
Things to Consider to Enable Dynamic Graphs
in Processing-in-Memory

Euna Kim
euna.kim@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia

Hyesoon Kim
hyesoon@cc.gatech.edu

Georgia Institute of Technology
Atlanta, Georgia

ABSTRACT
With the ubiquity of graphs to represent large, sparse data sets, a
recent focus has been placed on making graph processing more
efficient. Processing-in-Memory (PIM) is an alternative solution to
reduce the data movement between memory and processors, and
it results in better performance and reduced energy consumption.
However, prior PIM-based graph processing work operated only
on static graphs. In fact, real-world graphs are constantly chang-
ing as their data is updated. In this paper, we will discuss design
considerations for adapting dynamic graph processing to PIM.

CCS CONCEPTS
•Computer systems organization→Real-time system archi-
tecture.

KEYWORDS
Processing-in-memory, near memory, graph processing, dynamic
graphs
ACM Reference Format:
Euna Kim and Hyesoon Kim. 2020. Things to Consider to Enable Dynamic
Graphs in Processing-in-Memory. In MEMSYS ’20: The International Sym-
posium on Memory Systems,Sept. 29 - Oct. 1, 2020, Virtual Conference. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Graph data structures represent relationships among entities and
can be used to obtain insightful information with the incorpora-
tion of appropriate graph algorithms. Graph processing has been
widely used in various domains in data science and has expanded
to machine learning applications. Despite its essential function-
ality, graph processing is challenging due to the massive size of
graph data sets and poor locality by the irregular memory access
patterns of sparse graphs. The increased gap between memory and
processors creates the “memory wall”[69] issue in which data move-
ments are the performance bottleneck. Furthermore, most of the
data transferred to cache is not reused in the conventional memory
hierarchy [54] and massive energy is consumed for data transfer
from DRAM to processors[17]. Data movement increases system
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MEMSYS ’20, Sept. 29 - Oct. 1, 2020, Virtual Conference
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

latency and energy consumption. The emerging technology of 3D
stacked memory plus a logic layer such as Hybrid Memory Cube
(HMC)[3] and High Bandwidth Memory (HBM)[44] enabled the
idea of Processing-in-Memory (PIM) to resolve these problems.

There are benefits, optimization opportunities as well as difficul-
ties in PIM adoption as a graph processing accelerator. The general
discussion is out of the scope of our work. Further details can be
found in recent surveys[50][58][32].

Recently, several PIM-based graph processing accelerator archi-
tectures and runtimes have been designed [29][71][5][6][51][25]
[72][76]. Existing works provided diverse aspects of software and
hardware co-design, programming models, hardware configura-
tions to improve graph processing performance, scalability, pro-
grammability, concurrency, and energy efficiency. Tesseract[5] is
the first architecture for graph processing in PIM that uses remote
procedure calls (RPC). GraphPIM[51] showed the impact of of-
floading of atomic operations to PIM. GraphP[72] used source-cut
with replica to reduce the communication volume. GraphH[25] im-
proved the inter-cube communication overhead by implementing it
in hardware and vertex re-indexing for compaction. GraphQ[76] is
most advanced PIM-based graph processing hardware and software
co-design solution with various optimizations in concurrent com-
putation and batched communication. They each have a distinct
design approach, but have common focus on the kinds of prob-
lems they are trying to solve. E.g., providing efficient graph data
placement in memory, designing micro architectures for parallel
computation units and communication units, and providing effi-
cient communication methods for both intra-cube and inter-cube.

However, the primary assumption of existing work is that graph
data sets are immutable. For example, in the preprocessing phase,
graph data is partitioned and organized and no modification of the
data is considered after this phase is complete. Real-world graph
data sets are constantly updated. In order to process graphs with
changes in PIM, there are several modifications and additions re-
quired such as data structures for dynamic graph and data layout
with re-partitioning, which the remainder of this paper discusses.
We outline the different classes of dynamic graphs in section 2, and
we describe the system design for processing static graphs, as well
as the modifications and considerations for dynamic graphs in PIM
in section 3.

2 DYNAMIC GRAPHS
2.1 Dynamic Graph Classification
Real world data sets are continuously evolving and changing. Dy-
namic graphs are graphs with sequences of such updates. Dynamic
graphs can be referred to as “fully dynamic” or “partially dynamic”

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MEMSYS ’20, Sept. 29 - Oct. 1, 2020, Virtual Conference E. Kim and H. Kim

depending on the restrictions on insertion or deletion operation.
Similarly, there are incremental graphs and decremental graphs
where only the addition or deletion operation is allowed.

Yin, et al.[70] classified the characteristics of dynamic graphs
into four types depending on the perspective of graph data sets
and application behavior. These types are as follows: the Classic
dynamic graph model[26], the Data Stream model[31], the Evolv-
ing graph model[7], and the Streamed graph model. The Classic
dynamic graph model assumes that specialized data structures for
efficient update for analysis are maintained to avoid recomputing of
algorithms. In the Data stream model, graphs are streams of edges
in the memory. Often the stream algorithms compute approximate
results. In the Evolving graph model, the changes in the graph hap-
pen concurrently but not while the computation is occurring. The
Evolving graph model is the only model that assumes concurrent
changes in graphs, and approximate update algorithms are often
applied to this model.

In practice, most of these dynamic graph growth is restricted
by the physical memory (or storage) capacity. The dynamic graph
model can be selected depending on the purpose of the system and
the characteristics of the data sets. The graph changes for certain
period of time are sometimes processed as a batch form with a
sequence of updates for efficiency. After updating graphs, dynamic
graph algorithms can be applied to compute fast results (if they
exist) and sometimes they yield approximate results depending on
the algorithm.

2.2 Dynamic Graph Constraints for PIM
We define a static graph to be a completed graph in any format; that
is, its data is fixed. A dynamic graph is a fully dynamic graph; that
is, its vertices and edges may be updated over time.

In order to efficiently support dynamic graphs, flexible data
structures are required that have fast access time and good spatial
locality. Many dynamic graph data structures are often provided
as a part of graph frameworks, as the frameworks are designed
and implemented to maximize the performance with programming
models, data structures, and application implementations tailored
to specific hardware constraints.

