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ABSTRACT
This paper presents a simple design approach that can be easily in-

tegrated into existing mature log-structured key-value (KV) stores

(e.g., RocksDB) to mitigate the impact of background compaction.

Reducing compaction-induced performance degradation has been

widely studied, and most prior work focused on developing in-

novative data structures and algorithms to directly reduce the

compaction-induced write amplification. Nevertheless, it is non-

trivial or even practically infeasible for existing mature KV stores to

adopt these new data structures and algorithms. Meanwhile, in the

presence of well-established ecosystem and community around ex-

isting ones, it is a challenge to build and grow a new log-structured

KV store with meaningful real-world adoption. Therefore, this work

focuses on mitigating the impact of compaction while keeping the

data structures and algorithms in existing KV stores completely

intact. Instead of directly reducing the write amplification, this

work applies the simple memory/storage tiering concept to mit-

igate the impact of compaction at the cost of larger write-ahead

log (WAL) and host memory capacity usage. This paper presents

design approaches to effectively reduce the WAL size and mem-

ory cost. We integrated this solution into RocksDB by only adding

about 1,200 lines of code, without touching its core data structure

and algorithm. Using 100GB and 1TB datasets as test vehicles, we

carried out experiments with db_bench and YCSB workloads, and

the results show that the modified RocksDB can improve the ops/s

by up to 100.7% and meanwhile reduce the 99-percentile tail latency

by up to 82%.
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1 INTRODUCTION
With unique advantages on handling write-intensive data, key-

value (KV) store built upon log-structured merge (LSM) tree [25]

has been heavily studied over recent years [23]. In addition to

proprietary implementations (e.g., Ressi in Google’s Spanner [3]),

several open-source log-structured KV stores (e.g., RocksDB [30]

and Cassandra [1]) have become increasingly mature with an ever-

growing feature list and are being widely deployed. Compaction

is an essential (and arguably the most important) operation in

log-structured KV stores. Compaction-induced write amplification

causes two issues: (1) interference with foreground operations (e.g.,

GET and INSERT), leading to KV store performance degradation; (2)

impact on the solid-state drive (SSD) lifetime, especially SSDs built

with low-cost 3D QLC NAND flash memory. Aiming to mitigate

these two issues, most prior work [4, 11, 15, 22, 28, 29, 32, 34, 36]

focused on directly reducing the write amplification through in-

novations on the KV store data structures and algorithms. Given

the well-established ecosystem and community around existing

ones such as RocksDB, integrating these new design techniques

into those KV stores is much more preferred and practically valu-

able than building new log-structured KV stores from the ground.

Nevertheless, it can be difficult or even impractical for existing KV

stores to change their core implementations in order to incorporate

these new data structures and algorithms.

This paper advocates an alternative approach to mitigate the

impact of write amplification, which can be easily integrated into

existing log-structured KV stores. In contrast to prior work, we do

not aim at reducing the write amplification at all, and hence obviate

any changes to the core data structures and algorithms of existing

KV stores. The basic idea is motivated by a simple observation: In

log-structured KV stores with leveled compaction, different levels

occupy exponentially different storage capacity, but account for

similar write traffic volumes. Let 𝐶𝑖 denote the runtime size of

the level-𝑖 (or 𝐿𝑖 ) and 𝛼 denote the level multiplier (typical value is
around 10), KV stores aim to keep𝐶𝑖+1 ≈ 𝛼 ·𝐶𝑖 through compaction.

As a result, the bottom 1∼2 levels completely dominate the storage

capacity of the entire KV store. Intuitively, if we move a few top

levels (e.g., 𝐿0 ∼ 𝐿2) from SSD into host DRAM and meanwhile

expand the write-ahead log (WAL) to ensure the crash recovery

of those in-memory levels, we can substantially reduce the write

traffic over SSD by occupying a relatively small amount of host

DRAM. This can be considered asWAL-assisted tiering of KV stores

across memory and SSDs. Although this simple approach does not

reduce the CPU overhead of compaction, it can reduce the IO traffic
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over SSD during compaction, leading to less compaction-induced

KV store performance variation and longer SSD lifetime.

WAL-assisted tiering can be easily integrated into existing KV

stores without impacting their core data structures and algorithms.

Nevertheless, its practical realization comes with overhead in terms

of larger WAL on SSD and higher host memory usage. In current

practice, since WAL is only responsible for protecting a small in-

memory write buffer (e.g., the memtable in RocksDB), its size is

simply upper-bounded by the in-memory buffer size. However, in

the case of WAL-assisted tiering, the WAL size can be significantly

larger than the in-memory tier size. This is because the order in

which KV pairs are appended into WAL can be completely different

from the order in which KV pairs migrate from the in-memory tier

to the on-SSD tier through compaction. To address this issue, this

paper presents a method that can tightly control the WAL size. Its

basic idea is to trim (or prune) the KV pairs, which no longer reside

in the in-memory tier, from the sealed WAL segments. As a KV

store continues its background compaction operations, more and

more KV pairs in sealed WAL segments will be either dropped or

migrated from the in-memory tier to the on-SSD tier. Those KV

pairs can be safely trimmed from the sealed WAL segment without

impacting the KV store durability. To ensure its practical feasibility,

we developed techniques that can identify those KV pairs without

noticeably interfering the normal KV store operations. In addition,

very intuitively we can use background data lossless compression

to further reduce the storage space occupied by WAL at modest

CPU usage. The above two strategies (i.e., KV pair trim and WAL

compression) are completely orthogonal to each other and can be

combined together to minimize the on-SSD WAL size.

The second problem is the high memory usage. By increasing

the number of in-memory levels, the performance improvement is

more significant at the penalty of higher memory cost. The upper

limit of the in-memory tier size is around 10% of the dataset size

(given typical value of 10 for level multiplier 𝛼 ) by moving all levels

but last level from SSD to DRAM. In addition to adjusting the num-

ber of in-memory levels to trade-off performance improvement vs.

cost, we further present a strategy to reduce the memory cost. Al-

though the long-waited non-volatile memory (NVM) technologies

(e.g., 3DXP and ReRAM) may reduce the memory cost overhead

(and even obviate the use of WAL), there are still substantial uncer-

tainties about NVM technologies, e.g., real-world adoption in the

foreseeable future, technology scalability and cost, and achievable

bandwidth and cycling endurance. Therefore, this work does not

conveniently assume the availability of high-bandwidth NVM mod-

ules on the host, and only considers the DRAM-SSD tiering. Hynix

recently demonstrated the practical feasibility of reducing DRAM

cost by giving up its true byte-accessibility [20]. The basic idea is to

reduce DRAM manufacturing cost by sacrificing the raw memory

reliability, and meanwhile rely on stronger ECC (error correction

code) with long codeword length (e.g., hundreds of bytes) to ensure

the data integrity. We call such DRAM as block-protected DRAM. In

fact, to reduce the memory cost, each Intel 3DXP-based Optane DC

Persistent Memory DIMM internally protects 256-byte user data per

ECC codeword [16]. It is plausible that, when using block-protected

DRAM other than today’s byte-accessible DRAM as the baseline,

the proclaimed bit cost advantage of 3DXP may largely diminish.

With coarse-grained access pattern (e.g., 4KB or 8KB per access) for

read, flush and compaction operations, the in-memory tier of the

proposedWAL-assisted KV store tiering can naturally fit to the low-

cost block-protected DRAM. Therefore, we propose to reduce the

memory cost overhead by deploying a DRAM-only heterogeneous

memory system that consists of convenient byte-accessible DRAM

and low-cost block-protected DRAM. We accordingly studied its

impact on the KV store performance by emulating the longer access

latency of block-protected DRAM.

