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ABSTRACT
Evicting expired keys for an in-memory key-value database is es-
sential to save its memory resources and control its memory usage
not exceeding its memory limit. Existing randomized expiration al-
gorithms randomly sample keys from the key space associated with
expiration, evict all expired ones and proceed to the next iteration
if the proportion of expired keys exceeds a pre-defined threshold.
The randomized algorithm has been adopted by Redis currently.

In this paper, we present a novel approach, a hybrid algorithm
combining a deterministic one using buckets and a randomized
one inherited from Redis expiration algorithm, to improve the effi-
ciency of eviction of expired keys. For the main part, we adopt a
deterministic algorithm to discretize the expiration timestamps into
buckets and evict keys bucket by bucket; if time permitted, we also
run the Redis expiration algorithm after finishing the deterministic
part. Furthermore, our experiment using Redis randomized algo-
rithm as the baseline shows that our algorithm is more effective in
reducing memory usage with an acceptable impact on the overall
throughputs.

CCS CONCEPTS
• Information systems → Data management systems; Infor-
mation storage systems.

KEYWORDS
Eviction algorithm, Expiration, Redis, Key-valueDatabase, In-Memory
Storage
ACM Reference Format:
Guochao Xie and Yeh-Ching Chung. 2020. Bucket-Based Expiration Algo-
rithm: Improving Eviction Efficiency for In-Memory Key-Value Database.
In The International Symposium on Memory Systems (MEMSYS 2020), Sep-
tember 28-October 1, 2020, Washington, DC, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3422575.3422797

1 INTRODUCTION
With the rapid growth of big data, in-memory key-value databases
are becoming popular to serve as a temporary cache between web
applications and persistent databases. A key-value database is a
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type of NoSQL database where each object stored is accessed by
a single key and no relationship between objects [11]. Because of
its excellent scalability, a key-value database can provide very fast
random access via key and ease of data partitioning [8], which
meets requirements of high throughputs for modern web appli-
cations. Among all key-value databases, on-disk and in-memory
are two main types. For the on-disk key-value database, MongoDB
is a popular one [1, 3]; for in-memory ones, Redis [5], [14] and
Memcached [10] are two representatives utilizing RAM for data
storage. Comparing these three popular NoSQL databases using
YCSB benchmark tool [7], Redis has the best efficiency for load-
ing and executing workloads [21], because its in-memory design
takes advantage of RAM for faster operations. Furthermore, Re-
dis supports clustering and current researches show great interest
in using Redis as the implementation base of algorithms for in-
memory NoSQL database, like a more scalable and reliable Redis
[6], Distributed Dynamic Cuckoo Filter System [15], and abnormal
payment transaction detection scheme [13]. Therefore, in our cur-
rent project, we use Redis as the representative of the in-memory
key-value database for implementation and analysis.

For a temporary cache, keys are associated with expiration time
for two main purposes: limiting memory usage and maintaining
data security. Because an in-memory key-value database utilizes
memory for storage to achieve high throughputs, its limited mem-
ory resource becomes precious and eviction is essential to keep
the total memory usage within a limit to avoid memory swaps
that could significantly affect the performance. With an expiration
time attached for each key, it follows the eviction policy that the
earlier expiration time indicates the higher eviction priority and
that those expired keys are with the highest eviction priority. By
evicting expired keys efficiently, we can save a greater amount of
memory resources and store more keys to enlarge the total capac-
ity of our database. As for the other purpose of maintaining data
security, setting an expiration time is beneficial for use cases like
user session storage [14], where a user’s connection is expired after
a long time’s inactivity to protect users’ information security and
lower the probability of security issues for using a public computer
[22]. Setting expiration information and let the database manage
expiration automatically is therefore an easy and popular approach
for temporary cache usage.

To evict expired keys efficiently, randomized expiration algo-
rithms are discovered. A randomized web-cached eviction algo-
rithm is proposed by Psounis and Prabhakar [19] in 2001 to approx-
imate the performance of some deterministic algorithms with no
extra data structure. Redis adopts a modified version of the random-
ized algorithm in practice [14]. Furthermore, Hyperbolic caching
[4] is proposed in 2017 to decouple item priorities from eviction
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data structures and adopts a randomized algorithm for eviction.
Besides, randomized eviction algorithm can also be applied to a
sampling-based garbage collection algorithm [9]. Although ran-
domized expiration algorithms are simple to implement, there still
exists much space to improve their eviction efficiency.

We propose an innovative Bucket-Based expiration algorithm
to improve the eviction efficiency with relatively low overhead.
Our Bucket-Based expiration algorithm uses an array of buckets
(hashmaps) to discretize the expiration information. We store keys
to be expired in the same period of seconds or milliseconds into
the same bucket. Later for the eviction procedure, we scan through
buckets and evict keys in buckets first to efficiently evict expired
keys. Only if time permitted, we continue with Redis randomized
expiration algorithm to further reduce memory usage. Further-
more, our analysis and experimental results using Redis expiration
algorithm as the baseline show the efficiency of our algorihtm.

The rest of the paper is organized as follows. In section 2 we
present a review of randomized expiration algorithms. In section 3
we introduce our Bucket-Based expiration algorithm and required
data structure in detail. We analyze the complexity for all operations
of bucket maintenance and show a comparative analysis with Redis
expiration algorithm. In section 4 we provide the experimental
evaluation using YCSB [7], a benchmark tool to evaluate NoSQL
databases. Experiments with differentsettings are designed and run.
From the experimental results, we find our algorithm significantly
reduces memory usage with an acceptable impact on throughputs.
section 5 concludes the paper and provides some aspects of future
works.

2 BACKGROUND AND RELATEDWORKS
In this section, we will describe randomized expiration algorithms
currently adopted in Redis, which is the referenced benchmark for
our Bucket-Based expiration algorithm. The following subsections
include the introduction of an original randomized algorithm by
Psounis and Prabhakar [19], Redis expiration algorithm [2], and
analysis of Redis expiration algorithm.