Dynamic graph frameworks can be mainly divided two types:
in-memory data structures for keeping dynamic graphs such as
Stinger[30], Hornet[21], Aspen[28], and GPMA[57]; and storage-
based out-of-memory approaches such as LLAMA[45], X-Stream[56],
TurboGraph[33], and GraphChi[41]. Typically storage-based ap-
proaches save the graph or the changes in the graph as snapshots in
storage with timestamps. In this paper, since our goal is using PIM
as a graph processing accelerator, we only consider the in-memory
dynamic graph approach.

Dynamic graph methodologies have been studied in various
area such as graph theory, high performance computing, software
frameworks and libraries, specialized hardware and software co-
design, as well as distributed computing on clusters. Many existing
technologies can be applied to dynamic graph processing in PIM
directly or with minor modifications, except for optimizations at
the micro-architecture level.

3 PROCESSING DYNAMIC GRAPH IN PIM
Graph processing is well-known for poor locality in traditional
memory systems due to the sparsity of data sets and random mem-
ory access behavior. In addition, the vast scale of graph data sets
up to trillion edges[24] contributes to excessive amounts of data
movement from memory to processors. One way of mitigating this
issue is by pushing the processing closer to memory, such that large
transfers of sparse data are not actually necessary; this is the main
idea behind PIM.

Micron’s Hybrid Memory Cube (HMC)[3] is one such PIM ar-
chitecture design. Using stacked memory modules, connected ver-
tically using through-silicon-vias (TSV) atop a processing logic
layer, data processing can be performed near to memory without
having to transfer data to a processor and back. The memory itself
is divided into partitions called vaults, with each vault composed
of multiple banks of DRAM modules. Each one of these vaults has
its own logic layer, which may be identical across all vaults.

To process graphs using PIM, the graph data should be parti-
tioned across all cubes, so that computations can be executed con-
currently. Therefore, it is key that the micro-architecture design and
communication methods minimize the communication volume and
cost both inter-cube and intra-cube. Several design considerations
must be taken into account to process graphs using PIM shown in
Figure 1. We further elaborate on methodologies of static graph
processing in general in PIM, in addition to design considerations
for adapting dynamic graphs in the following subsections.

3.1 Graph Representation
Graph data sets can be represented and stored in various formats
such as sparse matrix, Compressed Sparse Row (CSR), Compressed
Sparse Column (CSC), Coordinate format (COO), ELLPACK format,
and variations of the ELLPACK format such as the Sliced ELLPACK
(SELL) format. Also, hybrid formats[14] exist that use a combination
of more than one format such as a hybrid ELL/COO format. No
special format is required to process in PIM since the graph will
go through a preprocessing phase to convert the graph to the data
layout native to its micro-architecture and interconnection design.

Likewise, dynamic graphs do not need special formats to be rep-
resented, but the graph changes should be maintained in memory
as a sequence of edge and vertex updates. Merging these updates
into an existing graph can be done using a streaming approach or
with periodic batch collected updates. There exist few real world
graph containing timestamps such as reddit submission time or
pokec registration time as attributes.

Note the graph representation is not a data structure in memory.
The data structure for a dynamic graph should be flexible to handle
graph changes efficiently, and that is essential for dynamic graph
processing. Graph data structure is explained in Section 3.8: Data
Structures.

3.2 Preprocessing
In the preprocessing phase, a graph is converted to the appropriate
format corresponding to the PIMmicro-architecture design for com-
putation and communication. A graph is divided into partitioned
graphs that map to cubes (or vaults) in PIM. For communication and

Things to Consider to Enable Dynamic Graphs
in Processing-in-Memory MEMSYS ’20, Sept. 29 - Oct. 1, 2020, Virtual Conference

Data sets

Host

Memory

Graph representation

Preprocessing

Applications

Programming Models

Runtime APIs

Compilers

Operating System

Data Structure

Data Placement

Micro-Architecture

Figure 1: Design considerations for hardware and software
co-design of graph processing in PIM

synchronization among the partitions, edge lists of each partition
are maintained.

Graph partitioning is a NP-hard problem in graph theory[19],
and finding the de facto solution is not feasible due to distinct
properties of graph data sets. In particular, scale-free social graphs
obeying the power-law naturally create few very large partitions
since there are some nodes with very high degree. To reduce the
communications among partitions, partitioning is conducted in
a manner that minimizes the number of edge-cuts across parti-
tions. This may incur imbalanced workloads, which hampers effi-
cient parallel processing[42][11]. However, the size of a partitioned
graph is not always proportional to the amount of computations.
Depending on the algorithm, only small portions of vertices are
active and participating in the computation. This is why few well-
known offline graph partitioners such as METIS[37](ParMetis[43])
or PULP[59](XtraPULP[60]) could not always produce good results
for partitioning for distributed systems, despite their relatively long
execution times in the preprocessing phase[5].

There are different strategies for reducing the communication
volume such as 1D partitioning (Edge-Cut)[38][60][62][75][37], 2D
partitioning (Vertex-Cut)[40][16][22], Hybrid Vertex-Cut in Power
Lyra[23], and Source-Cut partitioning used in PIM-based graph
processing architecture GraphP[72]. Hybrid Cut is similar to other
1D partitioning methods except for that it performs special treat-
ments for the high degree nodes. Source-Cut with replica maintains
proxy (or ghost) nodes to reduce the communication volume by
that computation can be done without communicating with nodes
in other partitions. This approach can produce good performance
with applications such as PageRank that has heavy communica-
tions with all 1 hop neighbors. The downside of this method is the
memory footprint to store the replicas.

For dynamic graphs, the partitioning strategy in the preprocess-
ing phase does not need to be different from that of static graphs
for PIM processing. However, meta information for partitioning
needs to be kept somehow for later use in re-partitioning because
of graph updates. One thing that might need to be kept in mind
is that, unlike static graphs, the size of the partitioned graph is
not fixed. If the partition size is too close to the capacity of each

cube, the partition would incur substantial data movements among
partitions during re-partitioning as graph updates occur. Due to
the overhead of frequent re-partitioning for graph changes, offline
partitioning [37][43][59][60] which would not be an option unless
it is used for initial partitioning and combined with other streaming
partitioning approaches. We will discuss re-partitioning in Section
3.9: Data Placement.