As a case study, we modified RocksDB to support the proposed

WAL-assisted tiering by adding only about 1,200 lines of code and

meanwhile keeping all the existing core algorithms and data struc-

tures intact. We ran a variety of workloads on RocksDB with small

(100GB) and large (1TB) datasets, and the results well demonstrate

the effectiveness of the proposed WAL-assisted tiering approach.

For example, when running a write-only workload on a 1TB dataset,

by allocating only 14GB block-protected DRAM for in-memory tier

(with three in-memory levels), we can improve the RocksDB ops/s

by 49.8%, and meanwhile keep the WAL size below 22GB and re-

duce the SSD write traffic volume by 53.2%. In summary, this paper

makes the following main contributions:

(1) It for the first time carries out a thorough study on applying

the simple WAL-assisted tiering concept to lessen the impact

of write amplification without changing the core algorithms

and data structures of existing log-structured KV stores;

(2) It presents techniques that can tightly control the WAL size

and reduce the host memory cost in order to facilitate the

practical implementation of WAL-assisted KV store tiering;

(3) It demonstrates the simplicity and practical feasibility of

WAL-assisted tiering in the context of RocksDB, and the

experimental results well confirm its effectiveness.

(4) It demonstrates the effectiveness of the WAL-assisted tiering

on today’s byte-addressable DRAM and the envisioned het-

erogeneous DRAM with emulated block-protected DRAM.

2 BACKGROUND AND MOTIVATION
Log-structured KV store is fundamentally subject to a trade-off

among write amplification, read amplification, and storage space

amplification [2]. One could explore such a trade-off space by em-

ploying different compaction strategies and/or adjusting the config-

uration of the chosen compaction strategy. As the default option in

RocksDB, the leveled compaction strategy trades higher write am-

plification for lower storage space amplification (hence less storage

cost). Nevertheless, a higher write amplification directly results in

a higher CPU and IO overhead during compaction, which can no-

ticeably degrade the KV store performance. Therefore, most prior

research (e.g., see [4, 28, 34, 36]) focused on reducing the write

amplification for log-structured KV stores with leveled compaction.

In this work, we also focus on the use of leveled compaction.

KV stores with leveled compaction organize all the KV pairs

into multiple levels, denoted as 𝐿0, 𝐿1, · · · , 𝐿𝑛 . Each level further

organizes KV pairs into multiple files. All files in each level, except

𝐿0, have non-overlapping key ranges. Let 𝐶𝑖 denote the target size

of the level 𝐿𝑖 , we have 𝐶𝑖+1 = 𝛼 ·𝐶𝑖 for 𝑖 ≥ 1, where 𝛼 is the level

amplifier (e.g., around 10). KV stores aim to keep the runtime size

of each level reasonably close to the target size, which is realized

through background compaction. As a result, the per-level storage
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capacity exponentially increases with the level, and the bottom 1∼2
levels dominate the entire data storage usage. Meanwhile, as the

compaction process pushes down KV pairs across the LSM tree, all

the levels tend to experience similar write amplification and hence

similar data read/write IO traffic.

For example, we created a 1TB KV store using RocksDB as fol-

lows: There are total 1 billion random KV pairs with each KV pair

size of 1KB. There are total 6 levels with the size of 214MB, 74MB,

885MB, 8.4GB, 83.7GB, 583.7GB, respectively. We measured the per-

level data write volume by running a write-only workload on this

1TB dataset. The results show that the ratio of data write volume

among all the 6 levels is 1 : 0.9 : 2.9 : 3.8 : 3.9 : 2.6. The above results

clearly demonstrate that, although the per-level storage capacity

increases exponentially (starting from level 𝐿1), the per-level data

write volume is comparable (especially among the bottom 4 levels).

3 PROPOSED DESIGN SOLUTION
3.1 Basic Idea
The discussion and results presented above in Section 2 directly

motivate the basic idea underlying this work: WAL-assisted data

tiering across host memory and SSD. Given a log-structured KV

store with total 𝑛 + 1 levels (i.e., 𝐿0 ∼ 𝐿𝑛), we keep the top𝑚 + 1

levels 𝐿0 ∼ 𝐿𝑚 (where𝑚 < 𝑛) in the host memory, and meanwhile

expand the role of WAL to ensure the durability of the (𝑚 + 1)-level
in-memory tier. Fig. 1 further illustrates and compares the current

practice (where all the levels reside in SSD) and WAL-assisted tier-

ing. As illustrated in Fig. 1(b), WAL-assisted tiering leverages the

host memory bandwidth to absorb a large portion of compaction-

induced data read/write traffic, leaving much less IO traffic over

SSD. Therefore, this simple design concept can reduce the KV store

performance variation caused by the interference between the IOs

of foreground operations and background compaction. Moreover,

by reducing the amount of data being physically written to SSD, we

can deploy KV stores on SSDs built with low-cost 3D QLC NAND

flash memory that suffers from poor program/erase cycling en-

durance. Contrary to most prior work, this approach does not aim

to reduce the write amplification at all, hence does not demand

any changes to the core data structures and algorithms of existing

KV stores. As a result, it can be much more easily integrated into

existing matured log-structured KV stores.

Apparently, in return for its easy integration into existing KV

stores, this approach incurs higher host memory usage and larger

WAL size. Recall that 𝐶𝑖 denotes the target size of the level 𝐿𝑖 , and

let𝑤𝑖 denote the average data write volume endured by the level

𝐿𝑖 . By moving the top𝑚 + 1 levels (out of total 𝑛 + 1 levels) into the

in-memory tier, we consume on average

∑𝑚
𝑖=0𝐶𝑖 amount of host

memory to reduce the SSD write IO traffic by

𝛾 (𝑚) =
∑𝑚
𝑖=0𝑤𝑖∑𝑛
𝑗=0𝑤 𝑗

. (1)

As discussed above, the value of 𝐶𝑖 exponentially increases with

𝑖 , while the value of 𝑤𝑖 tends not to largely vary across different

levels. Therefore, by keeping a few top levels in memory, we can

substantially reduce the SSD IO traffic at the cost of modest amount

of host memory, which can be clearly observed from the example

above in Section 2.
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Memory
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Figure 1: Illustration of (a) current practice, and (b) WAL-
assisted tiering.

Moreover, WAL-assisted tiering could result in a very large on-

SSD WAL. The average WAL size is lower bounded by

∑𝑚
𝑖=0𝐶𝑖 ,

which however could be a very loose lower bound. WAL consists of

multiple sealed segments (or files) and one open segment on SSD.

KV stores append KV pairs into the open segment, and once its size

reaches a pre-defined threshold (e.g., 64MB), the open segment will

be sealed and a new open segment will be created. KV stores assign

each inserted/updated KV pair a unique sequence number (SN) that
monotonically increments (i.e., KV pairs logged inWAL are ordered

with SN). Let 𝑁𝑚𝑖𝑛 denote the SN of the oldest KV pair in the in-

memory tier. Clearly, we cannot delete one WAL segment unless

its newest KV pair is older than any in-memory KV pairs (i.e., the

biggest SN within the segment is smaller than 𝑁𝑚𝑖𝑛). If the value

of 𝑁𝑚𝑖𝑛 remains unchanged over a long time, it will cause long-

standing accumulation of sealed WAL segments, leading to a total

WAL size much larger than

∑𝑚
𝑖=0𝐶𝑖 .

The above discussions suggest that the practical feasibility of

WAL-assisted tiering depends on (1) how tightly we can control

the WAL size, and (2) how much we can reduce the memory cost

overhead. The rest of this section presents strategies for addressing

these two issues.

3.2 Controlling the WAL Size
Intuitively, we could reduce the WAL size by applying the oldest-
first compaction scheduling to increase the value of 𝑁𝑚𝑖𝑛 (i.e., the

SN of the oldest in-memory KV pair). In order to keep the LSM

tree in shape (i.e., make the size of each level close to its target

value), compaction scheduling uses the total size of each level to

determine the level from which a file will be chosen for compaction.