2.1 Randomized Algorithm
A randomized expiration algorithm proposed by Psounis and Prab-
hakar [19] is shown in Algorithm 1. It aims to adopt a simple
algorithm to minimize the error rates of eviction. Here, an error is
defined as the evicted one that does not belong to the least useful
nth percentile of all keys.

Algorithm 1: Randomized Expiration Algorithm
if first_iteration:

sample(N)
evict_least_useful()
keep_least_useful(M)

else:
sample(N-M)
evict_least_useful()
keep_least_useful(M)

The randomized expiration algorithm maintains a sample pool,
which is an array of size N. The algorithm is repeated every active

expiration cycle. Within each cycle, it first initializes the sample
pool and fills it by sampling N keys. Next, it evicts the least useful
one and keeps the least useful M for the next iteration of eviction.
In this algorithm, n, N, and M are hyperparameters that affect
its performance. Through analysis and experiments, the original
randomized expiration algorithm is claimed to be simple, which
does not require complex data structures, and efficient with low
error rates. Furthermore, Psounis and Prabhakar [20] analyze the
optimal parameters for N andM.

2.2 Redis Expiration Algorithm
Redis adopts a modified randomized expiration algorithm as shown
in Algorithm 2.

Algorithm 2: Redis Randomized Expiration Algorithm
def RedisExpiration(start_time):

for i in range(n):
while current_time()-start_time > \

TIME_LIMIT:
sample(N)
num_expired = delete_all_expired()
if num_expired / N < DELTA:

return

Redis Expiration Algorithm functions as follows. Before evic-
tion, the expiration information of all keys are stored in a hashmap
expires, whose keys and values are the key names and the expi-
ration time correspondingly. At the beginning of the algorithm, it
retrives the start_time as the input. For every expiration iteration,
it samples N keys from the set of keys with expiration information
storing in the hashmap expires. Next, it deletes all expired keys
within the N samples and stores the number of expired keys as
num_expired. There are two cases that an iteration will break: ei-
ther num_expired is smaller than DELTA (δ ) percentage of N or
the time for expiration has exceeded the TIME_LIMIT. Otherwise,
the active expiration will proceed.

As for the data structure required by Redis, the hashmap expires
is essential to store the expiration information. Furthermore, it
serves as the sample pool for eviction, so that the sampling is done
in a smaller key space rather than the complete one. In our algorithm
discussed in the next section, its expires is directly inherited from
the Redis one.

Redis Expiration Algorithm is similar to the Randomized Expi-
ration Algorithm if we set the usefulness to be the time to evict.
The earlier expiration time means the lower value, which has a
greater priority to be evicted. Specially, we can define all expired
keys to have zero value, which has the same priority that can be
evicted simultaneously, while for those keys have not reached their
expiration time, their value is infinite and must not be evicted under
our current settings.

More specifically, Redis sets the following parameters:
• N = 20, which means we scan 20 keys per iteration.
• n = 10, which means it has 10 iterations per round.
• δ = 0.25, which means the threshold for the proportion of
expired keys is 25%.
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2.3 Analysis of Redis Expiration Algorithm
Redis expiration algorithm has approximately O(N) time complex-
ity for the eviction procedure. Considering the worst case where the
samples are poorly sampled, it will continue evicting as long as δ of
sample keys are expired. Therefore, to evict n expired keys, at most
1
δ n scans are required, which show it has linear time complexity.

Concerning the result of it, although Redis expiration algorithm
can guarantee that, after 10 iterations of expiration, it is very likely
that the proportion of expired keys is lower than δ , which is 25%, it
still has the drawbacks of low efficiency which means it may waste
redundant computation resources on scanning the keys which are
non-expired.

For one iteration, suppose the proportion of expired keys be-
fore an iteration is p, which means on average only pN keys are
expired. Then, while it evicts on average pN expired keys, it also
redundantly scans (1 − p)N non-expired keys at the same time.
For example, when p = 40%, there are 8 expired keys and 12 non-
expired keys within the 20 samples on average. Those redundant
scans are of low efficiency, which occupies precious computation
resources, and furthermore, it may reduce throughputs and the
overall performance of the system.

Consider the whole procedure of the algorithm, a disappointing
consequence is observed, that is when p, the proportion of expired
keys, approaches δ , the eviction efficiency would be significantly
reduced. As we can see from the analysis, we will waste a (1 − p)
proportion of computation resources. Initially, the efficiency is
pinit ≥ δ , where pinit represents the initial proportion of expired
keys, but as the algorithm continues, p decreases. And when p
decreases, this proportion increases, showing a negative effect on
the eviction effectiveness. This negative effect is more critical when
p approaches δ when the efficiency is as low as δ . For example,
in the current setting of Redis, δ is 25%, which means when p
approaches 25%, the efficiency will approach 25% and there will
be about tripple redundant scans. As a consequence, the overall
efficiency is between δ and pinit .

Therefore, Redis Expiration Algorithm which is based on the
randomized algorithm has relatively low efficiency for expiration,
showing the potential of a more efficient expiration algorithm.

3 BUCKET-BASED EXPIRATION
ALGORITHM

In this section, we will show our Bucket-Based expiration algo-
rithm. First, we will describe our operations and algorithm. Next,
we will illustrate our algorithm with an example. Finally, we will
provide a comparative analysis of our Bucket-Based Expiration
Algorithm against the randomized expiration algorithm described
in subsection 2.2.

3.1 Algorithm
Bucket-Based Expiration Algorithm is a deterministic algorithm
based on the idea of separating keys into buckets associated with
discretized values (expiration times). It is not only designed to be
simple, which uses only basic data structures of arrays, sets, and
hashmaps, but also with relatively high efficiency in expiration.