There might be optimization techniques for static graphs that
can be applied for data reorganization, such as reordering and
space efficient graph compression, that might not be able to be
used for dynamic graph cases. For dynamic graphs, the overhead
for maintenance of these techniques on dynamic graphs might
be too high, attenuating any benefits that these techniques would
otherwise provide.

3.3 Applications
There are several fundamental graph algorithms used in real world
applications. These algorithms include Breadth-First Search (BFS)
and Single Source Shortest Path (SSSP), which are core kernels of the
Graph500[2] benchmark for exploring the performance of High Per-
formance Computers (HPC). Other algorithms include Depth-First
Search (DFS), Connected Component (CC), Betweenness Central-
ity (BC), Triangle Counting (TC), PageRank (PR), Katz Centrality
(KC), k-Truss, Graph Coloring (GC), K-core Decomposition, and
Minimal Spanning Tree (MST). Graph algorithms can be classified
by their behavior, e.g, BFS, DFS, SSSP, BC traverse nodes, while
PR, KC, K-core are iterative algorithms and are computationally
intensive. There are optimizations that consider the characteristics
of such algorithms[12], as well as communication methods among
partitions that consider specific hardware configurations[13][73].

In PIM-enabled graph processing, the applications need to be
implemented using parallel algorithms to exploit the parallelism
in each PIM core. Several efficient parallel algorithms have been
studied[48][7] and some implementations are available[27]. If par-
allel and distributed versions of algorithms for specific applications
exist, they can be imported and used for PIM graph processing. Oth-
erwise, design and implementation of algorithms are the applica-
tion programmers’ responsibility, which could create a tremendous
amount of burden.

For the dynamic graph case, there are twomain algorithm choices:
static algorithms and dynamic/incremental algorithms. After up-
dates are applied to a graph, computing traditional graph algorithms
from scratch as is done for static graphs is typical. This requires
longer execution times, but the results are more accurate. To obtain
fast results and/or concurrency of computing algorithms while up-
dating on evolving graphs, dynamic/incremental algorithms can be
an alternative such as dynamic Breadth-First Search[49], approxi-
mate Triangle Counting[20], incremental PageRank[10], Connected
Component for dynamic graphs[47], fast approximate Single Source
Shortest Path[61], approximate centrality algorithms for dynamic
graphs[34][8][9][18]. Usually, dynamic algorithms begin with the
final result of a previous computation and estimate new results,
which are affected by graph updates. Some dynamic algorithms pro-
duce approximate results by computing the difference between the
original graph and the graph post-update. If parallel and distributed
versions of dynamic algorithms of targeted graph algorithms are

MEMSYS ’20, Sept. 29 - Oct. 1, 2020, Virtual Conference E. Kim and H. Kim

not accessible, a significant amount of work may be required by
application programmers.

3.4 Programming Models
Programming models for graph processing have been actively stud-
ied. The vertex-centric model is popular for its intuitive approach
since it was introduced in Pregel[46]. To overcome the random
access nature of edge lists, an edge-centric approach was intro-
duced in X-Stream[56]. Later, data-centric[67], graph-centric[64]
and hybrid programming models[74] were developed.

These models are associated with the traditional bulk synchro-
nous parallel (BSP) model and the GAS (Gather, Apply and Scatter)
model. There are also push and pull models that depend on the
direction of values in order to reduce synchronization and commu-
nication costs. The appropriate programming model can be chosen
depending on the targeted graph algorithms. Programming models
are tightly associated with application implementations. As men-
tioned in Section 3.3 Applications, if programmers had to design
parallel and distributed versions of targeted algorithms on their
own, selecting the proper programming model for a specific ap-
plication is the programmers’ responsibility, which could require
substantial effort by application programmers.

Another factor to select the appropriate programming model is
partitioning methods. Some partitioning algorithms are designed
to minimize the cuts among partitions which yield good perfor-
mance in certain applications but not all applications such as graph
traversing algorithms like Breath-First-Search (BFS).

For dynamic graphs, static programming models can often be
usedwith nomodifications, unless dynamic algorithms are available
and special programming models are required to execute them
efficiently.

3.5 Runtime APIs
When designing a runtime for PIM, considerations must be made
regarding which functions will be executed in PIM for improved
performance. In addition, it must also have facilities for multi-
threading, controlling PIM cores, scheduling of PIM operations,
orchestrating multiple PIMs (if multi-PIM supported), and data
placement of the partitioned graph.

As for runtime APIs, the features that are exposed to program-
mers will depend on the available application capabilities and
whether a feature should have an explicit API at all. For example,
the aforementioned runtime capabilities can be implicitly imple-
mented in the runtime and at the compiler level for maximizing
performance and reducing energy consumption, or they can be
exposed and available to programmers as runtime APIs.

For dynamic graphs, runtime APIs for graph updates need to
be added, as well as those for dynamic algorithms if dynamic algo-
rithms are supported in PIM. Data movement resulting from graph
re-partitioning that occurs as a result of graph updates can also be
exposed via runtime APIs or implicitly triggered as a part of the
graph update procedure. Details of re-partitioning will be explained
in section 3.9 Data Placement.

3.6 Compilers
Programming models, runtimes, and compilers are tightly related
when using PIM. When developing the roles and capabilities of
compilers for PIM, there are trade-offs that must be considered: the
compiler can assist in either mitigating the programmers’ burden,
or providing flexibility to the programmers.

Adapting dynamic graph processing to a compiler intended for
PIM adds the functionality mentioned in Section 3.5: Runtime APIs.

3.7 Operating Systems
An operating system should provide a cache coherence protocol,
virtual memory management, multi-threading capability, concur-
rency, and facilities for allocating memory; all of these capabilities
might be affected by adoption of PIM. For example, the returned
results from PIM will likely remain in the last level (e.g., L3) of the
cache since there is a reduced chance of data reuse. There is the
potential for optimizations of the cache coherence protocol in the
operating system to mitigate high rates of cache misses.