Let 𝐶𝑖 and 𝐶𝑖 denote the target and runtime size of the level 𝐿𝑖 .

The relative level size deviation, defined as
𝐶𝑖−𝐶𝑖

𝐶𝑖
, can be used as a

criterion for selecting the level. Let D denote the set consisting of

all the files in the selected level. Compaction scheduling may use
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different criteria to choose a file 𝑑𝑖 ∈ D for compaction. Let 𝑁 (𝑑𝑖 )
denote the SN of the oldest KV pair in the file 𝑑𝑖 . If the compaction

process chooses the file 𝑑𝑖 so that

𝑁 (𝑑𝑖 ) ≤ 𝑁 (𝑑 𝑗 ), ∀𝑑 𝑗 ∈ D \ {𝑑𝑖 }, (2)

it is called oldest-first compaction scheduling, which evidently

can increase the value of 𝑁𝑚𝑖𝑛 . Unfortunately, oldest-first com-

paction scheduling may suffer from a higher write amplification

overhead, compared with other compaction scheduling algorithms

(e.g., the default compaction scheduling in RocksDB that chooses

the file based on the key overlapping ranges). Moreover, different

workloads may favor different compaction scheduling algorithms.

Therefore, KV stores typically support several different compaction

scheduling algorithms, from which users can choose based on the

runtime workload characteristics. Enforcing the oldest-first com-

paction scheduling may not be acceptable in practice.

This work focuses on solutions that are independent from com-

paction scheduling algorithms. Hence, users can freely choose the

compaction scheduling algorithm solely based on the runtime work-

load characteristics. The remainder of this subsection presents the

basic idea and implementation of our proposed solution.

3.2.1 Basic Idea. To reduce the WAL size independently from com-

paction scheduling, one option is to apply background data compres-
sion to sealedWAL segments. In current practice, databases typically

do not compress WAL because of its small size. Compressing WAL

becomes much more desirable in the context of WAL-assisted tier-

ing. Other than on-the-fly compressing the records being appended

to WAL, we should compress each sealed WAL segment entirely

in the background in order to (1) obviate latency penalty on the

foreground KV store write commitment, and (2) improve the WAL

compression ratio because of the strong dependency of compression

ratio on the compression chunk size. After one WAL segment has

become full and subsequently been sealed, it can be compressed in

the background to generate a compressed WAL segment. Although

background WAL segment compression could noticeably reduce

the on-SSDWAL size (e.g., by 2×), itself cannot fundamentally solve

the problem, and WAL may still grow to a very large size, even

almost unboundedly.

To more tightly control theWAL size, we propose a method moti-

vated by the following observation: LetK𝑖 denote the set consisting
of all the KV pairs in one sealed WAL segment, and let M𝑖 ⊂ K𝑖
denote the set consisting of all the KV pairs that still reside in the

in-memory tier. When the segment is just sealed, we have that

|M𝑖 | ≈ |K𝑖 | (i.e., almost all the KV pairs remain in memory). Over

the time, as the compaction process continues to migrate KV pairs

from the in-memory tier to the on-SSD tier, |M𝑖 | gradually reduces.

However, as long as M𝑖 ≠ ∅, we cannot delete this sealed WAL

segment from SSD. Suppose there are total 𝑔 sealed WAL segments

that cannot be deleted, we define the WAL amplification factor as

𝜆 =

∑𝑔

1
|K𝑖 |∑𝑔

1
|M𝑖 |

, (3)

where

∑𝑔

1
|K𝑖 | is the total size of sealedWAL segments, and

∑𝑔

1
|M𝑖 |

is the total size of all the KV pairs residing in the in-memory tier.

In essence, the WAL amplification factor 𝜆 ≥ 1 represents the ratio

between the on-SSD WAL size and in-memory tier size. Regardless

of which compaction algorithm is being used, there could be a large

number of sealedWAL segments for whichM𝑖 ≠ and |M𝑖 | << |K𝑖 |,
leading to a large WAL amplification factor 𝜆.

The above observation suggests that, in order to tightly control

the WAL size, we have to avoid the occurrence of |M𝑖 | << |K𝑖 | on
too many WAL segments. To achieve this objective, we propose a

method, called background KV trim. Given one WAL segment, we

can re-write this segment by trimming all the KV pairs that do not

belong to theM𝑖 (i.e., prune all the KV pairs that have already been

either dropped or migrated into the on-SSD tier). After a segment

has been re-written to SSD through background KV trim, its original

larger-size version can be safely deleted from SSD. Once the WAL

amplification factor 𝜆 grows beyond a pre-defined threshold 𝜆𝑡 >

1, we invoke the background KV trim process by starting from

the segment that has the smallest |M𝑖 | : |K𝑖 | ratio. This process
continues until 𝜆 drops below another threshold 𝜆𝑠 < 𝜆𝑡 . This

method ensures that the WAL size stays upper bounded by around

𝜆𝑡× of the in-memory tier size. For its practical implementation, one

major issue is how to keep track of the setM𝑖 for eachWAL segment.

One option is to periodically scan the entire in-memory tier to

construct all theM𝑖 ’s, which however could interfere with normal

foreground operations and hence impact the KV store performance.

Next we will present a strategy that can more effectively implement

the proposed background KV trim without interfering the normal

foreground operations.

3.2.2 Implementation Strategy. Within each sealed WAL segment,

let 𝑆𝑁 (𝑠)
denote the SN of the first (i.e., oldest) KV pair and 𝑤

denote the total number of KV pairs (i.e., SN of all the KV pairs

consecutively increments from 𝑆𝑁 (𝑠)
to 𝑆𝑁 (𝑠) +𝑤−1). Accordingly,

for each sealed WAL segment, we maintain an in-memory length-𝑤

KV status bitmap, in which each bit represents whether the cor-

responding KV pair still resides in the memory tier. In particular,

for the 𝑘-th bit in one segment status bitmap, if its value is zero, it

means that the 𝑘-th KV pair (with the SN of 𝑆𝑁 (𝑠) +𝑘 − 1) has been

either dropped or migrated to the on-SSD tier through compaction;

otherwise (i.e., its value is one), the 𝑘-th KV pair still resides in

memory. We can directly construct the setM𝑖 of each sealed WAL

segment using its KV status bitmap. For each segment, the value

of𝑤 and 𝑆𝑁 (𝑠)
remain unchanged as the segment undergoes mul-

tiple rounds of background KV trim. Fig. 2 further illustrates this

proposed implementation strategy.

1 0 1 0 0 1 1

KV #1 KV #2 KV #3 KV #4 KV #5 KV #6 � � � KV #w

� � �

Original on-SSD WAL segment

In-memory KV bitmap {SN(s), w}

w-bit

KV #1 KV #3 KV #6 � � � KV #w

Re-written on-SSD WAL segment

Background KV trim

Figure 2: Illustration of using in-memory segmentKV status
bitmap to realize background KV trim.

4



To ensure the practical feasibility, we must update all the seg-

ment KV status bitmaps with minimal interference with foreground

KV store operations. To achieve this objective, we add the following

simple operation into the KV store compaction process: For each

compaction operation, if at least one input file is an in-memory file,

then the compaction process will generate an SN array containing

the SN of all the KV pairs that are either dropped during the com-

paction or written into an on-SSD output file. If none of the input

files is in-memory, the compaction process does not need to gener-

ate any SN array and operates exactly the same as normal. During

the runtime, the KV store keeps collecting the SN arrays generated

by the compaction process. Once the total size of all the collected

SN arrays reaches a pre-specified threshold, the KV store invokes a

background process to update all the segment status bitmaps. Let

𝑆𝑁𝑚𝑎𝑥 and 𝑆𝑁𝑚𝑖𝑛 denote the maximum and minimum SN among

all the WAL segments. For each SN ℎ in each SN array, we have

• If ℎ > 𝑆𝑁𝑚𝑎𝑥 , then the corresponding KV pair still resides

in an open WAL segment, and we keep this SN for the next

bitmap update process.