Figure 1: Data Structure for Bucket-method Expiration Al-
gorithm

3.1.1 Data Structure. As shown in Figure 1, the data structure used
in our Bucket-Based Expiration Algorithm is composed of buckets
(an array of sets), times (an array of integers), current_bucket_id,
and expires (a hashmap inherited from the original Redis). More-
over, it uses 2 parameters BASE (the divisor for discretizing values)
and NUM_BUCKETS (the number of buckets). Each bucket is a
set of keys and it is associated with a specific time, which is the
quotient of the actual expiration timestamp (a Unix timestamp in
millisecond) dividing the BASE. For example, when we set the
BASE to be 1000, an expiration timestamp 1590500917012 would
have time 1590500917, which can be interpreted as the timestamp in
second. However, we also try other BASEs and our further experi-
ments show that different BASEs would have significantly different
performances. The current_bucket_id records the ongoing bucket.
In addition, the hashmap expires stores all expiration information
using key-value pairs, where keys are key names with expiration
and values store the expiration times.

In our algorithm, the Single-bucket constraint is essential in
the maintenance of buckets. It requires that every key in expires
can be stored in at most one bucket, which must also be the cor-
responding bucket with its latest expiration time. We set this con-
straint for the following reasons. First, it can save space for main-
taining buckets by eliminating redundant stores for the same key
in different buckets. Second, it can make our operations setExpire,
removeExpire, and activeExpirationmuch simpler. More impor-
tantly, since one bucket can only be used for a single time, if we do
not remove the previous record from the previous bucket, its previ-
ous bucket will be unavailable to reuse, degrading the performance
of our algorithm.

3.1.2 Main Algorithm. In this section, we will describe our main
bucket-based expiration algorithm shown in Algorithm 3 and Al-
gorithm 4. Our active Expiration is a hybrid algorithm taking
advantage of both buckets and the randomized RedisExpiration
algorithm. First, it gets the current timestamp and stores it as the
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current_timestamp. Then, it tries to go through all buckets start-
ing from the current_bucket_id and proceeding in a round-robin
manner. For each bucket, we attempt to evict it by calling expire-
Bucket operation. If the status is EXCEED_TIME_LIMIT, which
means we have reached the time limit of expiration, we directly
break the loop. Otherwise, we will move the current_bucket_id
forward to the next one until we have reached our initial position.
If we have not reached our TIME_LIMIT after checking all buck-
ekts, we will continue with the RedisRandomizedExpiration,
which is exactly the same approach discussed in subsection 2.2. By
utilizing the remaining available computation resources to evict
expired keys missing from buckets, we are able to further save more
memory resources if time permits.

The expireBucket operation takes a bucket_id and the current
timestamp as its input. If the bucket is expired, so as all its keys, then
we try to evict all keys in a bucket by iterating all keys only once,
resulting in O(N) time complexity where N is the number of keys
in a bucket. Four status codes are EMPTY, EXCEED_TIME_LIMIT,
SUCCESS, and TIME_UNREACHED to prompt our activeExpire
algorithm the current condition.

Algorithm 3: activeExpiration
def activeExpiration():

current_timestamp = get_timestamp()
for i in range(NUM_BUCKETS):

status = expireBucket(
current_bucket_id,
current_timestamp

)
if status == EXCEED_TIME_LIMIT:

break
current_bucket_id=(current_bucket_id \

+ 1) % NUM_BUCKETS

RedisExpiration()

Alorithm 4: expireBucket
def expireBucket(bucket_id, timestamp):

if times[bucket_id] == 0:
return EMPTY

time = timestamp // BASE
if time > times[bucket_id]:
for key in buckets[bucket_id]:
buckets[bucket_id].remove(key)
expires.remove(key)
data.remove(key)
if get_timestamp() - \

timestamp > TIME_LIMIT:
return EXCEED_TIME_LIMIT

return SUCCESS
return TIME_UNREACHED

Two extreme situations are either the system is too busy or there
exist too few keys in buckets. When the system is extremely busy,
we may not have enough time to evict all keys in our first bucket.
Then, we will try to evict as much as possible and keep the cur-
rent_bucket_id unchanged, so that we will continue the eviction

in the next expiration cycle. On the other side, when expired keys
are few, we will go through all buckets once. Then, we will con-
tinue with the original RedisRandomizedExpiration algorithm.
We partially degrade our algorithm to the original one to tradeoff
NUM_BUCKETS and expiration efficiency, because the number
of buckets have to be finite and some keys may have to be stored
merely in expires but not buckets.

Following the practice of Redis, activeExpiration is called every
100 milliseconds by the main thread. Because the main operations
are completed only in the main thread in Redis, the implementation
does not require thread safety.

3.2 Bucket Maintenance Operations
Tomaintain our buckets, we have the following 4 operations: times-
tampToBucketId, removeFromBucket, setExpire, and remove-
Expire. All those operations are in O(1) time complexity on aver-
age.

For timestampToBucketId, we calculate the bucket id for a
timestamp in two steps. First, we divide it by BASE and take
the quotient as time. After obtaining the time, we divide it by
NUM_BUCKETS and take the remainder, which is a simple hash
for the time, mapping time into a bucket_id by adopting the mod-
ulo formula as the hash function. For example, when we set the
BASE to be 1000, an expiration timestamp 1590500917012 would
have time 1590500917, and with BUCKET_NUM being 60, its cor-
responding bucket id would be 1590500917012%60 = 52.

RemoveFromBucket tries to remove a key from a given bucket
id.We first try to remove the key from the bucket’s hashmap. Next, if
the hashmap is empty, we reset its corresponding times[bucket_id]
to be 0.

SetExpire is an operation to store the expiration information
and maintain buckets. First, we obtain the previous timestamp from
expires which stores all keys’ expiration information. Next, we
will remove the record from the previous bucket by calling Re-
moveFromBucket and timestampToBucketId. Finally, we will
update expires and store the key to the new bucket if the bucket’s
time equal to our new time.