As for dynamic graph processing, no special modifications are
anticipated for the operating system.

3.8 Data Structures
Graph data structures in PIM for static graphs can be in any format
mentioned in Section 3.1: Graph Representation.

For adapting dynamic graphs, to our knowledge, there are mainly
two choices of existing data structure schemes. First, leaving extra
space for future additions to the graph i.e, Dynamic CSR (DCSR)[39].
DCSR is an extension of hybrid graph formats. It is easy to convert
from commonly used formats such as CSR or COO. The key to
producing good results is properly setting the size reserved for
graph updates (insertions), which is difficult to predict. If the size
is too large, space will be wasted, and locality is worsened. If it
is too small, scaling is limited. The second scheme is flexible data
structures for data insertion and deletion. These approaches are
found in Stinger[30] as linked lists, as well as tree-based approaches
such as B+tree in Hornet[21], PMA[15] GPMA[57], PAM[63], and
block memory of tree in Packed CSR[68], and C-tree in Aspen[28].
For faster access, tree nodes are often implemented using blocks of
memory (chunks).

Technically most of aforementioned dynamic graph data struc-
tures can be used for dynamic graph processing in PIM regardless of
their complexity in the implementation and data load methodology
to PIM cores. The effectiveness of graph compression and reorder-
ing for dynamic graphs, which requires maintenance overhead,
likely needs to be examined in the future.

3.9 Data Placement
Each partitioned graph during the preprocessing phase is mapped
to available cubes in PIM according to the hardware configuration
including the interconnection network design. The data structure
and edge list in the partition are arranged in memory such that
maximum performance can be attained by applications for a given
hardware configuration.

To adapt dynamic graphs to PIM with respect to data placement,
a new partitioning strategy is required that has two additional
considerations. The first problem is how to map newly arrived

Things to Consider to Enable Dynamic Graphs
in Processing-in-Memory MEMSYS ’20, Sept. 29 - Oct. 1, 2020, Virtual Conference

Table 1: Summary of graph design considerations, modifications, and the level of effort required to adapt dynamic graph
processing to existing static graph processing in PIM

Static Graph Modification Additions for Dynamic Graphs Level of Effort1

Impl.Required Import
Graph representation Depends Edge stream or batches Minimal -
Preprocessing Depends Some optimizations might not applicable Minimal -
Applications2 Optional Static algorithms vs. dynamic algorithms Substantial3 Minimal3
Programming models2 Optional Considering dynamic algorithms Substantial3 Minimal3
Runtime APIs ✓ Add-on Adding features (re-partitioning, dynamic algorithms) Moderate
Operating systems Optional (Virtual memory and cache coherence) None or minimal -
Compilers ✓ Add-on Dealing with runtime APIs for dynamic graphs Moderate
Data structures2 ✓ Required Dynamic graph data structure Substantial4 Moderate4
Data placement2 ✓ Required Re-partitioning and workload balance Substantial4 Moderate4
Micro-architectures Optional (Communication logic design and data load) None or minimal -

1“Impl. Required” refers to the levels of effort required to design and implement a given modification for dynamic graphs, or to tailor an optimization for PIM from an existing static
graph solution. “Import” refers to whether existing algorithms or reference implementations are available to use for dynamic graph cases.

2These are items that require major changes for dynamic graph processing in PIM from existing static graph processing PIM software and hardware co-design architectures.
3Supporting dynamic algorithms is optional depending on the requirements. The levels of effort were estimated with the assumptions required for implementing dynamic algorithms.
4The levels of effort for data structures and data placement for dynamic graphs include the complexity of managing the data structure and communications among partitions.

graph updates such as edge additions to partitions in PIM efficiently.
The second is how to deal with growing partition size and workload
imbalance. The workload balance can be evaluated using the ratio
of the size of partitions, i.e, the largest partition size vs. the smallest
(or average) partition size in general.

The offline partition algorithms[37][43][59][60] are not suitable
for dynamic graph partitioning. Typically they are modularity-
based iterative algorithms on a completed graph, which means
the graph partition procedure will be conducted from scratch with
any graph modification. To reduce the execution time for parti-
tioning, streaming partitioning[62] can be a good solution for new
vertex/edge assignment to partitions.

In the streaming partitioning approach, the graphs are consid-
ered to be a stream of edges; the decision is made by a single scan of
the graph. The graph read can be repeated for refinement purposes.
The most common and simplest streaming partition policies are
random, hash, and round-robin. There are heuristic algorithms to
produce better quality partitions for streaming partitioning based
on greedy approaches using edge-cut, such as Linear determin-
istic Greedy (LDG)[62], FENNEL[65], Edge-balanced Gemini[75],
Leopard[36], GraSP[11], xDGP[66], and more streaming edge parti-
tioning algorithms found [52][53][35]. Partition quality, in this case,
refers to the number of edge-cuts. Some streaming partitioning al-
gorithms need information such as the total number of vertices in
the graph or in the partition. This metadata needs to be tracked
if different graph partitioners are used in preprocessing and data
placement of dynamic graph updates.

There are a couple of issues for dynamic graphs in PIM which
are not covered by existing solutions such as how to determine the
number of PIM cores to use, when the partition needs to be split if it
grows close to the size of PIM cube capacity, and if node migration
will be allowed to reduce communication if the connectivity of the
node is affected by graph updates. The tradeoffs involved include
either potential benefits or increases in system complexity.

3.10 Micro-Architectures
The micro-architecture design for the logic layer in the 3D stacked
memory is the core of graph processing in PIM. Tesseract[5] elimi-
nated a shared cache to avoid cache coherence overhead, having
only private caches. The Tesseract PIM cores are identical while
GraphQ[76] have heterogeneous cores of a computation (Process-
ing) unit and a communication (Apply) unit to improve concurrency.
The Processing unit has a prefetcher with no cache, and the Apply
unit has a small scratchpad memory.

