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Abstract
To reduce the latency of accessing backend servers, today’s
web services usually adopt in-memory key-value stores in
the front end which cache the frequently accessed objects.
Memcached and Redis are two most popular key-value cache
systems. Due to the limited size of memory, an in-memory
key-value store needs to be configured with a fixed amount
of memory, i.e., cache size, and cache replacement is unavoid-
able when the footprint of accessed objects is larger than
the cache size. Memcached implements the least recently
used (LRU) policy. Redis adopts an approximated LRU policy
to avoid maintaining LRU list structures. On a replacement,
Redis samples pre-configured 𝐾 keys, adds them to the evic-
tion pool, and then chooses the LRU key from the eviction
pool for eviction. We name this policy approx-K-LRU. We
find that approx-K-LRU behaves close to LRU when 𝐾 is
large. However, different 𝐾s can yield different miss ratios.
On the other hand, the sampling and replacement decision
itself results in an overhead that is related to 𝐾 . This paper
proposes DLRU (Dynamic LRU ), which explores this con-
figurable parameter and dynamically sets 𝐾 . DLRU utilizes
a low-overhead miniature cache simulator to predict miss
ratios of different 𝐾s and adopts a cost model to estimate
the performance trade-offs. Our experimental results show
that DLRU is able to improve Redis throughput over the rec-
ommended, default approx-5-LRU by up to 32.5% for a set of
storage traces.

CCS Concepts: • Information systems → Application
servers; Cloud based storage.

Keywords: Redis, Cache Replacement, Memory Allocation,
In-Memory Key-Value Stores, Memory Caches, LRU
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1 Introduction
In today’s multi-level storage architectures, in-memory key-
value cache plays an important role to ensure low-latency
system performance. Retrieving objects from a key-value
cache system deployed in memory in a front-end server is
much faster than from a remote backend server. Redis is one
of the well-developed in-memory cache systems to reduce
response time and alleviate load pressure on databases. It has
been widely deployed by many companies and in countless
mission-critical production environments, including Twitter,
GitHub, Weibo, StackOverflow, Flickr, Amazon and many
other popular web services [2, 19, 21].

An important feature of Redis is that it supports not only
strings, but also typed objects such as sets, hashes, lists,
bitmaps, geospatial data etc. [18], making it the first choice
in the cases that different types of data must be cached .
When Redis reaches its pre-configured memory usage limit,
in order to store newly incoming data it must evict old data
to make available memory space. This process is called data
eviction, and the strategy of decidingwhich data to be evicted
is known as the eviction policy or replacement policy. Redis
supports various eviction policies including Least Recently
Used (LRU), Least Frequently Used (LFU), Random Eviction,
and Shorter Time-to-Live (TTL) [20]. Among those policies,
LRU replacement is the most commonly chosen policy in
industry for both software and hardware caches.

Research of hotspot issue shows that accesses in real-word
commercial key-value stores follow the power-law distri-
bution where the popular keys dominate the accesses [6].
LAMA’s evaluation on the Facebook ETC workload also
shows its high data locality [9]. LRU is therefore the good
choice as it can exploit the locality well. However, LRU im-
plementation can be costly. In software caches, prioritizing
items according to their last-access-time usually relies on
linked structures to book-keep their orderings [3], and item
evictions require list operations including pointer updates.
All of these introduce space overhead and computation over-
head. In addition, each time when an item is accessed, it
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Figure 1. MRCs of src1 under LRU and different 𝐾s

must be locked to facilitate the update of the corresponding
LRU priority, resulting in extra performance degradation [5].
Memcached, another popular key-value store, only main-
tains the LRU structure at the slab class level [14].

In order to save memory and improve performance, Redis
discards the ordered list structure design and applies an
approximated LRU policy [20] that only needs to keep track
of the access time of each object. Redis picks the candidate
with the oldest access time for eviction from an eviction
pool consisting of only a small number of keys. Each time
when an eviction is needed, according to a specified sampling
configuration, 𝐾 keys are randomly sampled from all keys
in the memory and added into the eviction pool. All keys in
the eviction pool are sorted by their last access time and the
one with the oldest time is evicted. We name this eviction
policy, approx-K-LRU. The default setting of Redis is 𝐾 = 5
meaning each time five randomly sampled keys are added to
the pool for eviction decision. 𝐾 is configurable but is fixed
across Redis execution for the current design.
We run a collection of real-word enterprise server traces

from Microsoft Research Cambridge [1] on Redis to plot the
miss ratio curves (MRCs), which show the miss ratios against
the maximum memory size (cache size) of Redis. Through
experiments, we observe that the MRCs of approx-16-LRU
can closely approximate those of the real LRU. The difference
between the two are typically minimal enough to ignore. A
larger 𝐾 normally indicates a closer behavior of eviction to
a real LRU policy, since the more keys are sampled to add
into the eviction pool, the more likely the evicted object is
near the LRU side of a real LRU list.
Figure 1 shows the MRCs of five different sample sizes

for trace src1 where the cache size is represented as the
number of objects. We can clearly observe that the sample
size 𝐾 could impose large impacts on miss ratios. When the

cache size is less than 0.5 * 1e7, the miss ratio of approx-1-
LRU is almost always lower than other settings of 𝐾 , which
means the random replacement policy can perform better
than LRU. However if the cache size is greater than this
point, the MRC of LRU apparently indicates that the real
LRU eviction policy is the best choice if we only consider the
impact of miss ratio. The maximum difference of miss ratio
under various 𝐾 settings at a fixed cache size could be more
than 10%. Research has shown that the overall performance
of cache systems are highly determined by its miss ratio,
even a slight reduction of it could introduce a significant
improvement in performance [4, 7].

