuing prefetch
requests through assigning scores to the offsets and selects the high-
est scoring offset for issuing prefetch requests. While also based
on the offset prefetcher, this paper focuses on the improvement of
memory performance due to the assistance of machine learning
models.

The application of machine learning algorithms on memory
prefetching has been studied in several prior works. Liao et at. [11]
apply machine learning algorithms such as nearest neighbor, sup-
port vector machine, and decision tree on the optimization of
prefetching configurations for a data center. The authors in [18]
presents an ML-based classification method to optimize the sub-
set of prefetchers for a set of applications and aims to maximize
the effectiveness of hardware prefetchers. In these works, machine
learning approaches serve as assistants of the existing prefetcher,

Pengmiao, et al.

which is different from our prefetching approach that directly pro-
vides the memory address from a machine learning model.

In [1], the authors illustrate the excellent performance of the
LSTM neural network to predict given memory access patterns.
They trained an LSTM model with previously designed micro-
benchmarks that are interleaving of multiple patterns and it shows
high accuracy of up to 95%. The work in [7] analyzed the pattern
of memory access and applied k-means clustering and LSTM to
the prediction of accesses deltas (jumps in memory access). They
demonstrate that LSTM-based model achieves high precision com-
pared to traditional prefetchers. Some other works [14, 15, 26] also
demonstrate the effectiveness of LSTM in memory access predic-
tion. However, these work focus mainly on the access prediction
accuracy rather than the complete prefetcher performance. In this
paper, we show how the last level cache (LLC) performs when an
RNN-based prefetcher is utilized, and propose a spatio-temporal
prefetching approach making use of the RNN access prediction.

Work [22] contributes to the implementation of RNN as a prefetcher
by reducing the size of an LSTM model, which makes the RNN-
based approach more practical. The authors propose a compressed
LSTM approach for accurate memory access prediction. The LSTM
model in this work is trained from a sequence of accesses deltas of
PARSEC benchmark and predict the next access delta. According to
the observation of delta distribution, the authors encode both the
input and output vocabulary into binary values. In this way, they
achieved a n/log n ratio of compression with negligible accuracy
compromise. While this work illustrates a promising approach of
applying LSTM as a prefetcher, they have not tested their approach
on a full microarchitecture simulator. In this paper We apply the
same compression approach in [22] while using the SPEC CPU
2017 benchmark. More importantly, we analyze the prefetching
performance through the simulation of ChampSim, a trace-based
simulator that models a modern an out-of-order core and compar-
ing the performance of an RNN-based prefetcher, the proposed
prefetcher, and several state-of-the-art prefetchers.

3 APPROACH

We use an RNN model as the predictor of a prefetcher. Through
learning from the sequence of access deltas, the jump of adjacent ad-
dresses, the model can infer the next delta based on the previous and
current accesses information. We apply a compression technique
that can largely reduce the model size by encoding the vocabulary
of deltas. With the predictor, we can execute offset prefetching on
both the current address and the predicted address. While a simple
offset prefetcher can work only when the request happens, the RNN
augmented offset prefetcher can work for a second time before the
next memory access is requested.

3.1 Framework

Our prefetcher is a combination of two parts: a predictor and a
prefetching module. Besides, an extra delta buffer is inserted be-
tween the CPU Core and the memory management unit (MMU).
The framework is shown in figure 1. The predictor part is an en-
capsulation of RNN models and some necessary helper functions.
Considering the advancement of tensor-based algorithms, e.g. ma-
chine learning model training, translated physical addresses can

RAOP: Recurrent Neural Network Augmented Offset Prefetcher

lose the logic connection inside a tensor, which makes the predic-
tion a harder task. Therefore, we place the predictor in the virtual
address (VA) space. The work in [25] has shown the feasibility
of a prefetcher working on virtual space with address translation
support.

The RNN models are in the structure of compressed LSTM. One
model is trained for each of the applications in the SPEC 2017
benchmark that we use. While working, the RNN model for the
running application receives the deltas sequence from the delta
buffer and predicts the next delta. The predictor will sum the delta
and current address to calculate the predicted next virtual address.
The number of models can be reduced by clustering the traces
and train one model for several applications. However, we use
the golden line models to study the prefetching performance in
this paper to avoid the prefetching compromise caused by model
variation.

After the computation of prediction, the predicted virtual address
is sent to the MMU for translation. This address will first try to
be translated through lookaside buffer (TLB). If fail, the page table
base register (PTBR) will point to the page table entries that the
VA should look for and be translated there. After translation, the
mapping predicted physical address will be available.

The prefetching module works on the physical address (PA) space.
Our prefetcher works when the last level cache (LLC) misses and
aims to prefetch the near future cache lines from the main memory
to the LLC. Therefore, when the LLC miss happens, the prefetching
module will receive the RNN predicted next physical address. This
address will help the offset prefetcher in the prefetching module to
acquire spatial nearby cache lines for both the current address and
the predicted address. By fetching the cache lines before the data is
needed, the prefetcher can help avoid cache miss.