• If ℎ < 𝑆𝑁𝑚𝑖𝑛 , the corresponding KV pair has already mi-

grated into the on-SSD tier, hence we can simply ignore this

SN.

• If 𝑆𝑁𝑚𝑎𝑥 ≥ ℎ ≥ 𝑆𝑁𝑚𝑖𝑛 , we find the segment status bitmap

for which we have 𝑆𝑁 (𝑠) ≤ ℎ ≤ 𝑆𝑁 (𝑠) +𝑤 − 1, and set the

(ℎ − 𝑆𝑁 (𝑠) + 1)-th bit in this bitmap as zero. Since all the

KV status bitmaps are ordered in terms of SN, given any SN

ℎ, we can easily find the bitmap through a simple binary

search.

Once the KV status bitmap of one segment becomes an all-zero

vector, we can safely delete the corresponding WAL segment and

drop the KV status bitmap from the memory. After each round of

background KV status bitmap update, we accordingly re-calculate

the WAL amplification factor of each segment and the overall aver-

age amplification factor, based on which we will determine whether

another round of background KV trim should be invoked.

3.3 Crash Recovery
Since we keep the top 𝑚 + 1 levels and several other data struc-

tures (e.g., segment KV status bitmaps) in host DRAM, we have

to accordingly enhance the crash recovery procedure. In the case

of system crash, we assume that all the in-memory data are lost,

and hence have to reconstruct the entire (𝑚 + 1)-level in-memory

tier. To achieve this objective, we scan all the WAL segments and

insert all the logged KV pairs back into the KV store. Meanwhile,

as we scan each WAL segment, we reconstruct the corresponding

segment KV status bitmap. We note that each WAL segment always

keeps the SN of its first KV pair (i.e., 𝑆𝑁 (𝑠)
) and the total number of

SNs (i.e.,𝑤 ) unchanged throughout its lifetime. Hence, regardless

how many times one WAL segment has been processed with back-

ground KV trim, we can always reconstruct the segment KV status

bitmap by scanning through each WAL segment. Crash recovery

process initializes the set of SN arrays as empty and gradually adds

SN arrays as the KV store carries out compaction operations.

Compared with conventional practice, our proposed design ap-

proach inevitably incurs a longer crash recovery latency because of

the larger amount of in-memory data to be reconstructed. Never-

theless, because the in-memory tier accounts for a very small per-

centage of the total data volume and very high DRAM operational

bandwidth, the crash recovery latency tends to be insignificant,

which will be quantitatively demonstrated later in Section 4.

3.4 Reducing the Cost of In-memory Tier
The long-waited and widely-researched NVM technologies (e.g.,

3DXP and ReRAM) may appear as the best option to reduce the

cost of the in-memory tier. Moreover, due to their non-volatility,

one may argue that NVM-based in-memory tier can obviate the

use of WAL. Nevertheless, in spite of the recent launch of Intel

Optane DC Persistent Memory, it is not clear yet how quickly and

widely NVM-basedmemorymodules will be deployed in production

environment in the foreseeable future. Although the first generation

Optane DC PersistentMemory shows reasonablemetrics in terms of

performance (i.e., ∼10× longer latency and ∼10× lower bandwidth

than DRAM) and cycling endurance (i.e., up to a few million), it

is not clear (at least in the open literature) how those important

metrics will change with the 3DXP technology scaling.

In this work, we advocate an alternative DRAM-only approach

to reduce the in-memory tier cost overhead. It is built upon a sim-

ple principle: Regardless of the specific memory technology, one

may reduce the memory cost by relaxing the raw reliability, and

meanwhile restore the data integrity via low-cost system-level fault

tolerance, in particular error correction code (ECC). The error cor-

rection strength of ECC improves as its codeword length increases.

Evidently, this principle involves a trade-off between the cost and

native data access granularity. In fact, Optane DC Persistent Mem-

ory leverages this principle as well: Optane DC Persistent Memory

DIMM internally uses a strong ECC that protects 256-byte user

data in each ECC codeword [16]. As a result, regardless of the size

of requests from host CPU, Optane DC Persistent Memory DIMM

internally always operates with the unit of 256 bytes.

To further illustrate the trade-off, let us consider the following

example: Suppose we use BCH code as ECC, and let 𝑟 denote the

ratio between the size of ECC redundancy and user data in each

codeword. In today’s commercial ECC DRAM DIMM, the ratio 𝑟

is 1:8 and each codeword protects only 8-byte user data. Fig. 3

shows the BCH code decoding failure rate vs. raw bit error rate

under different codeword length and ratio 𝑟 . With the target decod-

ing failure rate of 10
−20

, under the same redundancy ratio of 1:8,

increasing ECC codeword length from 8-byte (as in today’s ECC

DIMM) to 256-byte (as in Optane Persistent Memory) can improve

the error correction strength by eight orders of magnitude (i.e.,
the tolerable bit error rate increases from 10

−12
to 10

−4
). Even if

we reduce the ECC redundancy ratio from 1:8 to 1:16 (i.e., reduce

the ECC coding redundancy by 50%) in the case of 256-byte user

data per codeword, we can still achieve an improvement of seven

orders of magnitude.

The above results suggest that the proclaimed bit cost advantage

of 3DXP over DRAM in the open literature is not based on a fair

comparison. We should compare the bit cost between DRAM and

3DXP (or any other NVM) under the condition of using ECC with

the same (or at least comparable) error correction strength. In fact,

since DRAM has a shorter access latency than NVM, we may even
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Figure 3: BCH decoding failure rate vs. raw bit error rate.

use stronger ECC (with longer codeword length) for DRAM while

still maintaining the same (or even shorter) data access latency than

NVM. The potential of trading the raw DRAM reliability for lower

bit cost has been recently demonstrated by Hynix [20], a major

DRAM manufacturer, where each ECC codeword protects 64-byte

user data in a DRAMDIMM.We use the term block-protected DRAM
for such low-cost DRAM to distinguish from today’s byte-accessible

DRAM. Because of the complicated ECC coding, low-cost block-

protected memory modules cannot meet the strict and deterministic

latency specs of existing DDRx standards (e.g., DDR3 and DDR4).

Fortunately, driven by the trend towards heterogeneous computer

architecture [14], computing industry has been actively develop-

ing media-agnostic latency-oblivious CPU-memory interfaces (e.g.,

OpenCAPI [24], CXL [8], and Gen-Z [13]). This natively makes

block-protected DRAM a practical viable option to reduce memory

cost in future computing systems. Under this framework, memory

control is primarily handled by dedicated memory controllers on

each individual memory module (e.g., DIMM or PCIe card), other

than by CPUs as in current practice.

Based on the above discussions, we envision a DRAM-only

heterogeneous memory architecture consisting of convenient but

expensive byte-accessible DRAM and low-cost block-protected

DRAM.With very different native data access granularity (i.e., a few

bytes vs. hundreds or thousands of bytes), these two types of DRAM

have very different random data access latency/throughput, while

achieving similar sequential data access latency/throughput as long

as the throughput of ECC engines can match the DRAM bandwidth.