This paper proposes DLRU: Dynamic LRU, which explores
the configuration of 𝐾 in approx-K-LRU, in order to improve
the overall system performance. DLRU reconfigures 𝐾 along
with Redis execution. We adopt a scaled-down cache simu-
lator to track the miss ratios of different 𝐾s on the fly with
a low overhead [22]. We develop a cost model to balance
between the benefit of lowmiss ratio and the overhead of ran-
dom selection and sorting of approx-K-LRU. Our experiment
results show that DLRU can always match the performance
of the best 𝐾 , and improve the overall Redis throughput over
the default approx-5-LRU by up to 32.5%.

2 Motivation and Background
This section furthermotivates ourwork by illustrating approx-
K-LRU eviction through a trace example. Then we describe
Miniature Cache [22], a low-overhead cache simulator. DLRU
uses miniature cache to emulate approx-K-LRU and estimate
the miss ratio.

2.1 Impacts of Sample Size K
We use a simple trace example to illustrate the impact of
sample size 𝐾 over miss ratio by choosing three settings of
𝐾 , where 𝐾 = 16 simulates the real LRU, 𝐾 = 2 represents
a middle ground, and 𝐾 = 1 means random eviction. Ta-
bles 1 to 3 show the cache content and eviction selection for
approx-16-LRU, approx-2-LRU, and approx-1-LRU, respec-
tively. Assume that cache capacity is 5. An evicted key is the
one with largest access time chosen from 𝐾 sampled keys,
which are sorted based on their recent access time from top
to bottom with the most recent item on top in the tables.
Under 𝐾 = 16, every access is a miss, miss ratio is 100%.
Under approx-2-LRU, there are 9 misses and the miss ratio
is 75%. Under random eviction, i.e., approx-1-LRU, there are
7 misses and the miss ratio has decreased to 58%.

This example shows that the trace pattern, cache size, and
sample size 𝐾 of approx-K-LRU all have impacts on the miss
ratio of a key-value cache. As pointed by Jaleel et al [12],
LRU is not able to explore well the reuse intervals (reuse
distances) that are larger than the cache size. Note that the
reuse distance between an access and its next reuse is the
number of distinct accesses in between. In the example trace,
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Trace a b c d e f a b c d e f
Cached Keys a ab abc abcd abcde bcdef cdefa defab efabc fabcd abcde bcdef
Evicted Key a b c d e f a

Sampled
Keys

e f a b c d e
d e f a b c d
c d e f a b c
b c d e f a b
a b c d e f a

Hit 0 0 0 0 0 0 0 0 0 0 0 0
Table 1. Redis replacement: approx-16-LRU

Trace a b c d e f a b c d e f
Cached Keys a ab abc abcd abcde acdef cdefa cefab efabc eabcd abcde acdef
Evicted Key b d f b
Sampled
Keys

e a c e
b d f b

Hit 0 0 0 0 0 0 1 0 1 0 1 0
Table 2. Redis replacement: approx-2-LRU

Trace a b c d e f a b c d e f
Cached Keys a ab abc abcd abcde abdef bdefa defab defac efacd facde acdef
Evicted Key c b
Sampled Keys c b
Hit 0 0 0 0 0 0 1 1 0 1 1 1

Table 3. Redis replacement: approx-1-LRU

the length of the reuse intervals for all reuses is 6, which
is bigger than the cache size 5. In this case, approx-16-LRU,
which behaves close to the real LRU, fails to generate any
hits. On the other hand, random eviction leads to most hits.
In reality, we can observe a mix of short and long reuse
intervals in different phases. Based on this observation, we
propose an approach to choosing 𝐾 dynamically. However,
miss ratio cannot be the only metric to make the decision.
A larger 𝐾 implies more overhead in the eviction process
than that of a smaller 𝐾 . We will describe a cost model in
Section 3.5.

2.2 Miniature Simulation
In order to make selection of sample size 𝐾 , the miss ratio of
the corresponding𝐾 must be predicted in real time.We adopt
a lightweight scaled-down approximation technique, the
Miniature Cache Simulator, to reduce overhead of capturing
trace pattern and miss ratio tracking [22]. The miniature
cache proposed by Waldspurger et al. simulates the actual
cache by scaling down, by several orders of magnitude, both
the original accesses and the cache size. It can accurately
model the behavior of the original cache with any given
eviction policy.

During the processing of an online trace, all references
are hashed and only when the hash value of a key is less
than a threshold, that key of reference is sampled and stored
(cached) into a hash table. Let the 𝑇 and 𝑃 be threshold and
modulus. The sampling condition for any referenced key 𝐿
is

ℎ𝑎𝑠ℎ(𝐿) mod 𝑃 < 𝑇 (1)

The miniature cache sampling rate is thus 𝑅 = 𝑇 /𝑃 . This
ensures all requests to the same key will be sampled. The
small and spatially hashed samples of the requests show
a statistical similarity against the whole references. Miss
ratio then can be extracted from the miniature cache by
counting the number of misses against the total sampled
references. Experiments show that small values of 𝑅 = 0.01
or even 𝑅 = 0.001 can yield very accurate results. Such a low
sampling rate implies low time and space overhead even for
a long execution.