CPU Core Femm——m————— - |
I LLC Prefetcher |
VA : |
: | | Predictor :
Delta Deltas | \
Buffer X RNN :
1
VA | :
* : Predicted
MMU | VA :
TLB N | I
1
T
Predicted !
PTBR | redicte |
! PA I
tiea | — |
1 .
Prefetching 1
L1 Cach |
e | Module :
ti ! :
L2 Cache R it e
il !
Prefetch
LL Cache — —| Main Memory

Figure 1: Framework for RNN augmented offset prefetcher

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

3.2 Recurrent Neural Network

Recurrent neural networks exhibit temporal dynamic behavior by
storing sequential information in their internal states. By perform-
ing the same function recurrently for inputs of several time steps,
RNN learns history information without the necessity of expansion
of network cell numbers. By assuming the dependence between the
current input and previous inputs, RNN performs better in sequence
processing than basic neural networks that consider the time steps
as dimensions without time-series information. However, for long
sequence processing problems, basic RNN suffers from gradient
vanishing and exploding problems. To overcome the shortcomings
of basic RNN, some modified version has emerged, such as LSTM
(Long Short-Term Memory) and GRU(Gated Recurrent Unit) [4].
In this paper, we use the LSTM network as the main structure of
our prefetching predictor. An LSTM cell is composed of an input
gate i) ablock input gate z() a forget gate f (), an output gate
o an memory cell ¢ and an output y(t). The operation of each
set of gates of the layer is given by the following set of equations:

i) = o (Wix(t) +Riy®V +pioct + bi)
2z = tanh (sz(t) + Rzy(t_l) + bz)
£0 = o (Wex® + Ry 4 pp 0) + by

o®=¢ (Wox(t) + Roy(t_l) +Ppo © c® +b0)
¢ = i® g 7O 4 O g (=1

y(t) =o® o tanh (c(t))

(1)

where x(t) is the input vector at time step t; y(t_l) is the output
of the previous time step; ¢t js the memory state of the previous
time step; Wi, W5, Wg, W, are input weights for the input gate,
block input gate, forget gate and output gate, respectively; b;, by,
b¢, bo are input bias for the four gates respectively; R, Rz, Rg, Ro
are recurrent bias for the four gates respectively; pi, pz, Pf, Po
are peepholes that connects directly from the memory cell to the
gates;o and tanh are sigmoid and hyperbolic tangent functions
that serve as nonlinear activation functions. © is the operation of
Hadamard vector multiplication.

3.3 Compressed LSTM for Access Prediction

We train the LSTM model with the deltas of memory access traces
and try to predict the following delta given a piece of previous
deltas sequence. The delta prediction problem can be formed as a
classification problem rather than a regression problem because
the delta values are not consecutive. This problem has similarities
with natural language processing that the vocabulary (deltas in
our problem) is large but the high frequently appeared words are
in a relatively small range. Considering this distribution, we can
compress both the output and input dimension by encoding the
vocabulary as binary so that the model can achieve a nearly n/logn
ratio of compression. In our model, vocabulary is encoded into a
16-bit binary value, which means the dimension is only 16 for input
and output. A compact LSTM model makes not only the size smaller
but the inference computation faster.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

| Input: deltal, delta2, delta 3 |

.

| Encode deltas to 16-bit binary values |

.

| Embedding Layer |

.

| LSTM Layer |

@

| Dense Layer |

.

| Decode the output binary to delta |

.

| Output: predicted delta |

Figure 2: Compressed LSTM for access prediction

3.4 Offset Prefetching Module

Offset prefetchers prefetch the address X+D if X and X +D lie in the
same memory page, where X is the base address and D is the offset.
In this paper, we implemented a best-offset (BO) prefetcher in the
prefetching module for LLC prefetching. BO algorithm [12] tries
to find the optimal prefetching offset by testing several different
offsets. A recent request (RR) table is constructed in a BO prefetcher
to store the recent base address. An offset list and score table are
constructed to learn and predict the best offset D.

The workflow of BO prefetching is shown in figure 3. The RR
table updates when LLC reads data effectively from the main mem-
ory, that is when cache miss happens or prefetch hits. 63 different
offsets are stored as a list d; in the offset list and are initialized as 0.
When LLC cache miss happens, the address X — d; will be looked
up in the RR table and check whether this address was recently
issued or not (hit/miss). The result will be fed back to the offset list
table to update the scores for d;. If there is a hit in the RR table, the
score for d; will be incremented by one. The process of testing all
the d; is called a round. A learning phase is a number of rounds
and a phase completes when either the value of score ford; or the
number of rounds reaches their limits respectively. After a phase
of learning, the d; with the highest score is considered as the best
offset D and the new learning phase starts with all scores are reset.