RemoveExpire is the opposite of SetExpire to remove the
expiration information. It first gets and removes the expiration
timestamp from expires. Using the timestamp, it checks the cor-
responding bucket’s time and tries to remove the key from its
corresponding bucket.

In short, we store all expiration information in a hashmap ex-
pires. Using the stored timestamp, we can calculate the correspond-
ing bucket id to access its bucket and bucket time. All those opera-
tions are O(1) on average because the get and set operations for a
hashmap is O(1) on average.

3.3 An Illustration
In this section, we will illustrate Bucket-Based Expiration Algo-
rithm using a specific example shown in Figure 2. We assume the
following constants of configuration:

• NUM_BUCKETS: 3
• BASE: 1000
• Period of activeExpiration: 1 second
• Initial current_bucket_id: 0



Bucket-Based Expiration Algorithm: Improving Eviction Efficiency for In-Memory Key-Value Database MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

We also assume we have the computation ability to evict at most
2 keys per activeExpiration in order to illustrate the situation that
too many keys expired.

And we have the following operations:
• 00:00 : setExpire(a, 1023), setExpire(b, 2100), setExpire(c,
2020)

• 00:01 : setExpire(a, 2023), setExpire(d, 2450), removeEx-
pire(c)

• 00:02 : setExpire(e, 5015)
• 00:03 : evict a, b
• 00:04 : evict d

Initially, we have 3 empty buckets, times filled with zeros, and
an empty expires. The current_bucket_id points to bucket 0. At
time 00:00, we set the expiration for a, b, and c. As a consequence,
bucket 1 stores a, bucket 2 stores b and c, and expires stores the
expiration time for all. At time 00:01, we overwrite the expiration
of a to be 2023, so a is first removed from bucket 1, then added
to bucket 2, and its record in expires is also updated to be the
newer one. At the same second, we also set the expiration for d,
which is added to bucket 2. Moreover, we remove the expiration
of c by removing it from both the bucket 2 and expires. At time
00:02, we set the expiration for e. The corresponding bucket for
e should be bucket 2 since (5015 // 1000) % 3 = 2. However, by
checking times[2] we observe that it currently stores keys at time
2. Therefore, we cannot add e to bucket 2 but merely stores it in
expires. At time 00:03, keys in bucket 2 have been expired and
we will evict them. However, because of our assumption of the
computation limit, we can only evict two of them, and then we will
time out. At time 00:04, we will continue to evict the remaining one
in bucket 2. Finally, we leave key e with expiration information
stored in expires. The only way for it to be expired is when the
system is not so busy that the original Redis Expiration Algorithm
is invoked to evict it.

3.4 Performance Analysis
In this section, we will first analyze the performance of different
operations in Bucket-Based expiration algorithm. Furthermore, we
will analyze the performance of Bucket-Based expiration algorithm
and make a qualitative comparison against Redis expiration algo-
rithm.

3.4.1 Analysis of Operations. We design our bucket as the data
structure set and implement it using a hashmap. For both set and
hashmap, the add, set, get, remove, check_in, check_empty operations
are all O(1) for time complexity on average, making our operations
comparatively fast. Concerning the space complexity, operations
above used only O(1) temporary space, and storing a hashmap
requires O(N) in total for N keys.

Four operations which areO(1) for both time and space complex-
ities include removeFromBucket, timestampToBucketId, set-
Expire, and removeExpire. For removeFromBucket, it consists
of one remove and one check_empty which are both O(1) for time
complexity and space complexity. TimestampToBucketId takes
only two divisions and thus it is also O(1) for both complexities.
SetExpire consists of one get, one add, one set, two timestamp-
ToBucketId operations, and one removeFromBucket, which are
all O(1) for both complexities. RemoveExpire calls a get, one or

two removes, and a timestampToBucketId, and thus it is also in
O(1) complexities.

ExpireBucket is a more complex operation that is in O(N) time
complexity and O(1) space complexity, where N is the number
of keys in a bucket. It will repeat the following actions at most
once for all keys in it. The actions include three removes, and one
get_current_time(), which are all in O(1) time complexity. Concern-
ing the space complexity, those repetitions share the same O(1)
space. Therefore, it is in O(N) time complexity and O(1) space
complexity.

Additionally, since activeExpire is the key operation that in-
vokes basic operations above to achieve our algorithm, we consider
it the same analysis with the overall Bucket-Based expiration al-
gorithm, which is presented in the next section. It has O(M) time
complexity and O(K) space complexity. The next section will show
the detail of its analysis.

3.4.2 Analysis of Bucket-Based Expiration Algorithm. For the anal-
ysis of Bucket-Based Expiration Algorithm, we will concern time
complexity for one call of activeExpiration and space complexity
for maintaining all expiration information at a moment. Suppose
we haveM keys to expire andK keys having expiration information
at a moment, Bucket-Based Expiration Algorithm has O(M) time
complexity and O(K) space complexity.

First, let M = M1 + M2, where M1 is the number of keys in
buckets, and M2 is the number of those only stored in expires
but not buckets. For those in buckets, we evict them by scanning
through buckets and every key is scanned and evicted once, so the
time complexity for this part of keys is O(M1). As for the other
M2 keys, they will be expired using Redis expiration algorithm,
which is alsoO(M2)*. Combining two components, the overall time
complexity is O(M).

Next, we apply the same method to analyze the space complex-
ity. Let K = K1 + K2, where K1 keys are in some buckets and
K2 keys are not in any buckets. For K1 such keys, they require a
record in buckets and expires for each, so the space complexity
is O(2K1) = O(K1). For the other K2 keys, they only require one
record in expires and the space complexity is alsoO(K2). Therefore,
the overall space complexity is O(K).