3 Design and Implementation
In this section, we describe the design and implementation
of DLRU in detail. Our implementation is above Redis evic-
tion which is described in Section 3.1. We then present an
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overview of DLRU design in Section 3.2. Section 3.3 describes
the implementation of the miniature caches for miss ratio
prediction. Section 3.4 presents a design to measure miss
latency and eviction process overhead, which are taken into
consideration in the cost model in Section 3.5. The cost model
determines the choice of 𝐾 for DLRU.

3.1 Redis Eviction Process
We use approx-5-LRU as an example to explain the Redis
workflow for evictions. First Redis initializes it’s server ac-
cording to configurations including 𝐾 = 5. Assume a client
sends a command, GET key. Redis looks up the command
handling table to find which function to use to handle this
request. If it is an access that hits cache, Redis returns the
value to the client. If it is a miss, Redis returns a miss flag to
the client. In our experiments, once a client receives a miss
notice, it sends a SET request with the key and value. For
any set request, if the key is new for Redis, it conducts a
memory eviction check. If the max-memory limit is reached,
the eviction process will be invoked. Five (𝐾) keys are ran-
domly sampled from the memory key space and merged
into the current eviction pool. Then the one with the oldest
last-access-time will be evicted. The size of the eviction pool
is fixed and configurable. We use the default configuration
of 16 for all our evaluation. When the sampled five keys are
merged into the eviction pool, the youngest five keys are
dropped. Redis repeatedly checks if the currently used mem-
ory is under the max-memory limit. If not, a new round of
eviction is invoked. Once Redis has spared enough memory
space, the new key-value pair is set into memory.

3.2 DLRU Overview
As discussed in Section 3.1, Redis sets up 𝐾 during initializa-
tion and 𝐾 is fixed unless a client manually switches it. The
eviction process does not require that𝐾 be fixed. So the basic
idea of DLRU is simple: reset 𝐾 automatically on the fly. As
shown in Figure 2, we simulate approx-K-LRU under various
𝐾 . We dedicate one miniature cache for each 𝐾 . We use a
penalty cost model to pick one that minimizes overall time
latency and reconfigure Redis in real time. The implementa-
tion consists of two parts residing in server initialization and
command dispatcher, respectively. In server initialization, we
set an interval size measured as the number of GET requests.
Later, for every interval, DLRU will decide if a new 𝐾 needs
to be set. We also initialize the miniature caches in this stage.
In the command dispatcher, once a GET key command is
detected, DLRU determines whether to sample such key. If
a key is sampled, it is fed into every miniature cache. After
calculating and comparing overall miss penalty for each 𝐾 ,
the Redis server.maxmemory_samples parameter is set to
be the optimal 𝐾 with the least predicted penalty.

Figure 2. DLRU overview

3.3 Miniature Cache Simulation
We place a filter in Redis to identify keys that satisfy con-
dition in Eq. 1. Modulus 𝑃 is set to a power of two, and
threshold 𝑇 is fixed according to a given miniature cache
sampling rate 𝑅 as 𝑇 = 𝑃 ∗ 𝑅. In a periodic interval window
(default is 5 million GET requests), a randomly sampled small
subset of references are selected to feed into the miniature
caches.

As discussed in Section 1, 𝐾 = 16 and 𝐾 = 1 represent real
LRU and random eviction, respectively. We add three other
settings in between where 𝐾 = 2, 𝐾 = 5, and 𝐾 = 10. Five
independent approx-K-LRUminiature caches, corresponding
to K = 1, 2, 5, 10, 16, are fed with this subset of keys at the
same time. Although more miniature caches of different 𝐾s
between 1 and 16 could be evaluated, the performance gap
between a small interval of 𝐾-settings is not significant. In
addition, more miniature caches will also introduce more
simulation overhead.
Each miniature cache first looks up the sampled keys in

their own key space, which is maintained in their own hash
table. If the key does not exist, a miss occurs and the key
is cached. A cache replacement using the corresponding
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Figure 3. Hash table resizing

approx-K-LRU policy is invoked if the miniature cache is full.
To determine if a miniature cache is full, the current used
cache size is compared with the maximum cache size. The
current used cache size is simply the number of items stored
in the miniature cache. The maximum cache size, in terms of
the number of objects, is computed using Eq. 2 below, where
the average item size is extracted directly from Redis statistic.
As the average item size can change across intervals, the
𝑀𝑎𝑥 𝑐𝑆𝑖𝑧𝑒 should adjust accordingly. As shown in Figure 3,
all miniature caches are required to adjust its size after every
five millions of requests. When the 𝑀𝑎𝑥 𝑐𝑆𝑖𝑧𝑒 shrinks, we
simply remove all overflow items in the miniature cache.
Note that since the position of item in the miniature cache is
randomly determined, the removals of 𝑛 items from the tail
of miniature cache are statistically equivalent to randomly
removing 𝑛 items.