3.5 RNN Augmented Offset Prefetching

Considering only the predicted one cache line is not sufficient
for a strong prefetcher. First, there is a chance that the prediction
is wrong since the prediction accuracy cannot be 100%, then the
prefetcher will fetch a useless cache line. Second, even though the
prediction is correct, RNN is still a probability model that addresses
with high appearing frequency will be predicted with higher possi-
bility, which at the same time indicates the address should already in
the cache. In this case, the prefetcher loses an opportunity to bring
useful data into the cache. Considering the weakness of prefetch-
ing only the predicted cache line, we propose an RNN Augmented

Pengmiao, et al.

Base address X Fill lineY
—
Prefetch
X+D . D Offset Recent
WV list/score —— request table
Hit/miss

Figure 3: Best-offset prefetching workflow

Offset Prefetching approach (RAOP), which makes use of both
temporal locality and spatial locality to improve the prefetching

performance.
Current Cache Line
Prefetch k lines to the Current
Prefetch

Predicted Next Line

k lines to the Predicted

Figure 4: RNN augmented offset prefetching

Besides the temporal address reference provided by the RNN-
based predictor, we propose to also prefetch M cache lines at a
spatial distance of k cache lines to the current line and N cache
lines at a distance of k cache lines to the RNN predicted line. Here
k is the offset predicted by the offset prefetching module in RAOP
framework, which serves as a spatial reference. While an increasing
number of prefetching depth typically leads to higher coverage,
naively increasing the depths does not always improve the over-
all system performance [9]. This is because the predicted stream
and the actual stream will eventually diverge, which will cause a
decrease of accuracy and a number of redundant prefetches.In this
paper, we select the coefficient as N = 1 and M = 1, the prefetching
location is shown in figure 4. The calculation of prefetching cache
line addresses is shown in equation 2:

Addrcyyy Jine = (Addreyy, > SHIFT) < SHIFT

Addry o curr = ((Addreyyr > SHIFT) + k) < SHIFT
Addrpreg Line = (Addrp,eq > SHIFT) < SHIFT (2)
Addry 1o preqd = ((Addrpy.q > SHIFT) + k) < SHIFT
SHIFT = log, BLOCK_SIZE

RAOP: Recurrent Neural Network Augmented Offset Prefetcher

Table 1: Simulation parameters

Parameter Value

CPU 4 GHz, 4 cores,4-wide 000,
256-entry ROB, 64-entry LSQ

L1 L-cache 64 KB, 8-way, 8-entry MSHR, 4-cycle
L1 D-cache 64 KB, 12-way, 16-entry MSHR, 5-cycle
L2 Cache 1 MB, 8-way, 32-entry MSHR, 10-cycle
LL Cache 8 MB, 16-way, 64-entry MSHR, 20-cycle
DRAM 512 MB, 8 banks, tgp = 12.5 ns,

trep = 12.5 ns, tcpas = 12.5 ns

where Addrcy,, is the current miss address, Addrey,r Jine 1S
the current cache line address, k is the offset, Addry ;o cyry is the
address of the cache line k lines distance to the current miss ad-
dress, Addrp,.q is the predicted next address, Addrp,qq Line is the
cache line address of the predicted next cache line, Addry, to Pred
is address of the cache line k lines distance to to the predictgd cache
line, BLOCK_SIZE is the size of one cache line.

4 EXPERIMENTS

4.1 Simulation Environment

Simulations in the paper are conducted using ChampSim [3], the
simulator used in the 3rd Data Prefetching Championship (DPC-3).
The parameter is shown in table 1. There is no prefetching for cache
levels other than the last level cache (LLC).

4.2 Dataset

We use the application traces for DPC-3 that is generated from
SPEC CPU 2017 benchmark [5]. This benchmark is widely used
for the evaluation of compute-intensive performance and mem-
ory subsystem performance. The application traces are instruction
traces. When ChampSim is running, the simulator reads from an
application trace file directly, which simulates the process of the
application running on a computer. Besides, The application trace
pieces are selected by SimPoint [16]. It implies that the trace pieces
are containing some form of patterns, which is appropriate for an
ML model to learn.

For the aim of our RNN model training, we need the virtual
memory access sequence as the learning dataset. Therefore, we
extract the virtual memory access trace from the application trace.
We make use of the simulating process and print the memory ad-
dress when load instructions are processing after the decoding of
instructions. After the collection of raw memory access, we gener-
ate the sequence of deltas for each application that could be used
directly for RNN model training. In this paper, the model input is
three consecutive deltas and the training label is the next delta.

4.3 Metrics

To evaluate the performance of the prefetchers, we use the following
metrics:

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

(1) Cache Hit Rate: The percentage of accesses that result in
cache hit, specifically in LLC for this paper.

(2) Prefetch Accuracy: If the prefetched line is hit in the cache
before being replaced, there is a prefetch hit. The prefetch-
ing accuracy refers to the percentage of prefetch hits to all
prefetches.