As illustrated in Fig. 4, all the𝑚 + 1 levels of the in-memory tier

𝐿0 ∼ 𝐿𝑚 are stored in the block-protected DRAM, and the OS page

cache, RocksDB block cache and write buffer (e.g., memtable in

RocksDB) stays in the conventional byte-accessible DRAM. With

a much larger capacity than the write buffer, the levels 𝐿0 ∼ 𝐿𝑚
only involve block-oriented (e.g., 4KB or 8KB) data access, which

can naturally match to the low-cost block-protected DRAM. Be-

cause block-protected DRAM can have a much lower bit cost than

today’s byte-accessible DRAM, this approach can largely reduce

the memory cost overhead of the WAL-assisted KV store tiering.

Moreover, by relying on DRAM other than NVM, this approach

can perfectly leverage the existing DRAM manufacturing infras-

tructure, and is not subject to the cycling endurance issue and any

fundamental technology risk/uncertainty. As a viable alternative

to widely studied hybrid-DRAM/NVM memory architecture, our

DDRx

(deterministic latency)

Low-cost, less 
reliable DRAM

Levels L0~Lm

Memory 
Controller

High-cost, highly 
reliable DRAM

DDR 
controller

Interface module

Write buffer

OpenCAPI/CXL

(variable latency)

CPU

Figure 4: Illustration of storing the in-memory tier on a low-
cost DRAM-only heterogeneous memory system.

envisioned DRAM-only heterogeneous memory architecture can

play a key role in building a cost-effective infrastructure for future

in-memory computing applications.

4 EVALUATION
As a case study, we accordingly modified RocksDB 6.0 to support

the proposed WAL-assisted tiering. We use a single thread from the

RocksDB high-priority thread pool to implement all the operations

in support of background KV trim (e.g., management of in-memory

KV status bitmaps and SN arrays, and KV trim on WAL segments).

The modified RocksDB allows users to configure the number of

LSM tree levels stored in block-protected DRAM and the number

of levels stored on SSD. The block-protected DRAM for in-memory

tier is emulated using RAMDisk mounted with tmpfs on Linux. We

set the capacity of RAMDisk to be slightly larger than the target

size of the in-memory tier (i.e.,

∑𝑚
𝑖=0𝐶𝑖 ). During the runtime, the in-

memory tier size can dynamically vary and even temporarily grow

beyond the RAMDisk capacity. To address this issue, the modified

RocksDB can spill-over files from the in-memory tier to the SSD. To

simplify the implementation, we still treat those spilled-over files

as non-persisted (without updating KV status bitmap), and hence

process those files in the same way as the other in-memory files.

4.1 Experimental Setup
We ran all the experiments on a server with dual-socket Intel

Xeon E5-2630 2.2GHz CPUs (10 cores per socket), 128GB DDR4

DRAM, and a 2TB Intel DC P4600 NVMe SSD. The SSD perfor-

mance specs are 3.2GB/s (1.5GB/s) sequential read (write) through-

put, 610k (196k) random read (write) IOPS under whole-drive pre-

conditioning, and 85𝜇s (15𝜇s) 4KB read (write) latency with IO

queue depth of 1. Regarding the RocksDB configuration, the maxi-

mum number of compaction and flush threads are set to 12 and 4,

respectively, both the bytes-per-sync andWAL-bytes-per-sync are
set to 1MB, and all the other parameters are left as their default

settings. We set the size of each file and memtable as 16MB, and

the target size of 𝐿1 as 80MB. We set the size of each key as 16B

and the size of each value as 1KB. All the experiments were car-

ried out on two datasets: (1) 100GB dataset that is populated by

randomly inserting 100M KV pairs and spans over 5 levels (i.e.,

𝐿0 ∼ 𝐿4), and (2) 1TB dataset that is populated by randomly insert-

ing 1,000M KV pairs and spans over 6 levels ((i.e., 𝐿0 ∼ 𝐿5). In this

paper, we use RocksDB-Orig and RocksDB-Tier to denote the original
6



RocksDB and our modified RocksDB that supports WAL-assisted

tiering. RocksDB-Tier sets the background KV trim parameters so

that the WAL size is below 2.5× of the in-memory tier size.

4.2 Micro-benchmarks
We first studied the performance (both ops/s and latency) and SSD

IO traffic using the db_bench micro-benchmark tool in the RocksDB

package. In particular, we ran three different workloads: (1) write-

only workload that randomly inserts/updates 100M KV pairs, (2)

read-only workload that randomly reads 100M KV pairs, and (3)

mixed workload consisting of 233M random KV reads and 100M

random KV writes, corresponding to 70%-read and 30%-write. The

number of client threads is 32.

4.2.1 Results on 100GB dataset. When running experiments on the

100GB dataset (with total of 5 levels), we locked the majority of the

128GB host DRAM in order to leave 8GB (or 18GB) DRAM available

for RocksDB-Orig and RocksDB-Tier. In the context of RocksDB-Tier,
we allocate 4GB (or 14GB) DRAM for RAMDisk given the total avail-

able 8GB (or 18GB) DRAM. With 4GB RAMDisk, the in-memory

tier covers the top 3 levels (i.e., 𝐿0 ∼ 𝐿2); with 14GB RAMDisk, the

in-memory tier covers the top 4 levels (i.e., 𝐿0 ∼ 𝐿3).

A. Ops/s performance: Fig. 5 compares the ops/s performance be-

tween RocksDB-Orig and RocksDB-Tier on the 100GB dataset under

the three different workloads. For each workload, all the ops/s

values are normalized against the ops/s of the RocksDB-Orig (8GB
DRAM). Compared with RocksDB-Orig (8GB DRAM), by moving the

top 3 levels (out of total 5 levels) into memory, RocksDB-Tier (8GB
DRAM) can improve the ops/s by 19.9% and 27.7% for the write-

only and mixed workloads, respectively. Compared with RocksDB-
Orig (18GB DRAM), by moving the top 4 levels (out of total 5 levels)

into memory, RocksDB-Tier (18GB DRAM) can improve the ops/s

by 95.5% and 48.0% for the write-only and mixed workloads, re-

spectively. The results can be easily justified by the fact that, by

leveraging the very high host DRAM bandwidth to absorb a large

percentage of compaction-induced data traffic, RocksDB-Tier incurs
much less SSD IO traffic than RocksDB-Orig during compaction.

The results show that, under the read-only workload, RocksDB-Orig
and RocksDB-Tier have similar ops/s performance, because of the

very small compaction activities in the read-only workload.
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Figure 5: Normalized average ops/s performance when run-
ning different workloads on the 100GB dataset.

B. Latency performance: In addition to the ops/s performance, we

also measured and compared the latency profile under different

workloads. Fig. 6 shows the write latency profile under the write-

only workload, where each latency value is normalized against the

latency of RocksDB-Orig (8GB DRAM) under the same latency type.

The results show that the WAL-assisted tiering can improve the

ops/s performance and reduce the latency simultaneously. When

operating with 8GB DRAM, compared with RocksDB-Orig, RocksDB-
Tier can reduce the average write latency by 16.6% while achieving

19.9% higher ops/s performance.When operating with 18GBDRAM,

compared with RocksDB-Orig, RocksDB-Tier can reduce the average

write latency by 48.9% while achieving 95.5% higher ops/s perfor-

mance. In addition to average write latency, WAL-assisted tiering

also largely reduces the tail latency. When operating with 8GB

DRAM, compared with RocksDB-Orig, RocksDB-Tier can reduce

the 99-percentile and 99.9-percentile latency by 12.4% and 36.4%,

respectively. When operating with 18GB DRAM, compared with

RocksDB-Orig, RocksDB-Tier can reduce the 99-percentile and 99.9-

percentile latency by 51.3% and 77.5%, respectively. The results

suggest that reducing IO traffic on SSD can very effectively reduce

both the average latency and tail latency.