Max cSize = server.maxmemory ∗ 𝑅/average item size (2)

Ideally, miniature caches should simulate approx-K-LRU
accurately. However, if during an interval, not enough dis-
tinct references are cached, the accuracy is not guaranteed
[22].We observe that when the actual number of sampled dis-
tinct references in an five million request interval is greater
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Figure 4. Overhead measurement

than 256, miniature simulation can deliver acceptable accu-
racy, which is also observed in the original work by Wald-
spurger et al [23]. In our implementation, we set 𝑅 to 1/200,
i.e., one every 200 requests is sampled. This sampling rate
works well for most cases. If in any evaluation interval, less
than 256 distinct references are collected, we consider that
the miniature cache is too small to predict reliable miss rate.
In this case, the default 𝐾 = 5 is configured for the following
interval. Note that 256 is a very small number compared to
the total of five million requests. Only on a few occasions,
DLRU will need to go back the default.

3.4 Miss Latency and Eviction Process Overhead
To estimate the performance impact of misses, we need to
know the miss latency. In this paper, the miss latency is
defined as the time interval from the miss of a GET operation
in the key-value cache to the completion of a SET operation
with the same key sent by client.Wemeasure themiss latency
on the fly for each interval of 5 million references. We track
the miss penalties in the previous interval and use their
mean as the miss latency for the DLRU decision in the next
interval.
The cache eviction overhead comes from sampling and

access-time comparison. The first one is the operation of
randomly sampling the required number of 𝐾 keys from
all that in memory. The other is the operation of merging
with the eviction pool and finding a key with the largest last
access time for eviction. It is challenging to actually measure
this overhead for all approx-K-LRU settings in real time as
in any time interval, only one setting of 𝐾 can be measured.

In our experiments, we observe a proportional relationship
of such overhead between different settings of 𝐾 . Let 𝑂𝐻𝐾
be the mean sampling and comparison overhead for approx-
K-LRU. Figure 4 shows 𝑂𝐻𝐾 for 𝐾 = 1, 2, 5, 10, 16 for usr on
a fixed-K-configuration Redis server. The range of the each
normalized curve is relatively small. In other words, if we
measure the 𝑂𝐻𝐾 at a time window, we can estimate other
𝑂𝐻 ′

𝐾
𝑠 based on the pre-measured proportionality ratios.
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3.5 DLRU Cost Model
In order to deal with access pattern changes, we divide the
reference stream into fixed-size intervals according to the
number of GET requests. In our experiments, the default
interval size is set to 5 million GET accesses. The cost model
in this section estimates the overall miss penalty for approx-
K-LRU in the current interval and use it to guide the choice
of 𝐾 for the next interval.
Let 𝑝 be the average miss latency, 𝑂𝐻𝐾 be eviction over-

head and𝑀𝐾 be the miss count gathered in the past interval
using the miniature model. We estimate 𝑃𝐾 the overall miss
penalty for approx-K-LRU as follows.

𝑃𝐾 = 𝑀𝐾 ∗ (𝑝 +𝑂𝐻𝐾 ) (3)
Our goal is to choose a𝐾 with the minimal 𝑃𝐾 . Then Redis

server is reconfigured with the optimal 𝐾 for the following
interval. Normally, 𝑝 is orders of magnitude greater than
𝑂𝐻𝐾 , so the impact of the latter over the overall miss penalty
is trivial. Selection of 𝐾 is dominated by the miss counts
predicted by the miniature caches. Our scheme will choose
the𝐾 with the smallest miss ratio. However, we observe that,
if the miss counts are very close to each other for different𝐾s
in an interval,𝑂𝐻𝐾 can become a deciding factor for overall
miss penalty. In this case, our scheme will prefer a smaller
𝐾 .

4 Evaluation
In order to evaluate the effectiveness of DLRU, we first give a
brief description of experimental setup. Second, we evaluate
the accuracy of the predicted miss ratio. Third, we compare
the performance difference between Redis with default K
and Redis+DLRU. Finally, we discuss both time and space
overhead of our selection scheme.

4.1 Experimental Setup
4.1.1 System Configuration. We use two separate ma-
chines for evaluation. Machine A is configured with Intel(R)
XEON(R) E5-2620 v4 2.10GHz processor with 20 MB shared
LLC and 128 GB of memory, and the operating system is
Ubuntu 16.04.6 LTS with Linux kernel 4.4.0. Machine B is
configured with Intel(R) Xeon(R) Gold 5118 2.30GHz proces-
sor with 33 MB shared LLC and 192 GB of memory and the
operating system is Fedora 31 with Linux kernel 5.6.13. All
major evaluations are done on machine A, Machine B is only
used in Section 4.4. We have implemented DLRU on top of
Redis-4.0 [17] with the default Jemalloc allocator, and use
mutilate [15] for request stream generation.

Initially mutilate converts references in a workload to Re-
dis GET commands, when Redis returns a miss, Mutilate will
immediately follow a SET command. There is no back-end
database in our setup, all KV pairs are generated from the
mutilate client on the fly. With such setup, the miss latency
is simply the total setback time between mutilate and Redis.

Additionally, both Redis and mutilate are running on local-
host. It yields relatively low access latency when compared
to more typical cases where clients are run on a remote site.
In a real system, the miss latency will be much higher. DLRU
will still function as it measure the miss latency on the fly.
With a higher miss latency, DLRU can only perform better
as the overall miss penalty is higher.