Adapting dynamic graph processing to those kinds of micro-
architectures may be possible with minimal effort, if data placement
changes and re-partitioning is handled properly in other layers
such as runtimes or compilers. However, that would be difficult
for certain PIM-based graph processing architectures having less
flexibility for optimizations such as GraphH[25]. GraphH imple-
ments the inter-cube communication in hardware and conducts
data compaction by eliminating vertices with no edges during the
preprocessing phase.

3.11 Development Environments & Evaluation
Most of graph applications, data sets, as well as simulators for
evaluating micro-architectures for static graph processing in PIM
can be used for dynamic graphs as well.

For evaluation of processing dynamic graphs, data sets for run-
ning benchmarks can be prepared in two ways. First, using dynamic
graphswhich have node generation information such as timestamps
as attributes[1][55][4]. Second, creating batch updates by randomly
choosing nodes or edges in the graph. These data items can then be
removed from the graph, and added once again as a batch. Creating
batch updates in this way maintains the properties of the graph.

To evaluate dynamic algorithms for dynamic graphs, the perfor-
mance can be compared to the runtime of static algorithm execution.
If evaluated dynamic algorithms produce approximate results, the
accuracy may need to be presented as well.

MEMSYS ’20, Sept. 29 - Oct. 1, 2020, Virtual Conference E. Kim and H. Kim

4 CONCLUSION
In this paper, we discussed the design considerations for PIM-based
systems to process dynamic graphs as efficiently as static graphs
and explored the opportunities for future research.

The programming model, runtime APIs, and compiler affects the
burden placed on software developers. The chosen data structures
and their layouts in memory affect the programming model and
communication methods. To reduce this burden, the operating sys-
tem and compiler can be modified for efficient graph processing. In
addition, existing tools can be used, such as graph frameworks and
graph partitioners. A graph framework usually includes a graph
data structure, programming model, and a set of algorithms. Note
that there is no specialized graph partitioner for PIM to our knowl-
edge, although data placement is key to PIM acceleration. Existing
partitioners can be adapted to the PIM preprocessing phase with
manual modification for communication.

Table 1 summarizes the various design considerations for both
dynamic and static graphs, as well as the level of effort required
to support dynamic graph processing with existing PIM-enabled
static graph processing configurations.

REFERENCES
[1] [n.d.]. BigDND: Big Dynamic Network Data. http://projects.csail.mit.edu/dnd/
[2] [n.d.]. Graph500. http://www.graph500.org/.
[3] [n.d.]. Hybrid Memory Cube Consortium et al. 2015. Hybrid memory cube

specification version 2.1. Technical Report ([n. d.]).
[4] [n.d.]. Stanford Large Network Dataset Collection. http://snap.stanford.edu/

data/#citnets
[5] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.

2015. A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing.
SIGARCH Comput. Archit. News 43, 3S (June 2015), 105–117. https://doi.org/10.
1145/2872887.2750386

[6] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. 2015. PIM-enabled instructions: A low-
overhead, locality-aware processing-in-memory architecture. In 2015 ACM/IEEE
42nd Annual International Symposium on Computer Architecture (ISCA). 336–348.

[7] Aris Anagnostopoulos, Ravi Kumar, Mohammad Mahdian, Eli Upfal, and Fabio
Vandin. 2012. Algorithms on Evolving Graphs. In Proceedings of the 3rd Inno-
vations in Theoretical Computer Science Conference (Cambridge, Massachusetts)
(ITCS ’12). Association for Computing Machinery, New York, NY, USA, 149–160.
https://doi.org/10.1145/2090236.2090249

[8] David Bader, David, Kintali, Shiva, Kamesh Madduri, Kamesh, Milena Mihail,
and Milena. 2007. Approximating Betweenness Centrality. https://doi.org/10.
1007/978-3-540-77004-6_10

[9] Miriam Baglioni, Filippo Geraci, Marco Pellegrini, and Ernesto Lastres. 2012. Fast
Exact Computation of Betweenness Centrality in Social Networks. In Proceedings
of the 2012 International Conference on Advances in Social Networks Analysis and
Mining (ASONAM 2012) (ASONAM ’12). IEEE Computer Society, USA, 450–456.
https://doi.org/10.1109/ASONAM.2012.79

[10] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. 2010. Fast Incremental
and Personalized PageRank over Distributed Main Memory Databases. CoRR
abs/1006.2880 (2010). arXiv:1006.2880 http://arxiv.org/abs/1006.2880

[11] Casey Battaglino, Pienta Pienta, and Richard Vuduc. 2015. GraSP: distributed
streaming graph partitioning. https://doi.org/10.5821/hpgm15.3

[12] Scott Beamer, Krste Asanović, and David Patterson. 2012. Direction-Optimizing
Breadth-First Search. In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis (Salt Lake City, Utah) (SC
’12). IEEE Computer Society Press, Washington, DC, USA, Article 12, 10 pages.

[13] S. Beamer, K. Asanović, and D. Patterson. 2017. Reducing Pagerank Communica-
tion via Propagation Blocking. In 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 820–831.

[14] N. Bell and M. Garland. 2009. Implementing sparse matrix-vector multiplication
on throughput-oriented processors. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. 1–11.

[15] Michael A. Bender and Haodong Hu. 2007. An Adaptive Packed-Memory Array.
ACM Trans. Database Syst. 32, 4 (Nov. 2007), 26–es. https://doi.org/10.1145/
1292609.1292616

[16] Erik G. Boman, Karen D. Devine, and Sivasankaran Rajamanickam. 2013. Scalable
Matrix Computations on Large Scale-Free Graphs Using 2D Graph Partitioning.
In Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis (Denver, Colorado) (SC ’13). Association for
Computing Machinery, New York, NY, USA, Article 50, 12 pages. https://doi.
org/10.1145/2503210.2503293

[17] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy
Ranganathan, and Onur Mutlu. 2018. Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks. SIGPLAN Not. 53, 2 (March 2018), 316–
331. https://doi.org/10.1145/3296957.3173177

[18] Ulrik Brandes and Christian Pich. 2007. Centrality Estimation in Large Networks.
Int. J. Bifurc. Chaos 17 (2007), 2303–2318.