(3) Prefetch Coverage: Percentage of misses avoided due to
the contribution of prefetching, the value can be calculated
using the equation 3:

(Prefetch Hits)
(Prefetch Hits + Cache Misses)

Prefetch Coverage =

(4) Useful Rate: While a prefetcher tries to make the data avail-
able in the cache before its request, the process is not without
cost. For example, it requires the processor to carry out the
prefetch, the data source bandwidth to read the data, mem-
ory bandwidth to transfer the data and cache space to keep
the prefetched data. As a result, the prefetching is not al-
ways useful even though there is a prefetch hit. ChampSim
analyzes the useful prefetches that are actually helpful for
the improvement of computer performance. We calculate
the useful rate by dividing the number of useful prefetches
to the total number of prefetches.

Speedup: The speedup can be deducted from the ratio of
two IPCs. The percentage improvement can be represented
as:

—
%
=~

1
Percentage Improvement = 100 (1 - M) 4)

4.4 Model Training

We use the virtual memory access sequence without program
counter to train our model. We split each trace into 70% train-
ing set and 30% testing set. To encode the vocabulary of deltas, we
fit a tokenizer using the whole trace of each application to acquire
the statistics of the deltas. Tokenization is a technique used widely
in the area of natural language process as a tool of lexical analysis.
It is the process of splitting up a larger body of text into tokens:
smaller lines or words. The trained tokenizer contains information
about delta distribution. Since we represent the deltas with 16-bit
binary numbers, we can encode 21° deltas of the highest frequency.
The tokenizers are saved for the decoding of the output delta.

After the encoding of input deltas, each binary bit of the encoded
delta is embedded into a 10 dimension vector. Embedding weights
are trained together with the LSTM layer during the process of
backpropagation. For a process of learning text sentences, word
embedding can fit a vector to represent one word that is originally
represented as an integer or on-hot encoded vector. The embedding
layer learns its correlation with other single words then represents
the word with a new vector. In our application, the embedding
layer can dig more latent information in the trace, especially the
correlation among different deltas.

The LSTM model is trained using the optimizer ADAM [10]. To
avoid overfitting, we exploited a 0.1 dropout rate between the LSTM
layer and the output dense layer. The dense layer has 16 output
dimensions. For each output dimension, it is a binary classification

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

1.0
2
A
7
7
08 ¥ 7 7 Z
/ 4 /) ?
7 % % 7
2 % AR RR
5061 & ’ Y Y .
S a r’ 1111
S 7 4 % v N N v, N
0 7 7 Y Y Y
[v] 7 7 7 7 N Y v, N/
<04l ¥ 4 . PP P ’
: 7 % v % A
/ 7 7 AR 7 Y
7 % 7 2787 7 Y
7 v, 7 2R Y
7 % 4 277 > Y
ool FEEEEREE LR EEE LD
7 7 2\ 2 78 7 7 Y
] 4 Y AR R
7 % v Y AR 7 Y
] 7 x R Y
0ol W /NN VEVVNVEVY
) ~ - a) <t X N
Q)T'E'E’_.__)E’—"UQ'S‘EEE@EXE
> @ 2 9 £ & ¢ o N O
T8 v - 9 2 ¢ o 2 < 8
;uam c 2 g
Q w.§ € T ©
7] o =
kel Q %

B Training Accuracy wwz Testing Accuracy

Figure 5: RNN model training and testing accuracy

problem and the result can be either 0 or 1. Therefore, we use binary
cross-entropy as the loss function to train the model.

Figure 5 shows the training accuracy and testing accuracy of
the model training result. The training accuracy is much higher
in general since the data has been seen by the model and the geo-
metric mean reaches 0.87. The testing accuracy notably shows
the predictability of the piece of trace for each application. While
some applications show more clear pattern to be predicted, such
as bwaves, cam4, Ibm, perbench ,roms and x264, some are hard to
predict and show low testing accuracy, such as deepsjeng and mcf.
The overall testing accuracy is 0.56. Though this is not as high as the
training accuracy, the value is acceptable since it shows a similar
performance compared to some recent literature about memory
access prediction [22, 23] that use the PARSEC benchmark and [7]
that use the SPEC CPU 2006 benchmark.

4.5 RNN Augmentation Effect

We define the RNN augmentation effect as the performance im-
provement acquired from RAOP framework compared to the per-
formance of only the offset prefetcher implemented inside RAOP
prefetching module. To understand the RNN augmentation effect on
an offset prefetcher, we implement a next-line prefetcher, the sim-
plest offset prefetcher, for the last level cache. Next-line prefetcher
simply prefetches the next cache line of the current request cache
line on the same page. Since next-line prefetcher keeps the same
offset as one statically for all prefetching requests, it avoids the
dynamic performance of other advanced offset prefetchers, which
can distract the study on the effect of RNN augmentation.

