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ABSTRACT
Memory is a scarce resource and increasingly so in the age of

deep neural networks. Memory compression is a solution to the

memory scarcity problem. This work proposes NNW-BDI, a scheme

for compressing pretrained neural network weights. NNW-BDI is

a variation to standard Base-Delta-Immediate [13] compression

technique to make it a better fit for neural network weights, using

techniques such as quantization, downscaling, randomized base

selection, and base-delta-configuration adjustment. We evaluate

our algorithm by compressing the weights of a MNIST classification

network. Our evaluation shows that NNW-BDI reduces memory

usage by up to 85% percent without any reduction in inference

accuracy.

CCS CONCEPTS
• Computer systems organization→ Neural networks; • In-
formation systems→ Data compression.

KEYWORDS
memory, compression, neural networks

ACM Reference Format:
Andrei Bersatti, Nima Shoghi, and Hyesoon Kim. 2020. Neural Network

Weight Compression with NNW-BDI. In The International Symposium on
Memory Systems (MEMSYS 2020), September 28-October 1, 2020, Washington,
DC, USA.ACM,NewYork, NY, USA, 6 pages. https://doi.org/10.1145/3422575.

3422805

1 INTRODUCTION
The demand for memory has accelerated with the explosion of

data and of data-intensive applications and particularly with the

increasing depths of neural networks. Weights represent a signifi-

cant proportion of used memory in DNNs. Memory compression

is a proposed solution to this problem. Compressed data can be

represented with a reduced fraction of its original size, thus saving

both memory and energy.

Several solutions have been proposed to compress data on a

computer system. We observe that, among the different compres-

sion alternatives, delta-based encoding is one that does not require
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pre-processing for building a table ahead of time, as Huffman-based

schemes do, and does not require a value lookup, as frequent value

or frequent pattern representations do. Therefore, BDI has been

widely adopted in many hardware solutions [1, 8, 9, 17]. We thus

find that Base-Delta-Immediate (BDI) [13] is a good fit for our pur-

poses. However, the characteristics of weights on a neural network

are such that, by their nature, the values’ dynamic ranges are higher

than the ones that work well with existing delta-based compression

solutions. We observe that the characteristics of weight values and

the ensuing spread of data are such that existing delta-based solu-

tions fail to compress the weights. As a solution to this problem

we propose a neural network weight compression solution scheme

with a modified delta-based compression that extends the delta

values with a multiplier implemented as a scale factor bit shift.

After we ran simulations on MNIST, we observed that we can

reduce the memory footprint by up to 85%.

Our contribution will result in:

• Proposing a delta-based compression modification that is

suitable to Neural Network weight values that contain a

greater dynamic range and that incorporates a scale factor

component to accommodate greater value ranges.

• Analyzing the trade off of the scale factor versus the accuracy

of the network.

• Proposing a design that incorporates and makes use of the

delta-based compression scale factor for weights compres-

sion suitable for neural networks.

1.1 Comparison to Prior Work
There are many different ways of dealing with memory scarcity for

neural networks. Neural network pruning compresses a network

by removing parameters. Most pruning methods involve computa-

tionally expensive compression steps [2], making them unfavorable

in many use cases. Compression methods like GIST [10] and JPEG-

ACT [4] are meant for training and function on convolutional neural

networks only. Our method does not decrease the depth of the net-

work, is not computationally hard to execute, and was designed to

work on all kinds of neural network inference tasks.

2 BACKGROUND
This paper presents a solution that is based on two different com-

pression methods: BDI, which is lossless compression, and Quanti-

zation, which is lossy compression.

2.1 Base-Delta-Immediate
Delta-based encoding is based on the observation that values that

are spatially close in memory tend to be close in value to each other.