3.4.3 Comparison Between Bucket-Based Expiration Algorithm and
Redis Expiration Algorithm. As we have seen in subsection 2.2 and
section 3, Redis expiration algorithm is a randomized algorithm
and Bucket-Based Expiration Algorithm is a hybrid algorithm of a
deterministic one and Redis expiration algorithm. Because Redis
expiration algorithm is a randomized algorithm, it has a relatively
lower efficiency because a lot of non-expired keys may be checked,
which wastes much computation resources. Moreover, it can only
guarantee an asymptotic result that the final proportion will be
lower than a pre-defined parameter n%, but it is hard to approach
zero.

In contrast, our Bucket-Based Expiration Algorithm achieves
better eviction efficiency by requiring a small proportion of memory
for storing expiration information of key space and reducing more
memory for the expired value space.

Our algorithm is composed of a deterministic part and a random-
ized part which is the same as Redis expiration algorithm, and the
deterministic one plays a significant role in improving the efficiency
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Figure 2: Bucket Illustration

of eviction. Although both algorithms areO(M) for time complexity,
the coefficient differs a lot. For the deterministic algorithm, since
every key scanned must be within an expired bucket, if we scanM
keys, it can evictM , which are all of them. Comparatively, for Redis
expiration algorithm, we can only evict pM of them on average
where p is the proportion of expired keys, so our deterministic part
is 1

p times efficiency than Redis expiration algorithm. As eviction
proceeds, p decreases, and the efficiency of Redis expiration algo-
rithm decreases as well, while the deterministic one will not be
affected, enlarging the gap of performance between them. When
all expired buckets have been evicted, our algorithm will degrade
to Redis expiration algorithm. It is supposed to be a rare case when
the key space contains mostly non-expired keys, so it will finish
shortly and only occupy a small proportion of the overall algorithm.
Since the deterministic part is more efficient than Redis expiration
algorithm and the randomized part is the same, the overall evic-
tion efficiency of Bucket-Based Expiration Algorithm is better than
Redis expiration algorithm.

To achieve higher eviction efficiency, it takes more space to store
the expiration information for keys. However, memory for key
space is usually smaller than it for value space with one order of
magnitude, and our reduction for value space will overshadow our
increase of memory for key space. Our algorithm requires two
arrays with size NUM_BUCKETS to store the hashmap bucket
and integer time, which is constant and relatively small. Moreover,
every key will have at most one occurence in a bucket, which at
most double thememory for key space. But on the other side, we can
evict expired keys more efficiently and keep the value space much
smaller, which overshadows the increase of key space memory.
Therefore, the overall memory usage will be much smaller for our
algorithm.

Besides the effect of low memory usage, our algorithm can per-
form better or similar throughputs against Redis expiration algo-
rithm by balancing the tradeoff of the huge number of redundant ex-
pired keys and the small cost of maintaining buckets. Although our
algorithm takes more overhead to maintain buckets, the increased
eviction efficiency can reduce the key space and thus increase the
efficiency of other operations. As a result, our algorithm performs
better than or close to Redis expiration algorithm in throughputs.
More experimental results will be shown in section 4.

The following example can help understand the comparison
of differences in performance between them. Assume there are
100 keys in total with 40 of them are expired and we have the
computation power to scan 20 of them. Using Redis expiration
algorithm, we can only evict 20 × 40 ÷ 100 = 8 and leave 32 (80%)
not evicted on average. However, if we use Bucket-Based Expiration
Algorithm, we can fully utilize the computation power to evict 20
expired keys, and leave only 20 (50%) not evicted. As we can see
from this example, when the proportion of expired key is p = 40%,
Bucket-Based Expiration Algorithm can evict 1

p = 2.5 times keys
over Redis expiration algorithm and save 1 − 20

32 × 100% = 37.5%
space storing expired keys.

In short, Bucket-Based Expiration Algorithm sacrifices O(N)
more key space to improve the eviction efficiency and reduce the
overall memory usage.

3.4.4 Analysis of SIZE, NUM_BUCEKTS, and BASE. In our algo-
rithm,NUM_BUCKETS and BASE are used to determine the size
of buckets. The size is defined as the product of them, which rep-
resents the total capacity of all buckets can hold. The greater size
means our buckets can hold keys expired in a longer time interval,
and if the size is smaller or merely equal to one TTL, our algorithm
will suffer from the insufficiency of buckets.
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Figure 3: Experiment Architecture

With fixed size, BASE and NUM_BUCKETS are used to control
the degree of discretization. With more buckets, our algorithm
requires more memory to store more buckets. Meanwhile, the BASE
will be smaller, and thus fewer keys will be stored in a bucket, which
will result in lower overhead for bucket operations like add, remove,
and check_in and higher throughputs.

Choosing the optimal parameters is about the tradeoff between
memory usage and overhead of bucket maintenance. In subsub-
section 4.5.2, we will analyze the effect of size experimentally. In
subsubsection 4.5.6, we will analyze the effect of NUM_BUCKETS
and BASE. Last but not least, we will provide the optimal choice of
parameters in subsubsection 4.5.7.

4 EXPERIMENTAL EVALUATION
In this section, we study the performance of Bucket-Based expi-
ration algorithm experimentally, choosing the original Redis expi-
ration algorithm implemented in Redis 5.0 as our benchmark for
comparison. We first implement our algorithm based on Redis 5.0
with different configurations. Next, we design and implement our
experiment platform. Using our experimental system, we repeat
our experiments in different settings and workloads to show our
performance.

4.1 Performance Metrics
In our experiment, we mainly focus on 2 metrics: memory usage
and throughputs. First, memory usage is our algorithm’s objec-
tive. Our Bucket-Based expiration algorithm takes advantage of
the distribution of TTL to improve eviction efficiency, which aims
to significantly reduce memory usage, especially the peak mem-
ory usage of the NoSQL database. Meanwhile, we may sacrifice
some computation resources because of the overhead of bucket
operations. However, we want such negative effects to be mini-
mum or even provide positive effects. Therefore, we also consider
throughputs as the other metrics to evaluate the tradeoff between
the benefits of memory and its required computation resources.