We conducted experiments on exploiting LLC prefetching mod-
ule with prefetchers with following configurations:

(1) No Prefetcher: No speculation process or prefetching ac-
tion exist in the prefetching module. This is the baseline of

Pengmiao, et al.

the cache hit rate for us to demonstrate the performance

improvement by prefetching.

Next-line Prefetcher: The simplest offset prefetcher is im-

plemented. The prefetcher prefetches the next spatial cache

line in the main memory to the last level cache. This is a

baseline prefetcher for us to evaluate the augmentation effect

of the RNN model.

Predicted Only: Only the RNN predicted next physical ad-

dress is prefetched when LLC cache miss happens. This

prefetcher can show how the RNN prediction works as a

prefetcher itself without any other form of speculation.

(4) Predicted & Adjacent: The adjacent means the next line of
the RNN predicted physical cache line. In this configuration,
though the prefetcher relies solely on the RNN prediction,
it makes use of the spatial locality and prefetches also the
nearby cache line of the predicted address.

(5) Next-line and Predicted: In this prefetcher, next-line spec-
ulation is working for the current request address but not
for the RNN predicted address. This is a simple combina-
tion of the next-line prefetcher and RNN prediction, which
separates the reference of spatial speculation from temporal
speculation.

(6) RNN Augmented (RA) Next-line: This prefetcher uses the
proposed framework of RNN Augmented Offset Prefetcher
and set the offset as 1, which performs the next-line prefetch-
ing. This prefetcher takes advantage of both the spatial spec-
ulation from next-line prefetching and the temporal spec-
ulation from RNN prediction. By prefetching the relevant
next line of both the current request address and the RNN
predicted address, this approach combines the spatial and
temporal speculation.

@

~

—
SY)
=

Figure 6 illustrates the performance of the discussed prefetcher
configurations for all applications we are testing. It shows the
metrics including cache hit rate (CHR), prefetch Accuracy (ACC),
prefetch coverage (COV) and useful rate (UR). The last chart shows
the geometric mean (GM) of all applications. For the cache hit rate,
RA Next-line performs the best on 9 out of 14 applications. Those
who don’t perform (deepsjeng, leela, mcf, omnetpp and xz) will also
show low model testing accuracy on figure 5. While we use a simple
structure for the model with just one LSTM layer and one dense
layer, a more complex model that can learn better on the pattern
will provide better augmentation effect. This inference can also be
drawn from the perspective of prefetch accuracy. The prefetcher
with RNN predicting configurations (Predicted Only, Predicted &
Adjacent and RA Next-line) shows the highest prefetching accuracy
for 10 out of 14 applications. While the RNN augmentation frame-
work improves the performance from Next-line or Next-line &
Predict, this method also makes a trade-off by a reduction of useful
rate. From the GM chart, we can see the overall RNN augmentation
effect. The RA Next-line achieves the highest overall cache hit rate
at 0.506 that is 9.4% higher than the Next-line prefetcher at 0.462.
RA Next-line achieves 0.42 overall prefetch accuracy that is 3.22
times higher than the Next-line at 0.13, but it shows a reduction of
accuracy compared to the Predicted Only and Predicted & Adjacent
configurations. RA Next-line also achieves the highest prefetch
coverage at 0.217 that is 4.2 times higher than Next-line only. The

RAOP: Recurrent Neural Network Augmented Offset Prefetcher

1.0

0.8

0.6

0.4

0.2

0.0

0.6

0.4

0.2

0.0

0.5

0.4

0.3

0.2

0.1

0.0

0.8

0.6

0.4

0.2

0.0

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

bwaves camé deepsjeng imagick
0.4
0.81 0.8
0.31
0.6 | 0.6
0.4 0.21 0.4
0.2 1 0.11 0.2
0.0 0.0 0.0
CHR ACC COV UR CHR ACC coV UR CHR ACC COV UR CHR ACC COV UR
lbm leela mcf omnetpp
0.5
0.6
0.6 1 05 | 0.4
0.4
0.3
0.4 1
0.3
0.2
0.2 1 0.21
011 0.1
0.0+ 0.0 0.0
CHR ACC €OV UR CHR ACC coV UR CHR ACC COV UR CHR ACC COV UR
perlbench pop2 roms wrf
0.81 1.0 0.6
0.8 0.5
0.6
0.6 1 0.4
0.4 1 0.3
0.4
0.2
0.2 1
0.2 1 o1
0.0 0.0 0.0
CHR ACC COV UR CHR ACC COV UR CHR ACC COV UR CHR ACC COV UR
X264 xalancbmk Xz GM
0.81 0.61 0.5
0.51
0.6 0.4
0.4 1
0.3
0.4 0.3
0.2
0.2 1
0.2 1
0.11 01
0.0+ 0.0 0.0
CHR ACC €OV UR CHR ACC coV UR CHR ACC COV UR CHR ACC COV UR
W No Prefetcher HEE Next-line Il Predicted Only BN Predicted & Adjacent B Next-line & Predicted B RA Next-line

Figure 6: Metrics that show RNN augmentation effect on next-line prefetcher

compromise for the good performance on hit rate and coverage is
that more prefetching accesses caused a decrease of useful rate from
0.24 for Next-line to 0.16 for RA Next-line. But the augmentation
framework keeps the useful rate higher than the configurations
depend solely on the prediction information.