A v e r a g e P 5 0 P 7 5 P 9 9 P 9 9 . 90 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

No
rm

alz
ed

   L
ate

nc
y

 R o c k s D B - O r i g  ( 8 G B  D R A M )      R o c k s D B - T i e r  ( 8 G B  D R A M )
 R o c k s D B - O r i g  ( 1 8 G B  D R A M )    R o c k s D B - T i e r  ( 1 8 G B  D R A M )

Figure 6: Normalized latency profile when running the
write-only workload on the 100GB dataset.

Fig. 7(a) and (b) show the normalized read and write latency pro-

file, respectively, when running the mixed workload on the 100GB

dataset. When operating with 8GB and 18GB DRAM, compared

with RocksDB-Orig, RocksDB-Tier can reduce the average read la-

tency by 23.3% and 35.7%, respectively, and can reduce the average

write latency by 23% and 9.7%, respectively. We note that RocksDB-
Tier accomplishes the latency reduction while achieving 27.7% (8GB

DRAM) and 48.0% (18GB DRAM) higher ops/s performance at the

same time. As shown in Fig. 7(b), compared with RocksDB-Orig,
RocksDB-Tier has noticeably longer 50-percentile, 75-percentile, and
99-percentile tail write latency under the mixed workload. We con-

jecture that it is likely caused by the higher ops/s (hence heavier

CPU usage) of RocksDB-Tier.

C. SSD IO traffic volume: As discussed above, the performance ben-

efit of WAL-assisted tiering is enabled by the SSD IO traffic volume

reduction. Fig. 8 (a) and (b) further show the normalized SSD read

and write traffic volume when running the three different work-

loads. The results clearly show the significant SSD IO traffic volume

reduction enabled by WAL-assisted tiering. When operating with

8GB DRAM, compared with RocksDB-Orig, RocksDB-Tier can reduce
7
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Figure 7: Normalized (a) read latency and (b) write latency profile when running the mixed workload on the 100GB dataset.
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Figure 8: Normalized SSD (a) read volume and (b) write volume when running three different workloads on the 100GB dataset.

the SSD read traffic volume by 1.4% and 6.4% under the write-only

and mixed workloads, respectively. The SSD read traffic volume re-

duction can improve to 38.5% and 13.7% when operating with 18GB

DRAM (i.e., the in-memory tier contains the top 4 out of total 5

levels). When operating with 8GB DRAM, compared with RocksDB-
Orig, RocksDB-Tier can reduce the SSD write traffic volume by 23.2%

and 42.7% for write-only and mixed workloads, respectively. The

SSD write traffic volume reduction can improve to 59.4% and 64.8%

when operating with 18GB DRAM.

D. On-SSD WAL size: As pointed out above, we applied the back-

ground KV trim to keep the on-SSD WAL size below 2.5× of the

in-memory tier size. For the purpose of comparison, we carried

out experiments on RocksDB-Tier with the background KV trim

disabled. Table. 1 compares the peak on-SSD WAL size when run-

ning the write-only workload under different DRAM capacity. The

results clearly show the effectiveness of the proposed background

KV trim on reducing the WAL size. When operating with 18GB

DRAM (14GB in-memory tier), the peak on-SSD WAL size can be

102GB if we turn off the background KV trim, which is even larger

than the KV store dataset size. Using our proposed background KV

trim, we can reduce the peak on-SSD WAL size by 5× from 102GB

to only 19.6GB.

4.2.2 Results on 1TB dataset. We carried out experiments on the

1TB dataset (with total 6 levels) as well, where we made 18GB (or

120GB) host DRAM available for both RocksDB-Orig and RocksDB-
Tier. In the context of RocksDB-Tier, we allocate 14GB (or 100GB) for

Table 1: Peak on-SSD WAL size of 100GB dataset
DRAM Capacity 8GB 18GB

In-memory Tier 4GB 14GB

KV trim ON OFF ON OFF

Peak WAL size 9.8GB 29.6GB 19.6GB 102GB

RAMDisk given the total available 18GB (or 120GB) DRAM. With

14GB RAMDisk, the in-memory tier covers the top 4 levels (i.e.,

𝐿0 ∼ 𝐿3); with 100GB RAMDisk, the in-memory tier covers the top

5 levels (i.e., 𝐿0 ∼ 𝐿4).

A. Ops/s and latency performance: Fig. 9 shows the normalized ops/s

performance when running the three workloads on the 1TB dataset.
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Figure 9: Normalized average ops/s performance when run-
ning different workloads on the 1TB dataset.
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Figure 11: Normalized (a) read latency and (b) write latency profile when running the mixed workload on the 1TB dataset.

w r i t e - o n l y r e a d - o n l y m i x e d0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

No
rm

aliz
ed

 
SS

D R
ea

d S
ize

 R o c k s D B - O r i g ( 1 8 G B  D R A M )       R o c k s D B - T i e r ( 1 8 G B  D R A M )  
 R o c k s D B - O r i g ( 1 2 0 G B  D R A M )     R o c k s D B - T i e r ( 1 2 0 G B  D R A M )

(a)

w r i t e - o n l y r e a d - o n l y m i x e d0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

No
rm

aliz
ed

 
SS

D W
rite

 Si
ze

 R o c k s D B - O r i g ( 1 8 G B  D R A M )       R o c k s D B - T i e r ( 1 8 G B  D R A M )  
 R o c k s D B - O r i g ( 1 2 0 G B  D R A M )     R o c k s D B - T i e r ( 1 2 0 G B  D R A M )

(b)

Figure 12: Normalized SSD (a) read volume and (b) write volume when running three different workloads on the 1TB dataset.

Similar to the results on 100GB dataset, RocksDB-Tier can consis-

tently achieve significant ops/s performance gain over RocksDB-
Orig. For example, when operating with 18GB DRAM, RocksDB-Tier
can improve the ops/s performance by 49.8% and 33.4% for write-

only and mixed workloads, respectively.

Fig. 10 shows the normalized write latency profile when running

the write-only workload on the 1TB dataset. The results again re-

veal the effectiveness of the WAL-assisted tiering on reducing the

latency while maintaining a higher ops/s performance. When oper-

ating with 18GB DRAM, RocksDB-Tier can reduce the average write

latency by 33.2%, and reduce the 99-percentile and 99.9-percentile

tail latency by 75.1% and 20%, respectively.
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Figure 10: Normalized write latency profile when running
the write-only workload on the 1TB dataset.

Fig. 11(a) and (b) show the normalized read and write latency

profile when running the mixed workload on the 1TB dataset. The

results show that WAL-assisted tiering can noticeably reduce the

read latencywhile maintaining higher ops/s performance. For exam-

ple, when operating with 120GB DRAM, RocksDB-Tier can reduce

the average read latency by 43.6%, and reduce the 99-percentile and

99.9-percentile read tail latency by 23% and 34.5%, respectively. Nev-

ertheless, as shown in Fig. 11(b), the write latency of RocksDB-Tier
becomes worse than that of RocksDB-Orig. For example, when op-

erating with 120GB DRAM, the average and 99-percentile write la-

tency of RocksDB-Tier is 4.1% and 17.5% longer than that of RocksDB-
Orig. Again, we conjecture that it is caused by the higher ops/s

(hence heavier CPU usage) of RocksDB-Tier.

B. SSD IO traffic volume: Fig. 12(a) and (b) show the normalized

SSD read and write traffic volume when running the three different

workloads on the 1TB dataset. Again, the results clearly show that

the proposed design approach can significantly reduce the SSD IO

traffic volume, leading to the ops/s and latency performance ben-

efits. For example, when operating with 18GB DRAM, compared

with RocksDB-Orig, RocksDB-Tier can reduce the SSD write traffic

volume of the write-only and mixed workloads by 53.2% and 54.4%,

respectively, which can directly translate into about 2× longer SSD

lifetime.