4.1.2 Workloads. We use the MSR Cambridge storage
workloads and its variants in our evaluation [1]. The original
MSR suite contains traces from 13 different enterprise data
center servers. It covers a variety of access patterns, which
is sufficient for us to evaluate the effectiveness of DLRU. We
first evaluate the MSR traces under simplified conditions
with uniform object size, where the object size of each key
value pair is 200 bytes. Next, we use the MSR traces’ original
object size to show that DLRU also improves the perfor-
mance of Redis under general circumstances. The MSR suite
contains a couple small traces which only take Redis roughly
10 minutes to process entire request streams. In order to
better visualize the improvement from DLRU, we repeat-
edly concatenate the same trace to coin a roughly one-hour
long request stream. For notation purpose, as an example,
src2_10 is generated by concatenating MSR’s src2 trace 10
times. Lastly, in Section 4.3.3, we merge multiple MSR traces
with different access patterns to demonstrate how DLRU
selects an optimal 𝐾 when access pattern changes.

4.2 Miss ratio
For DLRU to make meaningful decisions, the five miniature
caches must correctly simulate Redis replacement patterns
under different 𝐾s. We compare actual Redis miss ratio for
every 5 million requests with predicted miss ratio yielded
by the miniature cache with the corresponding 𝐾 . Figure 5
shows the miss ratios over time for all MSR traces. To quan-
tify the accuracy of predicted miss ratio, we follow the error
metric used in [23], the mean absolute error (MAE). We cal-
culate the MAE for each trace in Figure 5, and the average
MAE across all traces is 0.031. We notice that there is an obvi-
ous vertical shift between predicted and actual miss ratio for
the workloads with relative small working set size such as
stg_16. In practice, we find that the shift is consistent for all
𝐾s and it is not a problem of DLRU decision. We attribute the
shift to the bias introduced by spatial sampling of miniature
modeling. Since all five miniature caches use the same subset
of keys from spatial sampling, they are likely to suffer from
the same relative vertical shift.
In Figure 6, we use a synthetic workload that contains

two separate phases. One phase is designed with poor tem-
poral reuse, where random evictions are more preferable,
and the other phase is designed with high temporal reuse,
where evicting the LRU objects are more preferable. Figure 6
contains miss ratio predicted by DLRU and Redis miss ratio.
We also plot miss ratios for both miniature cache with 𝐾 =
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1 and 16 to illustrate that DLRU always selects the optimal
𝐾 over time. Note that in the initial phase where the miss
ratio of approx-1-LRU and approx-16-LRU are roughly the
same, DLRU chooses 𝐾 = 1 (the choice of DLRU is shown in
the square boxes). This is the case when the eviction over-
head decides the 𝐾 selection as a smaller 𝐾 implies a lower
overhead (𝑂𝐻𝐾 in Eq. 3).
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Figure 5. Miss ratio prediction accuracy

4.3 Overall Throughput
In order to measure the performance gain of our model, we
employ throughput as the evaluation metric. Since all work-
loads we use are fixed-length traces, throughput is the ratio
of the total number of requests to the overall execution time.
In this section we compare DLRU, approx-1-LRU and approx-
16-LRU, with Redis default sample size𝐾 = 5 (approx-5-LRU).
In practice, the approx-16-LRU behaves almost identical to
true LRU, and the approx-1-LRU is basically the random re-
placement policy. We will demonstrate the benefit of DLRU
that exploits the access pattern of the current request stream
on the fly.

4.3.1 Uniformly-Sized MSR Workloads. In this set of
experiments, we set the item size uniformly to 200 bytes
for all MSR workloads. We divide the 13 MSR workloads
into two separate sets, A and B. Set A includes those MSR
workloads that have notable difference in terms of miss ratio
under various 𝐾s (1, 2, 5, 10, 16). Many workloads in set A
consist of long-stream repeated patterns which are in favor
of random replacement when Redis’ max-memory is smaller
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Figure 6.Miss ratio prediction for a phase changing work-
load

than their working set sizes (WSSs). Set B consists of the
MSR workloads that have relatively small difference in terms
of miss ratio under various 𝐾 . Figure 7a and Figure 7b shows
results from 5 representative MSR workloads in set A and
B, respectively. To evaluate the performance of DLRU under
different Redis’ max-memory, the Redis max-memory is set to
25%, 50%, and 75% of the working set size of the evaluated
workload. The "best" in Figure 7a is the memory size where
there is the largest gap in miss ratio between 𝐾 = 1 and
𝐾 = 16.

In set A, compared to default sample size K=5, DLRU in-
creases throughput by as much as 16.3%. DLRU matches or
outperforms approx-5-LRU in all benchmarks and all max-
memory settings. It is worth noting that when max-memory
is set to 25% of WSS, the src1 workload shows favor to
random replacement (𝐾 = 1). We see 4% and 5.5% improve-
ment for 𝐾 = 1 and DLRU, respectively. Then we see an 8%
degradation for random replacement when max-memory is
set to 50% of WSS. The MRC of src1 (see Figure 1) reflects
that about 40% of all items in the workload have high access
frequency. When the max-memory is set to 50% of WSS, Re-
dis is able to keep all hot items, random replacement is no
longer the favorite choice. DLRU’s auto selection of 𝐾 is able
to perform the best in both cases.
In set B, as shown in Figure 7b, the largest improvement

by DLRU is 3.7% from prxy, which is modest compared to
the workloads in set A. Set B consists of workloads that are
insensitive to change in𝐾 , i.e., all workloads performsmostly
same under random replacement or LRU replacement, which
results in limited room for improvement under DLRU. But on
the upside, we still see that DLRU increases throughput of all
workloads by 1%, on average, compared to approx-5-LRU. In
set B, both random replacement (𝐾 = 1) and approx-16-LRU
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Figure 7. Throughput improvement with respect to approx-
5-LRU for uniform item size

(𝐾 = 16) perform nearly identical to default 𝐾 = 5, with a
difference of 0.3% and -0.2%, on average, respectively.