The speedup of the configurations are shown in figure 7. The
prefetcher works only on the last level cache so the speedup reveals
exactly how the only prefetching process helps. Comparing the
No Prefetcher performance, the Next-line prefetcher achieves 2.3%
speedup while the RA Next-line reaches 2.67% speedup. With the

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Pengmiao, et al.

10.0

7.5
5.0 _

2.5 | i J I I

0.01 I.J l_. - e Bl l' i I“_I I__I N

..

o > o & o & R &y & > SRR
?;\?’ (’,OQQ : \?}\ & @& \®e> & & ?’(\(’ R N _‘/}b &@ +)
Q0 () § 06\ & N
¥ Q 4
[No Prefetcher Il Predicted Only [N Next-line & Predicted
Il Next-line Il Predicted & Adjacent Il RA Next-line

Figure 7: Speedup Percentage improvement that shows RNN augmentation effect on next-line prefetcher

Cache Hit Rate by Application

0.8

05 L
|

0.0°

okm a1
1INl EL]

.|
IRl

N
&
N

N SMs . SPP I VLDP

. Wl
LIU“H

S o > SIS
& & & S

s BOP I ROAP

Figure 8: Cache hit rate of RAOP and state-of-the-art prefetchers

augmentation of the RNN model, the Next-line prefetcher acquired
a speedup improvement by 15.6%.

4.6 Comparing to State-of-the-Art Prefetchers

The proposed framework can be used to augment the performance
of any offset prefetcher. To achieve higher performance and make
comparisons to state-of-the-art prefetchers, we implemented a best-
offset (BO) prefetcher in the prefetching module as our final RAOP
framework in this paper. We compare the performance of RAOP to
following prefetchers:

(1) The Best-Offset Prefetcher (BOP) [12]: BOP is the base of
our proposal in this section. The workflow of BOP has been
introduced in Section 3.4. By comparing the performance of
BOP and RAOP, we can evaluate the augmentation effect of
the RNN model on the best-offset prefetcher.

()

©)

Spatial Memory Streaming Prefetcher (SMS) [21] : SMS
prefetcher identifies code-correlated spatial patterns and
streams at run time and predicts future accesses using these
patterns. It detects purely spatial patterns by exploring the
correlation between the request instruction address and
the access patterns spatial near the current requested ad-
dress.SMS streams the predicted cache blocks into the higher-
level cache to increase the memory level parallelism and hide
memory access latency.

The Signature Path Prefetcher (SPP) [9]: SPP exploits
a signature mechanism that stores up to four compressed
memory access deltas. It learns the memory access pattern
to correlate the signature with future deltas probabilities.

RAOP: Recurrent Neural Network Augmented Offset Prefetcher MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Prefetch Accuracy by Application

1.0

0.8

|
ok
el | i

| | ||
0.0

o X O & ° > R x4
\&36 @ é\?’o 'bq\o ®® \?/e> & (\é& Q}\o QOQ
3 &L S
&]
Il sMS s SppP s VLDP N BOP Il ROAP
Figure 9: Prefetch accuracy rate of RAOP and state-of-the-art prefetchers
Prefetch Coverage by Application
0.6
o 4 I n I || I || n I
00 o X O o+ 5 Q v e > NP
. o & o
y R &@ é\"’o ’bq\o KO@ \e\ & (359 & QOQ «06\ _\,}b 60(0 + A
3 &L S e§° @
& Q 42
I SMS s SPP N VLDP N BOP I ROAP

Figure 10: Prefetch coverage rate of RAOP and state-of-the-art prefetchers

SPP adapts its prefetching degree according to the probabil- holds 3, SMS holds 1 and SPP holds 3. While in none of these

ity of the speculative future deltas, which saves the DRAM
bandwidth and lowers the cost of the prefetching process.

(4) The Variable Length Delta Prefetcher (VLDP) [20]: It
uses an Offset Prediction Table (OPT) and multiple cascaded
Delta Prediction Tables (DPT) to achieve table-based variable-
length input speculation. The OPT can predict the offset
when the first request happens on a page. Each successive
DPT corresponds to a longer history length. With longer
history is experienced and learned, the prefetcher can make
highly accurate prefetches.