In other words, it takes advantage of what its authors call ’low

dynamic range’. Base-Delta-Immediate Compression [13], proposed

https://doi.org/10.1145/3422575.3422805
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by Pekhimenko et. al., is a computationally simple compression

method that works by establishing a base value for the first seen

value on the cache line, and only the delta, or the difference from the

base value, for all the other values on the cache line. The authors

observed, through experimentation, that using two base values

provided the optimum compression for standard BDI’s compression

of caches. They figured out that, since determining the optimum

base value is expensive, and since a lot of values are narrow values

close to 0, that the best bases to use were, for a fixed delta size: 1)

the value 0, which requires no calculation (the immediate value),

and 2) the first value in the message which is not compressible by

base 0. The decompression process for any value involves 1) finding

the base (or immediate) used to encode that value, 2) finding the

memory offset of that value’s delta, and 3) adding the base and the

delta at the offset.

2.2 Quantization
Sometimes information loss can be tolerable. Quantization involves

a reduction in the number of bits to represent numbers by approx-

imating values. This is usually done by converting floating point

numbers into fixed-range integers (e.g., 32 bit integer). There are

many different types of quantization, including uniform quanti-

zation, JPEG quantization, and logarithmic quantization. Uniform

quantization divides every element by a scale factor and truncates

the results to the nearest integers. JPEG quantization [16] happens

after the application of the discrete cosine transform and is very

similar to uniform transformation, but the scale factor is picked

from the JPEG quantization matrix entry corresponding to value

being quantized. Finally, logarithmic quantization [5, 6, 14] applies

uniform quantization on the base-2 logarithm of the input. At the

extreme, Courbariaux et.al [3] proposed a form of quantization,

BinaryConnect, that quantizes weights to one bit: 1’s and 0’s.

3 NEURAL NETWORKWEIGHT - BDI
(NNW-BDI)

We next discuss the implementation of our proposed solution by

first presenting an analysis, then a study of the characteristics of

neural networkweights as constrained by the result of such analysis,

and finally describing the high-level design.

3.1 Limitations of Using BDI for Neural
Network Weight Compression

To conserve energy, the compression technique chosen for neural

network weights during inference should minimize the amount of

pre-processing required and its use of lookup tables. Base-Delta-

Immediate is a solution that addresses these concerns. BDI exploits

the property of low dynamic range by taking advantage of the obser-

vation that the differences between values tend to be smaller than

the values themselves. However, standard BDI’s limitations when

implemented as originally designed are: 1) BDI is not well-suited for

compressing floating point values, and 2) it is not optimally suitable

for neural network weight values since weight values tend to have

a greater dynamic range than suitable for standard, unmodified

BDI.

FC 0
 (784, 128)

FC 1
 (128, 64)

FC 2
 (64, 10)

Figure 1: Our evaluation neural network’s architecture con-
sists of a 784 neuron fully connected input layer, a 128 neu-
ron fully connected hidden layer, and a 64 neuron fully con-
nected output layer.
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Figure 2: The weight distribution of each layer of our neural
network (see fig. 1 for the architecture of this network).

3.2 Characteristics of Neural Network Weights
Neural network weights are usually represented as continuous

arrays of 32-bit floating point values, usually represented as tensors.

During training, these weights are initialized randomly and get

optimized. Once trained, different layers and network architectures

exhibit different weight distributions. Figure 2 shows histograms of

weight distributions for a basic MNIST classifier (fig. 1 shows the

network’s architecture). Studying the weight distribution results in

two important takeaways:

(1) The 32-bit floating point granularity of these weights gives

them very high dynamic range when used at the highest

precision.

(2) Layer weights exhibit unimodal or bimodal weight distribu-

tions. Therefore, if we can increase the range of values that

deltas can cover without significant accuracy loss, we can

use a simple method like BDI to compress these weights.

3.3 High-Level Design
We now describe the high-level design of our neural network com-

pression solution in this subsection. This work is built on top of

BDI[13]. Standard BDI is modified to address some of its inher-

ent problems dealing with neural network weight distributions.

We focus on the relevant changes to make the technique suitable

for compression on neural network weights. As we have analyzed

in the previous section, the main challenge with this task is the

high dynamic range of the weight distributions. To tackle this, we

employ the following techniques:

• We make the compression lossy by quantizing the layer

weights from 32 bit floating point values to 32 bit integers and
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Figure 3: Base configuration usages when compressing our
neural network with different scale factors.

applying a constant scale factor that decreases the precision
of the quantized value.