4.3.2 Non-Uniformly-SizedMSRWorkloads. Next we
evaluate the performance of DLRU under non-uniformly-
sized items. Figure 8 shows the results from two representa-
tive MSR workloads, where the size of each item is directly
adopted from the original MSR traces. As the increased item
size increases the miss penalty, we observe better improve-
ment in some workloads. For stg_16, DLRU increases the
throughput by 32.5% compared to default 𝐾 = 5 at the mem-
ory size of 75% WSS. In stg_16, the item size distributions
are relatively stable across DLRU intervals. Ourmodel, which
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Figure 8. Throughput improvement with respect to approx-
5-LRU for nonuniform item size

uses average item size for cache simulation, works well. How-
ever, for rsrch_40, the average item size fluctuates across
request stream, which hurts the miniature cache accuracy.
Despite of this drawback, DLRU still shows the best perfor-
mance at 25% and 75% WSSs, while there is a slight degrada-
tion compared to the default at 50% WSS.

4.3.3 Synthetic Two-PhaseWorkload. We evaluate the
performance of the two-phase workload discussed in Sec-
tion 4.2. Note that the workload consist of phases favoring
over random replacement and phases favoring over LRU. As
shown in Figure 6, a static choice of 𝐾 would fail to make
the best out of both phases. Figure 9 shows the improve-
ment from DLRU when Redis’ maxmemory is set to 30% of
the WSS. The overall throughput is improved by 6.4% when
compare against default 𝐾 = 5.
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Figure 9. DLRU improvement on a two-phase workload

4.4 Sensitivity
As mentioned in Section 3.4, we observe a proportional rela-
tionship in cost of updating the eviction pool under different
settings of 𝐾 . To verify that such observation is consistent
over different machines, we collect the cost on both machine
A and machine B (See Section 4.1.1) with Redis set to various
max-memory size (10MB - 9GB) . Table 4 shows the mean
constant of proportion ratios with respect to 𝐾 = 1 and their
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standard deviation over various max-memory sizes. The stan-
dard deviation is low. The results from both machine A and
machine B agree with our observation: The costs of eviction
under different settings of 𝐾 are relatively proportional.

Machine A
K Ratio SD
1 1.00 0.00
2 1.64 0.05
5 2.37 0.06
10 3.18 0.13
16 4.31 0.18

Machine B
K Ratio SD
1 1.00 0.00
2 1.64 0.09
5 2.47 0.14
10 3.37 0.28
16 4.40 0.43

Table 4. Ratio of eviction process cost in Redis under differ-
ent settings of 𝐾

4.5 DLRU Overhead
4.5.1 Space Overhead. In our implementation, the space
overhead is dominated by the five hash tables, which are
used to simulate cache behavior under various 𝐾 . When
applying a fixed rate version of the miniature cache, the size
of the hash table will depend on both sampling rate 𝑅 and
the average item size. Each item in the hash table, including
auxiliary fields such as hash handle, consumes 136 bytes. We
can estimate the percentage of memory overhead relative
to overall allocated Redis memory as following: 136 𝑏𝑦𝑡𝑒𝑠 ∗
5𝑇𝑎𝑏𝑙𝑒𝑠 ∗ 𝑅 / 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 𝑜 𝑓 𝐾𝑉 𝑝𝑎𝑖𝑟 . As an example, the
stg_16 trace contains 1.6 million unique Key-Value pairs, the
average size of each KV pair is 70KB and we set 𝑅 = 1/200.
In this case the total additional space overhead introduced
by DLRU is about 0.005% of overall allocated Redis Memory.

4.5.2 TimeOverhead. The time overhead of DLRUmostly
comes from simulating miniature caches under various 𝐾 .
The miniature cache technique helps reduces time overhead
drastically. We only sample one request for roughly every
1/𝑅 requests (one in every 200 in our evaluation). For stg
with average key-value pair size of 70KB, we observe that
the time overhead of DLRU is only 0.027% of total execu-
tion time, which is insignificant compared to the potential
gain from DLRU. The time overhead for other workloads are
similarly low.

5 Related Work
Two classes of studies are related to this work, one is cache
replacement algorithm and the other cache modeling. Al-
though LRU and its approximations have become the de facto
standard replacement policy for both software caches and
hardware caches, decades of efforts to improve LRU have
never stopped. Jaleel et al’s RRIP outperforms LRU by predict-
ing re-reference (reuse) interval and exploiting long intervals
that can occur in certain representative benchmarks [12]. Hy-
perbolic caching proposes a caching algorithm that combines

both recency and frequency for replacement decision [3].
The now classic multi-queue algorithm handles recency and
frequency by structuring multiple LRU queues based on their
frequencies [26]. Even Redis itself implements other replace-
ment policies in addition to approx-K-LRU. Our research
focuses on dynamic selection of replacement policy. The
approach can be applied to include other policies into the
selection.