Figure 8 illustrates the performance of the proposed RAOP on the
cache hit rate compared to the state-of-the-art prefetchers. RAOP
achieves the highest cache hit in 7 out of the 14 applications and
it holds the highest number among all the prefetcher as VLDP

applications BOP achieves the highest cache hit rate, it performs at
the second-highest rank overall. Especially, for cam4, [bm and x264,
the RNN augmentation effect covered the gap between BOP and
the best performing prefetchers, SPP for cam4, and VLDP for lbm
and x264. The last part of bars shows the geometric mean of all
the applications, which clearly illustrates that the RNN augmented
best-offset prefetcher achieves the highest cache hit even though
BOP shows a lower cache hit than VLDP. RAOP acquires the overall
hit rate at 0.53 that raises the cache hit rate of BOP at 0.476 by 11.3%.

Figure 9 shows the prefetch accuracy of the prefetchers. VLDP
and RAOP are performing notably higher than the other three
prefetchers overall. While SMS achieve the highest accuracy for
several applications such as cam4, mcf, pop2 and xz, the overall value
is low due to some extremely poor performance for some other

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Pengmiao, et al.

Useful Rate by Application

I SMs . SpPP

s VLDP

s BOP I ROAP

Figure 11: Prefetch useful rate of RAOP and state-of-the-art prefetchers

Speedup Percentage Improvement by Application

151 i

101 1

|
|
o O O X & N & Q NI o] ¥ D
@ C C O +
& L LT G L SR E ©
S X & & & &
¥ Q 2
BN SMS ©mm SPP EEE VILDP EEE BOP HEE ROAP

Figure 12: Speedup percentage improvement of RAOP and state-of-the-art prefetchers

applications including bwaves and rooms. RAOP does not win the
highest accuracy and is a bit lower than VLDP. However, the RNN
augmentation effect raised the BOP accuracy from 0.064 to 0.418,
which is a 6.5 times promotion. Figure 10 shows the prefetch cover-
age performance which has a similar performance to the prefetch
accuracy. A significant augmentation effect can be observed from
this chart. RAOP has the highest coverage and boosts the coverage
of BOP at 0.024 to 0.221, which is a 9.2 times improvement.

From figure 11 we can observe the cost for the extra action
from the RNN augmentation process. BOP achieves the highest
performance since the prefetching degree is always 1, implies only
the most confident offset cache line is prefetched. SPP exploits an
adaptive degree of prefetching, which also avoids waste of use-
less prefetching access. In contrast, VLDP is a multi-level degree

prefetching approach and RAOP prefetches extra accesses in addi-
tion to the BOP. This shows the cost of our proposed approach and
is a trade-off for a higher degree of prefetching.

A comprehensive indicator for the previous metrics is the speed-
up performance as is shown in figure 12. RAOP achieves the highest
speedup percentage improvement for 10 out of 14 applications. Es-
pecially, for application [bm RAOP achieves the highest speedup at
15.4%, and for pop2 it achieves the highest augmentation from BOP
by 26.8%. RAOP achieves an overall 4.05% speedup as we can ob-
serve from the geometric mean (GM) and it shows an augmentation
effect on BOP at 12.8%.

RAOP: Recurrent Neural Network Augmented Offset Prefetcher

5 CONCLUSION

We have proposed an RNN augmented offset prefetching approach
that uses the predictive ability of RNN to produce a temporal refer-
ence address for an offset prefetcher so that the offset prefetcher
can work spatially on both the current address and the predicted
next address. RAOP framework is separated into two parts: the RNN
encapsulated in the predictor part learns from the virtual access
traces of applications and predicts the next virtual address from
the input of a sequence of deltas. The virtual address needs to be
translated and then transmitted to the prefetching module, where
an offset prefetcher is encapsulated. We present the RNN augmen-
tation effect by implementing a simple next-line prefetcher in the
prefetching module, which shows a 15.6% speedup compared to only
a next-line prefetcher. We have also compared our approach with
other state-of-the-art prefetchers by implementing a best-offset
prefetcher in our prefetching module, the result shows the highest
speedup compared to SMS, SPP, VLDP, and BOP. RAOP shows 6.5
times accuracy augmentation, 9.2 times coverage augmentation,
and 12.8% speedup augmentation effect compared to raw best-offset
prefetcher. The current implementation is for single-thread and
we will extend it to multiple threads in the future. General model,
dynamic prefetching scheme, and latency of prefetcher will also be
explored in future work.

ACKNOWLEDGMENTS

This work is supported by Google Faculty Research Award, Air
Force Research Laboratory grant number FA8750-18-S-7001, and
National Science Foundation award number 1912680.

REFERENCES

[1] Peter Braun and Heiner Litz. 2019. Understanding Memory Access Patterns
for Prefetching. In International Workshop on Al-assisted Design for Architecture
(AIDArc), held in conjunction with ISCA.

[2] Carlos Carvalho. 2002. The gap between processor and memory speeds. In Proc.
of IEEE International Conference on Control and Automation.

[3] "ChampSim". 2017. https://github.com/ChampSim/ChampSim.

[4] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[5] "SPEC CPU2017". 2017. The Standard Performance Evaluation Corporation.
https://www.spec.org/cpu2017/.