C. On-SSD WAL size: For the purpose of comparison, we also car-

ried out experiments on RocksDB-Tier with the background KV

trim disabled. Table. 2 compares the peak on-SSD WAL size under

different DRAM capacity with KV trim ON or OFF. Without using

the proposed background KV trim, the peak on-SSD WAL size can

be very close to the size of KV store dataset itself. By turning on

the background KV trim, we can reduce the peak on-SSD WAL size

by about 4×.
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Table 2: Peak on-SSD WAL size of 1TB dataset
DRAM Capacity 18GB 120GB

In-memory Tier 14GB 100GB

KV trim ON OFF ON OFF

Peak WAL size 22GB 86GB 213GB 950GB

4.3 YCSB benchmarks
To evaluate over a wider range of workload characteristics, we

further ran the industry standard YCSB macro-benchmarks [5, 9]

on RocksDB-Tier and RocksDB-Orig. Table. 3 lists the six core YCSB
macro-benchmark workloads. All the experiments are carried out

on a 100GB dataset that is populated by randomly inserting 100M

unique KV pairs. Same as the above db_bench experiments, we

set the size of each key and value as 16 bytes and 1KB bytes, and

use 32 client threads. Out of the total 128GB host DRAM, we lock

110GB and leave the remaining 18GB available for RocksDB-Tier
and RocksDB-Orig. In the context of RocksDB-Tier, we allocate 14GB
DRAM for RAMDisk that hosts the top 4 levels out of the total 5 lev-

els. Each YCSB workload runs with 100M random keys. In addition

to the uniform key distribution, we also used the zipf distribution

with three different zipf constants: 0.5, 0.75 and 0.99 (default).

Table 3: YCSB core workloads
Workload Description

YCSB A 50% reads, 50% updates

YCSB B 95% reads, 5% updates

YCSB C 100% reads

YCSB D 95% reads, 5% inserts

YCSB E 95% scans, 5% inserts

YCSB F 50% reads, 50% read-modify-writes

Fig. 13 shows ops/s performance improvement of RocksDB-Tier
over RocksDB-Orig, under different YCSB workloads and different

key distribution models. The results show that the gain of RocksDB-
Tier improves as the workload write intensity increases. The work-

loads YCSB A (50% updates) and YCSB F (50% read-modify-writes)

can much more benefit from RocksDB-Tier than the other workloads.
With uniform key distribution, RocksDB-Tier improves the ops/s by

A B C D E F0 %
1 0 %
2 0 %
3 0 %
4 0 %
5 0 %
6 0 %

Op
s/s

 Im
pro

ve
me

nt

Y C S B  W o r k l o a d s

 u n i f o r m   z i p f  0 . 5   z i p f  0 . 7 5   z i p f  0 . 9 9

Figure 13: The ops/s performance improvement of RocksDB-
Tier over RocksDB-Orig, under different YCSB workloads and
different key distribution models.

52.8% and 46.4% for YCSB A and YCSB F, respectively. In compari-

son, the ops/s gain on the other workloads is below 25%, and YCSB

C (with 100% read) hardly benefits from RocksDB-Tier. This can be

explained as follows: The objective of WAL-assisted tiering is to

benefit KV store performance by reducing the compaction-induced

SSD write traffic. Larger workload write intensity will trigger heav-

ier compaction and hence higher compaction-induced SSD write

traffic, for whichWAL-assisted tiering can be more beneficial. More-

over, because read-modify-writes trigger more reads than updates,
the gain of RocksDB-Tier is slightly higher on YCSB A than YCSB

F. Fig. 13 shows that the gain of WAL-assisted tiering is also de-

pendent on the workload key distribution. RocksDB-Tier brings the
highest ops/s performance gain under uniform key distribution,

and its performance gain decreases as the key distribution becomes

more skewed (note that zipf distribution is more skewed as its con-

stant increases). This can be explained as follows: When the key

distribution becomes more skewed, there is a higher probability

that a new KV pair displaces its older version in a top level (e.g.,

level 𝐿2 or 𝐿3). This will help to slowdown the growth of the size

of those top levels, leading to less compaction activities and hence

less write traffic. Accordingly, the benefit of WAL-assisted tiering

becomes less significant.

To further study the impact of workload stress, we measured

the ops/s performance of YCSB A and YCSB F under a variety of

RocksDB client number, as shown in Fig. 14. All the workloads

have uniform key distribution. As we increase the client number

from 32 to 96 (recall that the server has total 20 cores), the total

ops/s value always improves. Meanwhile, the gain of RocksDB-Tier
over RocksDB-Orig enlarges as the client number increases. For

the workload YCSB A, compared with RocksDB-Orig, RocksDB-Tier
improves the ops/s by 44%, 52.8%, 63.6 and 61% under 16, 32, 64 and

96 clients, respectively. For the workload YCSB F, compared with

RocksDB-Orig, RocksDB-Tier improves the ops/s by 41.9%, 46.4%,

50.9%, and 55.3% under 16, 32, 64 and 96 clients, respectively. The re-

sults suggest that the proposed WAL-assisted tiering could improve

the KV store performance scalability.

1 6 3 2 6 4 9 6
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0

Op
s/s

 (K
)

N u m b e r  o f  Y C S B  T h r e a d s

 R o c k s D B - O r i g  ( Y C S B  A )   R o c k s D B - T i e r  ( Y C S B  A )
 R o c k s D B - O r i g  ( Y C S B  F )   R o c k s D B - T i e r  ( Y C S B  F )

Figure 14: The ops/s performance of YCSB A and YCSB F un-
der different number of YCSB clients.

Finally, Fig. 15 shows SSDwrite data volume reduction of RocksDB-
Tier over RocksDB-Orig, under all the YCSB workloads (except the

read-only workload YCSB C). Although the absolute write data vol-

ume strongly depends on the workload characteristics (e.g., write
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Figure 15: SSD write data volume reduction of RocksDB-Tier
over RocksDB-Orig.

intensity and key distribution), the results show that the RocksDB-
Tier over RocksDB-Orig write data volume reduction remains con-

sistently around 60%. This further affirms the effectiveness of using

WAL-assisted tiering to lengthen the SSD lifetime.

4.4 Impact of Longer DRAM Access Latency
The above experiment results well demonstrate the effectiveness

of the proposed WAL-assisted tiering on today’s byte-addressable

DRAM. Since the files in in-memory tier are stored in RAMDisk by

default and accessed in the granularity of block through tmpfs file

system API, all the above experiment results also readily apply to

the envisioned block-protected DRAM, assuming that the block-

protected DRAM has the same 4KB page access latency as today’s

DDR DRAM DIMM. Since the ECC decoding hardware engine in

the block-protected DRAM controller can match the throughput

of the media-agnostic latency-oblivious interfaces (e.g., CXL), it is

reasonable to expect that block-protected DRAM and today’s DDR

DRAMDIMMmay achieve similar sequential data access (e.g., 4KB)

latency. Because the in-memory tier is accessed in the unit of blocks

and each block is at least a few KBs, in the above experiments, we

directly use the DDR DRAM DIMMs in our server to emulate the

envisioned block-protected DRAM. Of course, it is still necessary to

study the effect if block-protected DRAM has substantially longer

sequential data access latency than DDR DRAM DIMM. For this

purpose, we introduce a sequential data access slowdown factor

𝛽 ≥ 1. In particular, we modified the RAMDisk source code so that

the latency of each 4KB data access is amplified by 𝛽 times.