LRU is a focus of the research on cache modeling too. The
nominal work by Mattson et al shows that an LRU cache
can be modeled as a stack and the miss ratio curve (MRC)
can be constructed through one pass of the input trace [13].
Their algorithm measures the stack distance, which is of-
ten called reuse distance, for each reference. The reuse dis-
tance distribution can be transformed to an MRC. The re-
cent advancements include the footprint theory [25], Stat-
Stack [8], SHARDS [23], CounterStacks [24], AET [10, 11],
and EAET [16]. CounterStacks improve over Mattson’s algo-
rithm by approximating MRC with a novel data structure to
compress the reuse distances. SHARDS on the other hand
scales down reuse distance measurement though spatial sam-
pling. The footprint theory, StatStack and AET instead rely
on reuse time distribution to approximate reuse distance
distribution. Reuse time, which measures the number of ref-
erences between a reference and its reuse, is a simpler metric
to collect on the fly. The idea of spatial sampling in SHARDS
is later extended to simulate any replacement policy of choice
with a low overhead. This miniature simulation method [22]
is directly adopted in this paper.

6 Conclusion
This paper presents a new replacement policy, DLRU, for
Redis. DLRU is built upon the existing approx-K-LRU policy.
Rather than fixing 𝐾 across Redis execution, DLRU chooses
an optimal 𝐾 in every execution interval based on a cost
model that estimates the miss penalty. We engineer a dy-
namic system using a low-overhead cache simulator. Ex-
perimental results demonstrate that it works well for both
simplified and general conditions regarding object size, and
can always match the best 𝐾 performance or outperform a
fixed-𝐾 system across a range of storage traces. To our best
knowledge, DLRU is the first system to dynamically select
a replacement policy along key-value cache execution to
adapt to the access pattern changes. Our future work will
take more replacement polices into consideration.

Acknowledgments
We would like to thank the anonymous reviewers for their
constructive comments and suggestions. The research is sup-
ported in part by National Science Foundation CSR1618384,
the National Key R&D Program of China under Grant No.
2018YFB1003505, and the National Science Foundation of



MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Yuchen Wang, Junyao Yang, and Zhenlin Wang

China (Nos. 61472008, 61672053 and U1611461), and Shen-
zhen Key Research Project No. JCYJ20170412150946024.

References
[1] [n.d.]. MSR Cambridge Traces. http://iotta.snia.org/traces/388. Ac-

cessed: 2020-03-15.
[2] Amazon. 2019. Amazon Elastic Cache. Retrieved Oct. 15, 2019

from https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-
ug/SelectEngine.html

[3] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017.
Hyperbolic Caching: Flexible Caching for Web Applications. In 2017
USENIX Annual Technical Conference (USENIX ATC 17). USENIXAssoci-
ation, Santa Clara, CA, 499–511. https://www.usenix.org/conference/
atc17/technical-sessions/presentation/blankstein

[4] Daniel Byrne, Nilufer Onder, and Zhenlin Wang. 2018. mPart: Miss-
Ratio Curve Guided Partitioning in Key-Value Stores. In Proceedings of
the 2018 ACM SIGPLAN International Symposium on Memory Manage-
ment (Philadelphia, PA, USA) (ISMM 2018). Association for Comput-
ing Machinery, New York, NY, USA, 84–95. https://doi.org/10.1145/
3210563.3210571

[5] Daniel Byrne, Nilufer Onder, and ZhenlinWang. 2019. Faster Slab Reas-
signment in Memcached. In Proceedings of the International Symposium
on Memory Systems (Washington, District of Columbia) (MEMSYS ’19).
Association for Computing Machinery, New York, NY, USA, 353–362.
https://doi.org/10.1145/3357526.3357562

[6] Jiqiang Chen, Liang Chen, Sheng Wang, Guoyun Zhu, Yuanyuan
Sun, Huan Liu, and Feifei Li. 2020. HotRing: A Hotspot-Aware In-
Memory Key-Value Store. In 18th USENIXConference on File and Storage
Technologies (FAST 20). USENIX Association, Santa Clara, CA, 239–
252. https://www.usenix.org/conference/fast20/presentation/chen-
jiqiang

[7] Asaf Cidon, Daniel Rushton, Stephen M. Rumble, and Ryan Stutsman.
2017. Memshare: a Dynamic Multi-tenant Key-value Cache. In 2017
USENIX Annual Technical Conference (USENIX ATC 17). USENIX Asso-
ciation, Santa Clara, CA, 321–334.

[8] D. Eklov and E. Hagersten. 2010. StatStack: Efficient modeling of LRU
caches. In 2010 IEEE International Symposium on Performance Analysis
of Systems Software (ISPASS). 55–65.

[9] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Yingwei Luo, Chen
Ding, Song Jiang, and ZhenlinWang. 2015. LAMA: Optimized Locality-
awareMemoryAllocation for Key-value Cache. In 2015 USENIXAnnual
Technical Conference (USENIX ATC 15). USENIX Association, Santa
Clara, CA, 57–69.