[19] Thang Nguyen Bui and Curt Jones. 1992. Finding good approximate vertex and
edge partitions is NP-hard. Inform. Process. Lett. 42, 3 (25 May 1992), 153–159.
https://doi.org/10.1016/0020-0190(92)90140-Q

[20] Laurent Bulteau, Vincent Froese, Konstantin Kutzkov, and Rasmus Pagh. 2014.
Triangle counting in dynamic graph streams. CoRR abs/1404.4696 (2014).
arXiv:1404.4696 http://arxiv.org/abs/1404.4696

[21] F. Busato, O. Green, N. Bombieri, and D. A. Bader. 2018. Hornet: An Efficient
Data Structure for Dynamic Sparse Graphs and Matrices on GPUs. In 2018 IEEE
High Performance extreme Computing Conference (HPEC). 1–7.

[22] Umit Catalyurek, Cevdet Aykanat, and Bora Uçar. 2010. On Two-Dimensional
Sparse Matrix Partitioning: Models, Methods, and a Recipe. SIAM J. Scientific
Computing 32 (07 2010), 656–683. https://doi.org/10.1137/080737770

[23] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: Differ-
entiated Graph Computation and Partitioning on Skewed Graphs. In Proceedings
of the Tenth European Conference on Computer Systems (Bordeaux, France) (Eu-
roSys ’15). Association for Computing Machinery, New York, NY, USA, Article 1,
15 pages. https://doi.org/10.1145/2741948.2741970

[24] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One Trillion Edges: Graph Processing at Facebook-Scale.
Proc. VLDB Endow. 8, 12 (Aug. 2015), 1804–1815. https://doi.org/10.14778/2824032.
2824077

[25] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and H. Yang.
2019. GraphH: A Processing-in-Memory Architecture for Large-Scale Graph
Processing. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 38, 4 (2019), 640–653.

[26] Camil Demetrescu, David Eppstein, Zvi Galil, and Giuseppe F. Italiano. 2010.
Dynamic Graph Algorithms (2 ed.). Chapman and Hall/CRC, 9.

[27] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoretically Efficient
Parallel Graph Algorithms Can Be Fast and Scalable. In Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures (Vienna, Austria)
(SPAA ’18). Association for Computing Machinery, New York, NY, USA, 393–404.
https://doi.org/10.1145/3210377.3210414

[28] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2019. Low-Latency Graph
Streaming Using Compressed Purely-Functional Trees. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New
York, NY, USA, 918–934. https://doi.org/10.1145/3314221.3314598

[29] Jeff Draper, Jacqueline Chame, Mary Hall, Craig Steele, Tim Barrett, Jeff LaCoss,
John Granacki, Jaewook Shin, Chun Chen, Chang Woo Kang, Ihn Kim, and
Gokhan Daglikoca. 2002. The Architecture of the DIVA Processing-in-Memory
Chip. In Proceedings of the 16th International Conference on Supercomputing (New
York, New York, USA) (ICS ’02). Association for Computing Machinery, New
York, NY, USA, 14âĂŞ25. https://doi.org/10.1145/514191.514197

[30] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. 2012. STINGER: High performance
data structure for streaming graphs. In 2012 IEEE Conference on High Performance
Extreme Computing. 1–5.

[31] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. 2005. On Graph Problems in a Semi-Streaming Model. Theor. Comput.
Sci. 348, 2 (Dec. 2005), 207–216. https://doi.org/10.1016/j.tcs.2005.09.013

[32] Chuangyi Gui, Long Zheng, Bingsheng He, Cheng Liu, Xinyu Chen, Xiaofei Liao,
and Hai Jin. 2019. A Survey on Graph Processing Accelerators: Challenges and
Opportunities. CoRR abs/1902.10130 (2019). arXiv:1902.10130 http://arxiv.org/
abs/1902.10130

[33] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo
Kim, Jinha Kim, and Hwanjo Yu. 2013. TurboGraph: A Fast Parallel Graph
Engine Handling Billion-Scale Graphs in a Single PC. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(Chicago, Illinois, USA) (KDD ’13). Association for Computing Machinery, New
York, NY, USA, 77–85. https://doi.org/10.1145/2487575.2487581

[34] Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. 2015. Fully Dynamic
Betweenness Centrality Maintenance on Massive Networks. Proc. VLDB Endow.
9, 2 (Oct. 2015), 48–59. https://doi.org/10.14778/2850578.2850580

[35] L. Hoang, R. Dathathri, G. Gill, and K. Pingali. 2019. CuSP: A Customizable
Streaming Edge Partitioner for Distributed Graph Analytics. In 2019 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). 439–450.

[36] Jiewen Huang and Daniel Abadi. 2016. Leopard: lightweight edge-oriented parti-
tioning and replication for dynamic graphs. Proceedings of the VLDB Endowment

http://projects.csail.mit.edu/dnd/
http://www.graph500.org/
http://snap.stanford.edu/data/#citnets
http://snap.stanford.edu/data/#citnets
https://doi.org/10.1145/2872887.2750386
https://doi.org/10.1145/2872887.2750386
https://doi.org/10.1145/2090236.2090249
https://doi.org/10.1007/978-3-540-77004-6_10
https://doi.org/10.1007/978-3-540-77004-6_10
https://doi.org/10.1109/ASONAM.2012.79
https://arxiv.org/abs/1006.2880
http://arxiv.org/abs/1006.2880
https://doi.org/10.5821/hpgm15.3
https://doi.org/10.1145/1292609.1292616
https://doi.org/10.1145/1292609.1292616
https://doi.org/10.1145/2503210.2503293
https://doi.org/10.1145/2503210.2503293
https://doi.org/10.1145/3296957.3173177
https://doi.org/10.1016/0020-0190(92)90140-Q
https://arxiv.org/abs/1404.4696
http://arxiv.org/abs/1404.4696
https://doi.org/10.1137/080737770
https://doi.org/10.1145/2741948.2741970
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.1145/3210377.3210414
https://doi.org/10.1145/3314221.3314598
https://doi.org/10.1145/514191.514197
https://doi.org/10.1016/j.tcs.2005.09.013
https://arxiv.org/abs/1902.10130
http://arxiv.org/abs/1902.10130
http://arxiv.org/abs/1902.10130
https://doi.org/10.1145/2487575.2487581
https://doi.org/10.14778/2850578.2850580

Things to Consider to Enable Dynamic Graphs
in Processing-in-Memory MEMSYS ’20, Sept. 29 - Oct. 1, 2020, Virtual Conference

9 (03 2016), 540–551. https://doi.org/10.14778/2904483.2904486
[37] George Karypis and Vipin Kumar. 1995. METIS –Unstructured Graph Partitioning

and Sparse Matrix Ordering System, Version 2.0. (01 1995).
[38] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel

Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 20, 1 (Dec. 1998),
359–392.