• We use a randomized base selection algorithm, increasing

the chances of picking more optimal bases.

• We increase the cache line size and number of bases and
adjust the base configurations.

3.3.1 Quantization & Scale Factor. BDI was originally intended

for cache line compression and thus has a strict requirement of

being lossless. Machine learning inference workloads, however,

do not have the same precision requirements, and inference has

been shown to work with as low as 3, 2, or 1 bits [3, 15]. We in-

troduce a quantization and truncation mechanism for storing a

lower-precision version of the network’s weights. We first use a

variant of uniform quantization to quantize the network’s weights

into 32 bit integer. Our quantization scheme uses stochastic round-

ing [7] in order to remediate the reduced numerical precision in the

network introduced by the quantization and scaling of values. We

then reduce the precision of the quantized values by applying the

scale factor hyperparameter. This hyperparameter is constant for

the network (stored as metadata) and does not incur any additional

memory overhead. The scale factor is applied by use of a shift unit:

Wquantized = stochastic_round

(
W

|max(W )|
· 231

)
Wscaled =Wquantized >> scale_f actor

NNW-BDI is then executed onWscaled . By doing this, we increase

the dynamic range of our quantized weights. When we want to

decompress, we undo the downscaling operation by left shifting the

decompressed values by the scale factor. This operation truncates

the lower-bit information (the least significant bits) of our quantized

values while maintaining the most significant bits’ information.

3.3.2 Cache Line Size, Base Count, & Base Configurations. Stan-
dard BDI works on 32 byte cache lines, but we are working with

much larger tensors (e.g., a basic 64x32x3x3 2D convolution layer

consists of 18432 unique 32-bit floating point weights). When work-

ing with memory compression, lower cache line sizes lead to higher

fragmentation, increasing the compression overhead. Additionally,

when working with more uniform distributions that have a com-

mon base, lower cache line sizes lead to redundant storage of similar

bases for contiguous cache lines. Therefore, we increase the cache

line size. We found 1024 bytes to be a good size for simple inference

workloads.

This increased cache line size, when coupled with the high dy-

namic range of our data, makes compression with 1 base and 1

immediate (the immediate being ’0’ as outlined in BDI [13]) nearly

impossible. To compensate for this, we increase the base count to

allow for base counts up to 24 (see average base counts in fig. 5).

Increasing the base count increases the size of the metadata needed

for each element. To keep this size increase manageable, we only

consider base count increases in steps of 4 (e.g., 4, 8, 12, ...). For

any element, the base and delta memory positions are calculated as

shown below (base_count, base_size, and delta_size are determined

per cache line by the current encoding and are known statically):

base = cache_line
+ base_index * base_size

delta = cache_line
+ base_count * base_size
+ delta_index * delta_size

BDI always tries the same static set of configurations (e.g., base8-

delta4, base8-delta4, etc). This method does not work for our data.

To deal with the high dynamic range of our data, we increase the

granularity of base sizes and delta sizes (e.g., allowing for 16 bit

base size and 10 bit delta size). As our scale factor increases, we

also adjust the configurations used. For example, when using a

scale factor of 24 bits, a configuration like base32-delta24 would

never be used and wastes memory (as we have to account for it

in metadata if it is being considered). Our analysis suggests that

at every scale factor, only a few configurations are actually being

used. Figure 3 shows examples of the base configurations and base

counts for different scale factors. As a result, NNW-BDI is designed

to use different configurations at different scale factors to minimize

the total number of configurations. For example, if the scale fac-

tor is 18, NNW-BDI only uses the base16-delta10, base16-delta8,

base24-delta8, and base24-delta10 configurations. This process mas-

sively decreases the metadata and computation overhead while

maintaining the high granularity.