4.2 Experiment Platform Setup
To evaluate the performance of our Bucket-Based expiration algo-
rithm, we build an automatic experiment platform and use it to
run our experiments for different configurations. Our experiment
architecture for a single experiment is shown in Figure 3. Our plat-
form integrates a modified version of YCSB, a Redis Monitor, and a
data visualization tool implemented in Python. The main modifica-
tion of YCSB is to support multiple TTLs and their distributions by
randomly choosing a TTL for each Insert,Update, andReadMod-
ifyWrite operation and appending an EXPIRE command after it.

As for the Redis Monitor, it will call INFOMEMORY using redis-py
[16] interface for every second.

For the procedure of one experiment, we will first reset Redis
instances using FLUSHALL. Next, our experiment monitor and
modified YCSB will start running. After our YCSB finishes, our
system will wait for one more maximum TTL and then send a
termination signal to our Redis Monitor to stop tracking and save
all records in log files. In the final step, we will analyze our records
by parsing logs and use Python’s NumPy [18], pandas [17], and
matplotlib packages [12] to visualize the results.

Besides the single-experiment mode, we can also run multiple
experiments simultaneously as long as we run different Redis in-
stances and the CPU and memory resources are within the capacity
to avoid interference between concurrent experiments. In our prac-
tice, we run as many as 4 experiments to improve the experiment
efficiency.

4.3 Experiment Environment Setup
For our experiment, we use a server with the configuration shown
in Table 1. We set the maximum memory limits for Redis as 10GB
per instance to avoid memory swap. In total, we have 7 instances
(1 original Redis 5.0 and 6 modified ones with different configura-
tions of NUM_BUCKETS and BASE) running on the server, but
we divide our experiments into batches to avoid the influence of
interference.

Table 1: Experimental Server Parameters

Parameter Value
OS Ubuntu 18.04.4 LTS x86_64

Kernel 5.3.0-53-generic
CPU Intel Xeon E5-2640 v4 (40 Cores) @ 3.400GHz

Memory 193326MiB (188GiB)

4.4 Experiment Parameters

Table 2: YCSB Parameters

Parameter Fixed? Range
Key Size YES 8 bytes
Value Size YES 1000

Number of Operations NO
3,000,000 (small)

10,000,000 (medium)
30,000,000 (large)

Type of Operations NO Read, Update
Insert, ReadModifyWrite

Distribution of NO Depend on the
Operations types of workloads.

TTLs NO {60}, {30, 60}
or {15, 30, 45, 60} (seconds)

Distributions of TTLs YES Uniform
Number of NO 1 (Light Load)

Client Threads 4 (Heavy Load)
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Table 3: Types and distributions of workloads for different
workloads

Workload Read Update Insert ReadModifyWrite
workload a 50% 50% 0 0
workload f 50% 0 0 50%
workload i 10% 0 90% 0

4.4.1 YCSB Parameters. As shown in Table 2, we consider 8 pa-
rameters for YCSB including the key size, the value size per key,
the number of operations, the types of operations and their distri-
butions, the TTLs, and the number of client threads.

In our experiments, we consider 3 types of workloads as shown
in Table 3, which represent 3 typical usages of expiration.Workload
a is the same as YCSBworkload a, which consists of a half Read and
a half Update. It represents the usage of session storage; workload
f, representing a user database that frequently updates user status
or records user activities, is also the same as YCSB workload f
with a half Read and a half ReadModifyWrite; a newly designed
workload i is used to test the performance of Insert dominant
workload which consists of 10% Read and 90% Insert.

Concerning expiration TTL, we choose TTLs from 60 seconds,
30 and 60 seconds, or 15, 30, 45, and 60 seconds. For multiple TTLs,
we will randomly choose one with equal probability. We choose
60 seconds to be our maximum TTL because it is large enough to
compare our special characteristics and properties.

Last but not least, the number of client threads of YCSB is from 1
to 4, where the more client threads represent the heavier loads. The
maximum number of client threads in our experiment is 4 client
threads because it is large enough to reach the maximum CPU limit
for the stand-alone Redis.

Table 4: Parameters of Redis Instances

Name NUM_BUCKETS BASE SIZE
Ref (Redis 5.0) N/A N/A N/A
120-1000 120 1000 120 seconds
60-1000 60 1000 60 seconds
240-1000 240 1000 240 seconds
1200-100 1200 100 120 seconds
600-100 600 100 60 seconds
2400-100 2400 100 240 seconds

4.4.2 Algorithm (Redis) Parameters. As discussed in subsubsec-
tion 3.4.4, the parameters NUM_BUCKETS and BASE determine
the size of buckets and influence the algorithm efficiency. Since the
maximum TTL is 60 seconds, we design 6 different configurations
as shown in Table 4. In total, we run 7 instances for each experiment
to compare the performance of them.

4.5 Result Analysis
In this section, we will present our experimental results and analyze
them comprehensively. The following subsections are composed of
the following parts: the overall performance, the effect of the
number of operations, the number of client threads, number

Figure 4: Overall performance for different bucket sizes: the
range and average value of the percentage of memory re-
duction or throughput improvement between our algorithm
and the baseline one.

of TTLs, and the optimal choice of parameters. In our analysis,
we classify our instances into 3 categories based on their size, which
are 60 seconds, 120 seconds, 240 seconds, which represent 1 TTL, 2
TTL, and 4 TTL respectively. One point required to be emphasized
is that, in the macro scale analysis, we use the relative difference
setting the Redis expiration algorithm as the baseline, where re-
duction of memory is given by (membaseline - mem) / membaseline
and the improvement of throughputs is given by (throughputs -
throughputs baseline) / throughputs baseline.