[39] James King, Thomas Gilray, Robert Michael Kirby, and Matthew Might. 2016.
Dynamic-CSR : A Format for Dynamic Sparse-Matrix Updates.

[40] Vipin Kumar, A. Grama, Anshul Gupta, and George Karypis. 1994. Introduction
to parallel computing. Design and analysis of algorithms. Vol. 2.

[41] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (Hollywood, CA, USA) (OSDI’12).
USENIX Association, USA, 31–46.

[42] Kevin Lang. 2004. Finding good nearly balanced cuts in power law graphs. (12
2004).

[43] D. Lasalle and G. Karypis. 2013. Multi-threaded Graph Partitioning. In 2013 IEEE
27th International Symposium on Parallel and Distributed Processing. 225–236.

[44] Dong Uk Lee, Kyung Whan Kim, Kwan W. Kim, Hongjung Kim, Ju Young Kim,
Young Jun Park, Jae Hwan Kim, Dae Suk Kim, Heat Bit Park, Jin Wook Shin,
Jang Hwan Cho, Ki Hun Kwon, Min Jeong Kim, Jaejin Lee, Kun Woo Park,
Byongtae Chung, and Sungjoo Hong. 2014. 25.2 A 1.2V 8Gb 8-channel 128GB/s
high-bandwidth memory (HBM) stacked DRAM with effective microbump I/O
test methods using 29nm process and TSV. 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC) (2014), 432–433.

[45] Peter Macko, Virendra Marathe, Daniel Margo, and Margo Seltzer. 2015. LLAMA:
Efficient graph analytics using Large Multiversioned Arrays. Proceedings - In-
ternational Conference on Data Engineering 2015 (05 2015), 363–374. https:
//doi.org/10.1109/ICDE.2015.7113298

[46] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-
Scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (Indianapolis, Indiana, USA) (SIGMOD ’10).
Association for Computing Machinery, New York, NY, USA, 135–146. https:
//doi.org/10.1145/1807167.1807184

[47] R.McColl, O. Green, andD. A. Bader. 2013. A new parallel algorithm for connected
components in dynamic graphs. In 20th Annual International Conference on High
Performance Computing. 246–255.

[48] Andrew McGregor. 2014. Graph Stream Algorithms: A Survey. SIGMOD Rec. 43,
1 (May 2014), 9–20. https://doi.org/10.1145/2627692.2627694

[49] Ulrich Meyer. 2008. On Dynamic Breadth-First Search in External-Memory. CoRR
abs/0802.2847 (2008). arXiv:0802.2847 http://arxiv.org/abs/0802.2847

[50] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun.
2019. Processing Data Where It Makes Sense: Enabling In-Memory Computation.
CoRR abs/1903.03988 (2019). arXiv:1903.03988 http://arxiv.org/abs/1903.03988

[51] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim. 2017. GraphPIM: Enabling
Instruction-Level PIM Offloading in Graph Computing Frameworks. In 2017 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
457–468.

[52] Joel Nishimura and Johan Ugander. 2013. Restreaming Graph Partitioning: Sim-
ple Versatile Algorithms for Advanced Balancing. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(Chicago, Illinois, USA) (KDD ’13). Association for Computing Machinery, New
York, NY, USA, 1106–1114. https://doi.org/10.1145/2487575.2487696

[53] A. S. Pope, D. R. Tauritz, and A. D. Kent. 2016. Evolving Multi-level Graph Parti-
tioning Algorithms. In 2016 IEEE Symposium Series on Computational Intelligence
(SSCI). 1–8.

[54] Moinuddin K. Qureshi, M. Aater Suleman, and Yale N. Patt. 2007. Line Distil-
lation: Increasing Cache Capacity by Filtering Unused Words in Cache Lines.
In Proceedings of the 2007 IEEE 13th International Symposium on High Perfor-
mance Computer Architecture (HPCA ’07). IEEE Computer Society, USA, 250–259.
https://doi.org/10.1109/HPCA.2007.346202

[55] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with
Interactive GraphAnalytics and Visualization. InAAAI. http://networkrepository.
com

[56] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-
Centric Graph Processing Using Streaming Partitions. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,
USA, 472–488. https://doi.org/10.1145/2517349.2522740

[57] Mo Sha, Yuchen Li, Bingsheng He, and Kian-Lee Tan. 2017. Accelerating Dynamic
Graph Analytics on GPUs. Proc. VLDB Endow. 11, 1 (Sept. 2017), 107–120. https:
//doi.org/10.14778/3151113.3151122

[58] Gagandeep Singh, Lorenzo Chelini, Stefano Corda, Ahsan Javed Awan, Sander
Stuijk, Roel Jordans, Henk Corporaal, and Albert-Jan Boonstra. 2019. Near-
Memory Computing: Past, Present, and Future. Microprocess. Microsystems 71
(2019).

[59] G. M. Slota, K. Madduri, and S. Rajamanickam. 2014. PuLP: Scalable multi-
objective multi-constraint partitioning for small-world networks. In 2014 IEEE
International Conference on Big Data (Big Data). 481–490.

[60] G. M. Slota, S. Rajamanickam, K. Devine, and K. Madduri. 2017. Partitioning
Trillion-Edge Graphs in Minutes. In 2017 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). 646–655.

[61] S. Srinivasan, S. Riazi, B. Norris, S. K. Das, and S. Bhowmick. 2018. A Shared-
Memory Parallel Algorithm for Updating Single-Source Shortest Paths in Large
Dynamic Networks. In 2018 IEEE 25th International Conference on High Perfor-
mance Computing (HiPC). 245–254.