3.3.3 Randomized Base Selection. BDI uses a greedy base selection
mechanism. When a value cannot be compressed by the existing

bases, the algorithm picks that value as the next base. While this

maximizes the simplicity and efficiency of BDI, it also leads to

inefficient base selection for unstructured data layouts. NNW-BDI

uses a randomized base selection algorithm instead. This algorithm

works as follows:

function FindNewBase(cache_line , uncompressed_size)
i ← 0

for all value ∈ cache_line do
if value is not compressed then

if rand(0, 1) <= i
|uncompressed_size | then

return value
else

i ← i + 1
end if

end if
end for

end function
The base selection efficiencies of compressing our neural net-

work with and without randomized base selection are shown on



MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Bersatti, Shoghi, and Kim

0 50 100 150 200
Number of Deltas Using Base

0

100

200

300

400

500

600

700

800

Fr
eq

ue
nc

y

Base Usage Efficiency
Randomized Greedy Base Selection
Greedy Base Selection

Figure 4: The number of deltas using each base after com-
pressing our neural network’s weights using a scale factor
of 27 (note: other bases exhibit similar behaviors). Random-
ized base selection picksmore efficient bases, decreasing the
number of bases that do not have many deltas associated
with them.

fig. 4. The run with randomized base selection exhibits a much

more efficient base selection, having much less inefficient bases

(i.e., those with a few deltas).

3.4 Algorithm Summary
In this section, we explain the entire BDI-NNW algorithm through

a worked example. For this example, our scale factor is 18 bits, and

the configurations supported are Base14-Delta14, Base14-Delta8,

and Base24-Delta10. The number of bases supported is 20.

3.4.1 Compression. Compression takes a 1024-byte contiguous

32-bit floating point chunk of memory as input. This input is then

quantized to 32 bit integers. The quantized 32 bit integers are then

right shifted by our scale factor, 24 bits, resulting in a 12 bit represen-

tation. The cache line is then compressed with all 3 configurations

in parallel, and the configuration that produces the best compres-

sion ratio is selected. This compression is done by picking a base

using the randomized base selection algorithm and calculating the

deltas for the selected base. This operation is repeated until the

entire cache line is compressed or the number of bases reaches 20.

For every element, the configuration used and the index are stored

in the tag.

3.4.2 Decompression. To decompress an element of the cache line,

we extract the configuration used and the base index from the

element’s tag. The base and delta are retrieved using the mechanism

in section 3.3.2. The quantized output value is calculated by adding

the base and delta. We can convert this back to a floating point

number by undoing the quantization process.

3.5 Hardware & Software Implementation
While the current demonstration of NNW-BDI is carried out in soft-

ware, one of the biggest appeals of NNW-BDI is its highly parallel

nature, making it very ripe for implementation in hardware. The de-

compression process can be easily parallelized. The decompression

of any memory position can be done independently and in parallel

to any other memory position using the mechanism described in

section 3.3.2.

Compression is also highly parallelizable. When compressing an

arbitrary sized region of memory (e.g., a PyTorch tensor represent-

ing the quantized weights of a layer), the memory gets chunked

into constant-sized batches (e.g., 1024 bytes in our evaluation). Each

batch is then compressed independently and in parallel. When com-

pressing a single batch, we attempt to compress the batch with

each configuration (similar to BDI); this process can also be done in

parallel (i.e., every unique configuration processes the batch inde-

pendently and the best compression is used). The only sequential

component of compression is base selection, as the necessity of a

new base depends on the effectiveness of previous bases. For this

reason, limiting the number of bases leads to higher performance.

Also, the compression step only happens once during inference,

and thus sacrificing some performance is acceptable if it results in

higher compression ratios.