[10] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Chen Ding, and
Zhenlin Wang. 2016. Kinetic Modeling of Data Eviction in Cache. In
2016 USENIX Annual Technical Conference (USENIX ATC 16).

[11] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Zhenlin Wang,
Chen Ding, and Chencheng Ye. 2018. Fast Miss Ratio Curve Modeling
for Storage Cache. ACM Trans. Storage 14, 2, Article 12 (April 2018),
34 pages. https://doi.org/10.1145/3185751

[12] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, and Joel Emer. 2010.
High Performance Cache Replacement Using Re-Reference Interval
Prediction (RRIP). SIGARCH Comput. Archit. News 38, 3 (June 2010),
60–71. https://doi.org/10.1145/1816038.1815971

[13] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. 1970. Evaluation
Techniques for Storage Hierarchies. IBM Syst. J. 9, 2 (June 1970), 78–117.
https://doi.org/10.1147/sj.92.0078

[14] memcached. 2018. memcached. Retrieved May 10, 2018 from https:
//memcached.org

[15] Mutilate. 2019. Mutilate. Retrieved Feb. 22, 2019 from https://github.
com/leverich/mutilate

[16] Cheng Pan, Yingwei Luo, Xiaolin Wang, and Zhenlin Wang. 2019.
pRedis: Penalty and Locality Aware Memory Allocation in Redis. In

Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz,
CA, USA) (SoCC ’19). Association for Computing Machinery, New
York, NY, USA, 193–205. https://doi.org/10.1145/3357223.3362729

[17] Redis. 2019. Redis 4.0.13. Retrieved Feb. 22, 2019 from http://download.
redis.io/releases/

[18] Redis. 2019. Redis Data Types. Retrieved Oct. 15, 2019 from https:
//redis.io/topics/data-types

[19] Redis. 2019. Redis Deployment. Retrieved Dec. 26, 2019 from https:
//redis.io/topics/whos-using-redis

[20] Redis. 2019. Redis Replacement Policy. Retrieved Oct. 15, 2019 from
https://redis.io/topics/lru-cache

[21] TechStacks. 2019. Redis Deployment Listed in TechStacks. Retrieved
Dec. 26, 2019 from ttps://techstacks.io/tech/redis

[22] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun
Park. 2017. Cache Modeling and Optimization using Miniature Simu-
lations. In 2017 USENIX Annual Technical Conference (USENIX ATC 17).
USENIX Association, Santa Clara, CA, 487–498. https://www.usenix.
org/conference/atc17/technical-sessions/presentation/waldspurger

[23] Carl A Waldspurger, Nohhyun Park, Alexander Garthwaite, and Irfan
Ahmad. 2015. Efficient MRC construction with SHARDS. In 13th
USENIX Conference on File and Storage Technologies (FAST 15). USENIX
Association, 95–110.

[24] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas J. A. Harvey,
and Andrew Warfield. 2014. Characterizing Storage Workloads with
Counter Stacks. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). USENIX Association, Broomfield,
CO, 335–349. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/wires

[25] Xiaoya Xiang, Chen Ding, Hao Luo, and Bin Bao. 2013. HOTL: A
Higher Order Theory of Locality. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (Houston, Texas, USA) (ASPLOS ’13).
Association for Computing Machinery, New York, NY, USA, 343–356.
https://doi.org/10.1145/2451116.2451153

[26] Yuanyuan Zhou, James Philbin, and Kai Li. 2001. The Multi-Queue
Replacement Algorithm for Second Level Buffer Caches. In Proceed-
ings of the General Track: 2001 USENIX Annual Technical Conference.
USENIX Association, USA, 91–104.

http://iotta.snia.org/traces/388
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/SelectEngine.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/SelectEngine.html
https://www.usenix.org/conference/atc17/technical-sessions/presentation/blankstein
https://www.usenix.org/conference/atc17/technical-sessions/presentation/blankstein
https://doi.org/10.1145/3210563.3210571
https://doi.org/10.1145/3210563.3210571
https://doi.org/10.1145/3357526.3357562
https://www.usenix.org/conference/fast20/presentation/chen-jiqiang
https://www.usenix.org/conference/fast20/presentation/chen-jiqiang
https://doi.org/10.1145/3185751
https://doi.org/10.1145/1816038.1815971
https://doi.org/10.1147/sj.92.0078
https://memcached.org
https://memcached.org
https://github.com/leverich/mutilate
https://github.com/leverich/mutilate
https://doi.org/10.1145/3357223.3362729
http://download.redis.io/releases/
http://download.redis.io/releases/
https://redis.io/topics/data-types
https://redis.io/topics/data-types
https://redis.io/topics/whos-using-redis
https://redis.io/topics/whos-using-redis
https://redis.io/topics/lru-cache
ttps://techstacks.io/tech/redis
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wires
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wires
https://doi.org/10.1145/2451116.2451153

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Impacts of Sample Size K
	2.2 Miniature Simulation

	3 Design and Implementation
	3.1 Redis Eviction Process
	3.2 DLRU Overview
	3.3 Miniature Cache Simulation
	3.4 Miss Latency and Eviction Process Overhead
	3.5 DLRU Cost Model

	4 Evaluation
	4.1 Experimental Setup
	4.2 Miss ratio
	4.3 Overall Throughput
	4.4 Sensitivity
	4.5 DLRU Overhead

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