4.5.1 Overall Performance. As shown in Figure 4, our algorithm
can significantly reduce peak memory usage and mean memory
usage with an acceptable impact on throughputs compared with
the Redis expiration algorithm in most cases. Here, we calculate the
reduction of memory and improvement of throughputs using Redis
5.0 as the benchmark. For configurations with size 60 seconds (1
TTL), it improves the poorest of memory usage. For peak memory,
it reduces from -3.74% to 53.69%, and for mean memory, it reduces
from 1.20% to 50.97%. But meanwhile, it may potentially increase
the throughputs the most, which is between -9.96% and 23.89%.
The degradation of its memory usage performance is due to its
insufficient size and will be discussed detailly in subsubsection 4.5.2.
For configurations with size 120 seconds (2 TTL) and 240 seconds
(4 TTL), they both significantly reduce memory usage with a low
sacrifice of throughputs. They on average reduce memory usage
by about 40% and at most reduce memory usage by about 54%.
Considering throughputs, the configurations with size 120 seconds
(2 TTL) is slightly better than the configurations with size 240
seconds (4 TTL). The worst throughputs are decreased by 11.45%
and the best ones are improved by 20.5%.

In Figure 5, Figure 6, and Figure 7, we show the performance
on workload a, f, and i respectively. We observe that on all three
types of workloads, our algorithm’s performance is similar, which
can significantly decrease the memory usage with low impacts on
throughputs. Therefore, in the following detailed analysis, we will
use workload a as an example.

In summary, our algorithm can significantly reduce memory
usage with low influence on throughputs. Our performance is more
related to the size of buckets rather than the type of workloads.
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Figure 5: Performance of workload a: the range and average
value of the percentage of memory reduction and through-
put improvement compared with the baseline Redis for
workload a.

Figure 6: Performance of workload f: the range and average
value of the percentage of memory reduction and through-
put improvement compared with the baseline Redis for
workload f.

Figure 7: Performance of workload i: the range and average
value of the percentage of memory reduction and through-
put improvement compared with the baseline Redis for
workload i.

4.5.2 Effect of Bucket Size. In this section, we will discuss the ef-
fect of different bucket sizes. In total, we have 3 bucket sizes as
shown in Table 4. As discussed in subsubsection 3.4.4, configura-
tions with different bucket sizes perform differently, especially for
the bucket size 60 seconds. In Figure 8 and Figure 9, we illustrate
the effect of size using the example of the experiment on workload
a with single TTL, large workload, and 4 client threads. The blue

Figure 8: Memory usage versus experiment time with the
setting: Workload a, large data size, 60 seconds TTL, 4 client
threads.
Seven instances: Reference: the baseline Redis; Experiment-
X-Y-4: our algorithmwith bucket size X and number of buck-
ets Y.

curve shows memory usage on Redis 5.0 for reference, which is
significantly greater than all others. For the instance 600-100, it
degrades partially to the reference case because of its insufficient
buckets. Because its size is merely 1 TTL, as long as we cannot
evict expired keys in time, buckets will be unavailable to reuse
and our algorithm will degrade to Redis expiration algorithm. The
other instance with size 60 seconds is 60-1000, which defers and
alleviates the performance degradation. The reason behind it is that
it has fewer ( 110×) buckets and larger (10×) BASE, and as a result, it
has lower overheads for bucket operations compared with 600-100.
For the other 4 configurations, their memory usages are similar
because they have enough buckets.

Concerning throughputs, all configurations have a little decrease
or even increase of throughputs, showing our algorithm balance
the tradeoff between memory usage and bucket overheads.

4.5.3 Effect of The Number of Operations. In our experiment, the
number of operations determines the running time and workload
size, where the greater number of operations means the longer
term of the same load. In Figure 10 and Figure 11, we show the
memory usage and throughputs for the experiment of workload a,
small workload, and 4 client threads. As we can see, for the small
workload size, all operations will be finished before one TTL (60
seconds), so no eviction is available during the operations. In this
case, the difference in memory usage and throughputs shows our
algorithm’s overhead. A key difference of the behavior is that after
60 seconds, our algorithm will evict keys almost linearly, while the
referenced one will start eviction when the proportion of expired
keys exceeds 20%. As for the throughputs, our algorithm has aminor
negative effect or positive effect on the throughputs, showing our
relatively low overheads of bucket maintenance.

Comparatively, the case for a large workload is shown in Figure 8
and Figure 9 describing the long-term behavior of performance.
The long-term performance can better represent the performance
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a-60-large-4T-1590177564.png

Figure 9: Throughputs with the setting: Workload a, large
data size, 60 seconds TTL, 4 client threads.
Seven instances: Reference: the baseline Redis; Experiment-
X-Y-4: our algorithmwith bucket size X and number of buck-
ets Y.

Figure 10: Memory usage versus experiment time with the
setting:Workload a, small data size, 60 seconds TTL, 4 client
threads.
Seven instances: Reference: the baseline Redis; Experiment-
X-Y-4: our algorithmwith bucket size X and number of buck-
ets Y.

of our algorithm under the real heavy-load scenarios where evic-
tion and operations occur simultaneously. Therefore, we focus on
the performance under the large workload size in our following
analysis.

As for the long-term performance, we observe that our algorithm
can always reduce memory usage and have an acceptable impact
on the throughputs as shown in Figure 12. The configurations with
size 60 perform the worst which in the worst case may not reduce
memory usage. For the greater sizes like 120 and 240, they can
reduce memory usage at least about 30% and at most about 50%. As
for throughputs, our algorithm will reduce no more than 10% but
can also improve up to 20.5%. Therefore, our algorithm has good
long-term performance in reducing memory usage.

a-60-small-4T-1590124692.png

Figure 11: Throughputs with the setting: Workload a, small
data size, 60 seconds TTL, 4 client threads.
Seven instances: Reference: the baseline Redis; Exp-X-Y-4:
our algorithm with bucket size X and number of buckets Y.