Accordingly, we carried out further experiments to study the

impact of the in-memory tier data access slowdown factor 𝛽 . We

ran the experiments on the 100GB dataset with 18GB available

host DRAM, and used the same configurations and workloads as

in Section 4.2.1. RocksDB-Orig runs with 18GB byte-addressable

DRAM. RocksDB-Orig runs with 4GB byte-addressable DRAM and

14GB emulated block-protected DRAM. Fig. 16 shows the measured

ops/s performance of RocksDB-Tier under three values of 𝛽 (i.e., 1,

2, and 5).The slowdown factor is only applied to the 14GB emulated

block-protected DRAM. For the purpose of comparison, it also

shows the ops/s performance of the original RocksDB (i.e., RocksDB-
Orig). The results show that the in-memory data access latency

indeed could have a noticeable impact on the performance of the

write-only workload. Nevertheless, even with the slowdown factor

of 5, RocksDB-Tier can still achieve 51% higher ops/s than RocksDB-
Orig. The results show that the performance of read-only and mixed

workloads is almost independent from the in-memory tier data

access latency slowdown factor. This is because the read quests

are mostly served by SSD access, which has nothing to do with

the in-memory tier data access latency. The above results further

strengthen the potential of applying the envisioned block-protected

DRAM to reduce the cost overhead of the WAL-assisted tiering

design approach.
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Figure 16: Measured ops/s performance on the 100GB
dataset under different slowdown factor 𝛽 .

4.5 Crash Recovery Time
WAL-assisted tiering is subject to a longer crash recovery time,

simply because a much larger amount of in-memory data must

be reconstructed from the WAL. Moreover, as discussed above, in

addition to the proposed background KV trim method, one could

apply background lossless data compression to further reduce the

WAL storage footprint on SSD. For instance, by setting the KV pair

data compressibility as 0.5 in RocksDB db_bench, our measurement

shows that the WAL file compression ratio is about 0.550, 0.438, and

0.443 when using the LZ4, ZSTD, and Zlib compression libraries,

respectively.

During the crash recovery,WAL segments are first decompressed

and then replayed to reconstruct the in-memory tier. To reduce the

recovery time overhead caused by WAL segment decompression,

we can use multiple threads to decompress multiple WAL segments

concurrently, and then replay these WAL segments one-by-one

sequentially. In this study, we use four threads for concurrent WAL

segment decompression. Using the 100GB dataset as a test vehicle,

Table. 4 compares the crash recovery time under different con-

figurations. Because LZ4 decompression can achieve very high

throughput (e.g., above 1GB/s per CPU core), applying LZ4 to com-

press WAL segments does not cause noticeable crash recovery time

overhead. The results show that, compared with no WAL compres-

sion, LZ4-based WAL compression can even slightly reduce the

crash recovery time. This is because of the reduction on the SSD

read traffic during crash recovery. Because ZSTD and Zlib have

(much) lower decompression throughput than LZ4, they noticeably

increase the crash recovery time. The results show that, compared

with no compression, ZSTD and Zlib compression increase the

crash recovery time by about 6.4% and 33.4%, respectively.

For the original RocksDB, since we only need to reconstruct

the small in-memory memtable (e.g., a few tens of MBs), the crash
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Table 4: Crash Recovery Time of 100GB dataset
DRAM Capacity 8GB 18GB

WAL Size 4GB 13GB

No compression 10.9 Seconds 36.2 Seconds

LZ4 Compression 10.9 Seconds 35.0 Seconds

ZSTD compression 11.6 Seconds 38.3 Seconds

Zlib Compression 13.7 Seconds 48.3 Seconds

recovery time is much shorter (e.g., less than 1s). Although the use

of WAL-assisted tiering increases the crash recovery time by 1 or 2

orders of magnitude, the absolute crash recovery time is still not

prohibitively long (i.e., tens or hundreds of seconds). Therefore, for

typical use cases, we expect that the crash recovery time overhead

of WAL-assisted tiering can be justified by its performance and SSD

lifetime benefits.

5 RELATEDWORK
Being very intensively studied over the recent years, log-structured

KV store is fundamentally subject to trade-offs among write ampli-

fication, read amplification, and space amplification [2, 10]. Aiming

to reduce the space amplification (hence reduce the data storage

cost) at the penalty of higher write amplification, the leveled com-

paction strategy tends to have worse KV store performance. As a

result, prior work mainly focused on improving the performance

of log-structured KV store with leveled compaction.

Accordion [6] shares the same basic principle as this work: Keep-

ing a larger amount of data in memory can help to reduce the write

amplification experienced by on-disk data. In particular, Accor-

dion [6] partitions the memory component into an active mutable

segment and a pipeline of flat immutable segments. By keeping

all the in-memory data flat in one level, it avoids the WAL size

problem, but meanwhile cannot seamlessly scale up the in-memory

data volume. In comparison, WAL-assisted tiering can naturally

utilize tens or hundreds GBs of host memory.

Most prior work aimed at reducing the write amplification by

more fundamentally modifying the KV store architecture. Peb-

blesDB [28] reduces the write amplification by developing a frag-

mented LSM tree structure. Dostoevsky [11] reduces the write am-

plification by developing a lazy leveling scheme, and also presents

a generalization of the entire LSM tree design space. TRIAD [4]

reduces the write amplification by separating hot and cold keys,

deferring the compaction and using the commit log as 𝐿0 files. Skip-

Tree [36] reduces the write amplification by allowing certain KV

pairs to skip the level-by-level compaction. VT-tree [31] reduces

the write amplification by using stitching operation to avoid unnec-

essary data copies for sequential data. LSM-trie [32] reduces the

write amplification by integrating the exponential growth pattern

in the LSM tree with a linear growth pattern and using tries to

organize the data. SlimDB [29] reduces the write amplification by

modifying the KV store structure specifically for semi-sorted data.

X-Engine [15] reduces the write amplification by identifying and

recycling the data blocks whose key ranges do not overlap with

any other data blocks during the compaction. Write amplification

can also be reduced by separating the storage of key and value,

where all the values are managed outside of LSM tree with much

lower write amplification. Prior work [7, 19, 22, 26, 27, 34] have

well demonstrated its effectiveness, especially when the value size

is relatively large.

Although directly reducing the write amplification can most

fundamentally mitigate the performance impact, it is difficult for

existing mature KV stores to adopt these design solutions due to

the significant changes on the core data structure and algorithm.

Moreover, due to the inherent trade-offs of log-structured KV store,

these design solutions typically come with penalty in terms of read

amplification and/or space amplification. In contrast to these prior

work, the proposed WAL-assisted DRAM/SSD tiering approach in

this paper does not aim at reducing the write amplification at all

and hence obviates any changes on the core data structures and

algorithms of existing KV stores.

Prior work also studied the design of log-structured KV store

for new storage technologies, including NVM [12, 17, 18, 21, 33]

and shingled magnetic recording (SMR) drive [34, 35]. The under-

lying theme is to customize the data structure and operations of

log-structured KV store in order to better embrace the unique char-

acteristics of these storage technologies. In contrast to these prior

work, this paper presents a solution that can significantly improve

the performance of existing log-structured KV stores using today’s

mature DRAM and SSD technologies. We further advocate an alter-

native DRAM-only strategy to reduce the memory cost by using

block-protected DRAM.

6 CONCLUSIONS
This paper presents a WAL-assisted DRAM/SSD tiering approach to

improve the performance of log-structured KV stores. In contrast to

most prior efforts, this approach does not aim at reducing the write

amplification at all and hence obviates any changes on the core

data structures and algorithms of existing KV stores. In spite of the

simple design concept, its practical implementation is subject to

the issues of WAL size and host memory usage. We present a back-

ground KV trimmethod to control and reduce the on-SSDWAL size,

and propose a DRAM-only low-cost heterogeneous memory archi-

tecture to mitigate the memory usage overhead. To demonstrate its

practical feasibility, we integrated the developed techniques into

RocksDB by only adding about 1,200 lines of code and without

touching its core data structures and algorithms. Its effectiveness

has been well demonstrated through extensive experiments over a

variety of workloads.
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