[6] Felix A Gers, Jirgen Schmidhuber, and Fred Cummins. 1999. Learning to forget:

Continual prediction with LSTM. (1999).

Milad Hashemi, Kevin Swersky, Jamie A Smith, Grant Ayers, Heiner Litz, Jichuan

Chang, Christos Kozyrakis, and Parthasarathy Ranganathan. 2018. Learning

memory access patterns. arXiv preprint arXiv:1803.02329 (2018).

[8] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal processing
magazine 29, 6 (2012), 82-97.

[9] Jinchun Kim, Seth H Pugsley, Paul V Gratz, AL Narasimha Reddy, Chris Wilkerson,

and Zeshan Chishti. 2016. Path confidence based lookahead prefetching. In 2016

49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

IEEE, 1-12.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).

[11] Shih-wei Liao, Tzu-Han Hung, Donald Nguyen, Chinyen Chou, Chiaheng Tu,

and Hucheng Zhou. 2009. Machine learning-based prefetch optimization for

data center applications. In Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis. 1-10.

Pierre Michaud. 2016. Best-offset hardware prefetching. In 2016 IEEE International

Symposium on High Performance Computer Architecture (HPCA). IEEE, 469-480.

[13] Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernock}‘/, and Sanjeev Khu-

danpur. 2010. Recurrent neural network based language model. In Eleventh
annual conference of the international speech communication association.

[7

[

[10

[12

[14

[15

[16

(17

(18]

[19

[20

[
—_

[22

[23

[24

[25

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-Li
Zhang. 2018. Deepcache: A deep learning based framework for content caching.
In Proceedings of the 2018 Workshop on Network Meets AI & ML. 48-53.

Leeor Peled, Uri Weiser, and Yoav Etsion. 2018. A neural network memory
prefetcher using semantic locality. arXiv preprint arXiv:1804.00478 (2018).

Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and
Brad Calder. 2003. Using SimPoint for accurate and efficient simulation. ACM
SIGMETRICS Performance Evaluation Review 31, 1 (2003), 318-319.

Seth HPugsley, Zeshan Chishti, Chris Wilkerson, Peng-fei Chuang, Robert L Scott,
Aamer Jaleel, Shih-Lien Lu, Kingsum Chow, and Rajeev Balasubramonian. 2014.
Sandbox prefetching: Safe run-time evaluation of aggressive prefetchers. In 2014
IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 626-637.

S Rahman, M Burtscher, Z Zong, and A Qasem. 2015. Maximizing Hardware
Prefetch Effectiveness with Machine Learning. In 2015 IEEE 17th International
Conference on High Performance Computing and Communications, 2015 IEEE 7th
International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th
International Conference on Embedded Software and Systems. 383-389.

Mehran Shakerinava, Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and
Hamid Sarbazi-Azad. 2019. Multi-Lookahead Offset Prefetching. The Third Data
Prefetching Championship (2019).

Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilkerson,
Seth H Pugsley, and Zeshan Chishti. 2015. Efficiently prefetching complex
address patterns. In 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 141-152.

Stephen Somogyi, Thomas F Wenisch, Anastassia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2006. Spatial memory streaming. ACM SIGARCH Computer
Architecture News 34, 2 (2006), 252-263.

Ajitesh Srivastava, Angelos Lazaris, Benjamin Brooks, Rajgopal Kannan, and
Viktor K Prasanna. 2019. Predicting memory accesses: the road to compact
ML-driven prefetcher. In Proceedings of the International Symposium on Memory
Systems. 461-470.

Ajitesh Srivastava, Ta-Yang Wang, Pengmiao Zhang, Cesar Augusto F De Rose,
Rajgopal Kannan, and Viktor K Prasanna. 2020. MemMAP: Compact and Gen-
eralizable Meta-LSTM Models for Memory Access Prediction. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining. Springer, 57-68.

Steven P Vander Wiel and David J Lilja. 1997. When caches aren’t enough: Data
prefetching techniques. Computer 30, 7 (1997), 23-30.

Xiangyao Yu, Christopher J Hughes, Nadathur Satish, and Srinivas Devadas.
2015. IMP: Indirect memory prefetcher. In Proceedings of the 48th International
Symposium on Microarchitecture. 178-190.

Yuan Zeng and Xiaochen Guo. 2017. Long short term memory based hardware
prefetcher: a case study. In Proceedings of the International Symposium on Memory
Systems. 305-311.

https://www.spec.org/cpu2017/

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Framework
	3.2 Recurrent Neural Network
	3.3 Compressed LSTM for Access Prediction
	3.4 Offset Prefetching Module
	3.5 RNN Augmented Offset Prefetching

	4 Experiments
	4.1 Simulation Environment
	4.2 Dataset
	4.3 Metrics
	4.4 Model Training
	4.5 RNN Augmentation Effect
	4.6 Comparing to State-of-the-Art Prefetchers

	5 Conclusion
	Acknowledgments
	References