4 EVALUATION
To get proper accuracy and compression ratio results, we have

created a neural network inference pipeline that simulates the com-

pression/decompression process. For inference, we compress and

subsequently decompress the pretrained model into a fully fledged

PyTorch [11] model. We then perform inference using these decom-

pressed weights. This allows us to measure the test accuracy loss

from the lossy quantization and scale factor step. During this pro-

cess, we measure inference accuracy, compression ratio com-

pared to the uncompressed 32 bit floating point weights, average

compression time per cache line, and average base count per
cache line. Compression ratio is calculated without metadata over-

head, but NNW-BDI attempts to minimize the metadata size (see

section 3.3.2 for more details). The compression time is the average

time it takes for our software implementation to compress a single

block. Because of the unreliability of software performance timing,

this metric is only used relative to other data points metric (e.g.,

Greedy Base Selection vs. Random Base Selection).

All experiments are ran on a pretrained MNIST classification

network. The architecture of this network is shown in figure fig. 1.

This network architecture is used because of its simplicity, giving

us the ability to reason about and visualize the effect of our lossy

compression on the network’s performance. During our experi-

ment, we vary the scale factor, running our compression algorithm

under different configurations, scale factors, and base selection

mechanisms. For the baseline, we perform inference with the lossy

quantization and scale factor application only, without using any

base-delta encoding. This allows us to focus the effectiveness of the

base-delta compression by discounting the effect of downscaling

(i.e., lossy compression due to quantization). Our results are shown

in fig. 5.

4.1 Analysis
4.1.1 Benefits Over Quantization. NNW-BDI employs quantiza-

tion, described in section 3.3.1, as part of its implementation in
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Figure 5: Inference accuracy, compression ratio (compared to uncompressed 32 bit value), compression time (in seconds), and
average number of bases when compressing and running our network under greedy NNW-BDI, randomized NNW-BDI, and
quantization. The X-axis represents the scale factor and is shared for all graphs.

order to make floating point weight values representable by integer

values which are better compressible under BDI. fig. 5b shows that

for most scale factors we achieve higher compression ratios than

quantization alone without any accuracy loss. However, once our

scale factor reaches very high values (> 28), quantization becomes

the clear choice, exhibiting higher accuracy and higher compres-

sion ratio. On average, the NNW-BDI compression ratio was 37%

higher than the compression ratio from quantization alone, with the

NNW-BDI compression ratio being 3.32 higher than the quantiza-

tion compression ratio when the scale factor is 24. As the inference

tasks become more difficult, we suspect that the benefit of our

scheme will only increase in terms of memory saved and accuracy

when compared to quantization alone.

4.1.2 Performance Impact of Different Scale Factors. The compres-

sion time is used to get an understanding of the relative performance

of the algorithm as we change the scale factor. With this in mind,

it is evident that increasing the number of bases increases the total

compression time. This is primarily due to the heavily sequential

nature of the base selection mechanism (see section 3.5 for more

details).

4.1.3 Base-Selection Algorithm. Finally, the data shows that while
our randomized base-selection algorithm does not change accu-

racy or compression ratio, it decreases the average base count. This

validates our theory that randomized base selection leads to more

optimal bases. This is ideal because lower base counts means less

computation during decompression. This improvement, however,

comes at a clear trade-off, as the randomized base selection algo-

rithm is, on average, 28% slower in compression. However, the

decompression time, which is the critical path, does not change.

5 CONCLUSION
This study introduced NNW-BDI, a modified delta-based compres-

sion algorithm that is well-suited for compressing neural network

weights. We studied the effectiveness of compressing weights of

deep neural networks using the Base-Delta-Immediate algorithm.

We found that these weights have a very high dynamic range at

32-bit floating point precision, making standard BDI impractical.

We tackled these challenges by introducing NNW-BDI, a modified

delta-based compression algorithm that is well-suited for compress-

ing neural network weights. Our solution uses techniques such as

quantization, downscaling, and randomized base selection, adjusts

the cache-line size, number of bases, and base configurations for

optimal compression rate and minimal accuracy loss. We evaluated

this model with different configurations and compared it to using

quantization only. Our results show that NNW-BDI has the poten-

tial of achieving a higher compression ratio than quantization only,

while maintaining a high level of test accuracy. This work, similarly

to standard BDI, can be adapted to work with memory via Linearly

Compressed Pages[12].
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