[62] Isabelle Stanton and Gabriel Kliot. 2012. Streaming Graph Partitioning for
Large Distributed Graphs. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Beijing, China) (KDD
’12). Association for Computing Machinery, New York, NY, USA, 1222–1230.
https://doi.org/10.1145/2339530.2339722

[63] Yihan Sun, Daniel Ferizovic, and Guy E. Blelloch. 2016. PAM: Parallel Augmented
Maps. CoRR abs/1612.05665 (2016). arXiv:1612.05665 http://arxiv.org/abs/1612.
05665

[64] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. 2013. From “Think like a Vertex” to “Think like a Graph”. Proc.
VLDB Endow. 7, 3 (Nov. 2013), 193–204. https://doi.org/10.14778/2732232.2732238

[65] Charalampos E. Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan
Vojnovic. 2014. Fennel: Streaming Graph Partitioning for Massive Scale Graphs.
In WSDM. ACM.

[66] Luis M. Vaquero, Félix Cuadrado, Dionysios Logothetis, and Claudio Martella.
2013. xDGP: A Dynamic Graph Processing System with Adaptive Partitioning.
CoRR abs/1309.1049 (2013). arXiv:1309.1049 http://arxiv.org/abs/1309.1049

[67] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D. Owens. 2016. Gunrock: A High-Performance Graph Processing Library
on the GPU. SIGPLAN Not. 51, 8, Article 11 (Feb. 2016), 12 pages. https://doi.
org/10.1145/3016078.2851145

[68] Brian Wheatman and Helen Xu. 2018. Packed Compressed Sparse Row: A Dy-
namic Graph Representation. 1–7. https://doi.org/10.1109/HPEC.2018.8547566

[69] Wm. A. Wulf and Sally A. McKee. 1995. Hitting the Memory Wall: Implications
of the Obvious. SIGARCH Comput. Archit. News 23, 1 (March 1995), 20âĂŞ24.
https://doi.org/10.1145/216585.216588

[70] Chunxing Yin, Jason Riedy, and David A. Bader. 2018. A New Algorithmic Model
for Graph Analysis of Streaming Data. In Proceedings of the 14th International
Workshop on Mining and Learning with Graphs (MLG). http://www.mlgworkshop.
org/2018/papers/MLG2018_paper_23.pdf

[71] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L. Greathouse,
Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM: Throughput-Oriented Pro-
grammable Processing in Memory. In Proceedings of the 23rd International Sym-
posium on High-Performance Parallel and Distributed Computing (Vancouver, BC,
Canada) (HPDC ’14). Association for Computing Machinery, New York, NY, USA,
85âĂŞ98. https://doi.org/10.1145/2600212.2600213

[72] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis, and X.
Qian. 2018. GraphP: Reducing Communication for PIM-Based Graph Processing
with Efficient Data Partition. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 544–557.

[73] Shijie Zhou, Rajgopal Kannan, Hanqing Zeng, and Viktor K. Prasanna. 2018. An
FPGA Framework for Edge-centric Graph Processing. In Proceedings of the 15th
ACM International Conference on Computing Frontiers (Ischia, Italy) (CF ’18). ACM,
New York, NY, USA, 69–77. https://doi.org/10.1145/3203217.3203233

[74] Shijie Zhou and V. Prasanna. 2017. Accelerating Graph Analytics on CPU-FPGA
Heterogeneous Platform. 137–144. https://doi.org/10.1109/SBAC-PAD.2017.25

[75] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A Computation-Centric Distributed Graph Processing System. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Implementation
(Savannah, GA, USA) (OSDI’16). USENIX Association, USA, 301–316.

[76] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi
Wang, and Xuehai Qian. 2019. GraphQ: Scalable PIM-Based Graph Processing. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture (Columbus, OH, USA) (MICRO ’52). Association for Computing Machinery,
New York, NY, USA, 712–725. https://doi.org/10.1145/3352460.3358256

https://doi.org/10.14778/2904483.2904486
https://doi.org/10.1109/ICDE.2015.7113298
https://doi.org/10.1109/ICDE.2015.7113298
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/2627692.2627694
https://arxiv.org/abs/0802.2847
http://arxiv.org/abs/0802.2847
https://arxiv.org/abs/1903.03988
http://arxiv.org/abs/1903.03988
https://doi.org/10.1145/2487575.2487696
https://doi.org/10.1109/HPCA.2007.346202
http://networkrepository.com
http://networkrepository.com
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.14778/3151113.3151122
https://doi.org/10.14778/3151113.3151122
https://doi.org/10.1145/2339530.2339722
https://arxiv.org/abs/1612.05665
http://arxiv.org/abs/1612.05665
http://arxiv.org/abs/1612.05665
https://doi.org/10.14778/2732232.2732238
https://arxiv.org/abs/1309.1049
http://arxiv.org/abs/1309.1049
https://doi.org/10.1145/3016078.2851145
https://doi.org/10.1145/3016078.2851145
https://doi.org/10.1109/HPEC.2018.8547566
https://doi.org/10.1145/216585.216588
http://www.mlgworkshop.org/2018/papers/MLG2018_paper_23.pdf
http://www.mlgworkshop.org/2018/papers/MLG2018_paper_23.pdf
https://doi.org/10.1145/2600212.2600213
https://doi.org/10.1145/3203217.3203233
https://doi.org/10.1109/SBAC-PAD.2017.25
https://doi.org/10.1145/3352460.3358256

	Abstract
	1 Introduction
	2 Dynamic Graphs
	2.1 Dynamic Graph Classification
	2.2 Dynamic Graph Constraints for PIM

	3 Processing Dynamic Graph in PIM
	3.1 Graph Representation
	3.2 Preprocessing
	3.3 Applications
	3.4 Programming Models
	3.5 Runtime APIs
	3.6 Compilers
	3.7 Operating Systems
	3.8 Data Structures
	3.9 Data Placement
	3.10 Micro-Architectures
	3.11 Development Environments & Evaluation

	4 Conclusion
	References