Figure 12: Long-Term Performance: the range and average
value of the percentage of memory reduction and through-
put improvement compared with the baseline Redis for
large data size.

4.5.4 Effect of The Number of Client Threads. The number of client
threads determines the load of clients, where more client threads
will simulate heavier loads. Figure 13 and Figure 14 show the char-
acteristics of our algorithm under 1 client thread. Compared with
the case under 4 client threads in Figure 9 and Figure 8, its execution
for the same number of operations last longer and its peak memory
is smaller. However, in either case, our algorithm can significantly
reduce the memory usage, and our throughputs are also within an
acceptable range.

4.5.5 Effect of The Number of TTLs. The number of TTLs rep-
resents the randomness of TTL distributions. In our experiment,
every key will have an associated expiration time. With a single
TTL 60 seconds, all keys without further operations will be expired
in 60 seconds. As shown in Figure 15, configurations with size 60
perform much worse than those with larger sizes because of their
insufficient buckets. As for the throughputs, our algorithm at most
decreases about 4% throughputs, but for most cases, it improves
the throughputs. Figure 16 and Figure 17 show the performance
with 2 and 4 TTLs. We observe that the increased randomness of
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Figure 13: Memory usage versus experiment time with the
setting: Workload a, large data size, 60 seconds TTL, 1 client
thread.
Seven instances: Reference: the baseline Redis; Experiment-
X-Y-1: our algorithmwith bucket size X and number of buck-
ets Y.

a-60-large-1T-1590172738.png

Figure 14: Throughputs with the setting: Workload a, large
data size, 60 seconds TTL, 1 client thread.
Seven instances: Reference: the baseline Redis; Exp-X-Y-1:
our algorithm with bucket size X and number of buckets Y.

TTLs will alleviate the performance of configurations with size
60. For configurations with size 120 and 240, they have excellent
performance on memory usage in all 3 cases, showing that, with
sufficient buckets, our algorithm can suit the cases with randomly
distributed TTLs.

4.5.6 Effect of NUM_BUCEKTS and BASE. In this section, we will
analyze the effect of NUM_BUCKETS and BASE experimentally.
From subsubsection 4.5.2, we observe that with size merely equal
to one TTL, our algorithm may degrade to the referenced one sig-
nificantly, but configurations with size 2 TTLs (120 seconds) and
4 TTLs (240 seconds) perform similarly. To further analyze the
effect of NUM_BUCKETS and BASE, we choose the size 120 and
240 seconds and the large workload. The performance is shown in
Figure 18. Comparatively, we observe that the one with larger BASE

Figure 15: Long-term performance with a single TTL (60s):
the range and average value of the percentage of memory
reduction and throughput improvement compared with the
baseline Redis.

Figure 16: Long-termperformancewith 2 TTLs (30s and 60s):
the range and average value of the percentage of memory
reduction and throughput improvement compared with the
baseline Redis.

Figure 17: Long-term performance with 4 TTLs (15s, 30s, 45s
and 60s): the range and average value of the percentage of
memory reduction and throughput improvement compared
with the baseline Redis.

(1000) will have lower memory usage but also smaller throughputs.
It is a tradeoff between memory usage and overhead of bucket main-
tenance. For the ones with larger BASE, they have fewer buckets
and each bucket contains more keys. As a result, fewer buckets
help to save the memory used for buckets, but meanwhile, with
more keys stored in a bucket, the overhead for bucket operations
will increase, which reduces the throughputs. Therefore, the larger
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Figure 18: Long-term performance of Bucket Size 120 and
240: the range and average value of the percentage of mem-
ory reduction and throughput improvement compared with
the baseline Redis.
Four instances: X-Y means an instance with X buckets and
BASE Y.

BASE and fewer buckets will save a bit more memory but sacrifice
some throughputs.

4.5.7 Optimal Choice of Parameters. In this section, we will con-
clude our experimental analysis with the optimal choice of parame-
ters from our current settings.

From subsubsection 4.5.2, we observe that our eviction perfor-
mance significantly degrades when the size of buckets is insufficient.
Hence, we should not choose the size merely equal to one TTL (60
seconds).

Concerning the size 120 and 240 seconds, we balance the extra
memory and computation overhead for buckets. The analysis of
subsubsection 4.5.6 shows that more buckets may require some
memory to achieve better throughputs. From Figure 18, we can
conclude that the configuration 120-1000 balance memory usage
and throughputs the best among them.

Therefore, an optimal choice is with NUM_BUCKETS 120 and
BASE 1000 which achieves relatively low memory usage and good
throughputs.

5 CONCLUSION AND FUTUREWORKS
In this work, we have proposed a Bucket-Based expiration algorithm
to efficiently evict expired keys, which is a hybrid algorithm with
a deterministic one with buckets and a randomized one inherited
from Redis expiration algorithm. It adopts a simple data structure
and has low maintenance overhead. Besides the theoretical analysis
of time complexity, we further implement our algorithm into Redis
5.0 and have a comprehensive experimental result using the origi-
nal Redis 5.0 as our benchmark. The result of low memory usage
and slightly affected throughputs shows that our algorithm signifi-
cantly improves eviction efficiency with an acceptable maintenance
overhead.

In general, our algorithm can be further applied to other value-
based eviction policies where the value of eviction priority can
be discretized and grouped into buckets. Besides, extending our
algorithm to a database cluster like Redis Cluster is also valuable
and may have more variations depending on the base of a database
cluster. Furthermore, the dynamic configuration of buckets using
methods of optimization or machine learning is another promising

issue. We will address these issues to extend our algorithm in the
future.
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