
Efficient Generation of Application Specific Memory Controllers
Marco V. Natale

Optimization Research Group,

TU Kaiserslautern

Kaiserslautern, Germany

natale@mathematik.uni-kl.de

Matthias Jung

Fraunhofer Institute for Experimental

Software Engineering (IESE)

Kaiserslautern, Germany

matthias.jung@iese.fraunhofer.de

Kira Kraft

Microelectronic Systems Design

Research Group, TU Kaiserslautern

Kaiserslautern, Germany

kraft@eit.uni-kl.de

Frederik Lauer

Microelectronic Systems Design

Research Group, TU Kaiserslautern

Kaiserslautern, Germany

flauer@rhrk.uni-kl.de

Johannes Feldmann

Microelectronic Systems Design

Research Group, TU Kaiserslautern

Kaiserslautern, Germany

jfeldman@rhrk.uni-kl.de

Chirag Sudarshan

Microelectronic Systems Design

Research Group, TU Kaiserslautern

Kaiserslautern, Germany

sudarshan@eit.uni-kl.de

Christian Weis

Microelectronic Systems Design

Research Group, TU Kaiserslautern

Kaiserslautern, Germany

weis@eit.uni-kl.de

Sven O. Krumke

Optimization Research Group,

TU Kaiserslautern

Kaiserslautern, Germany

krumke@mathematik.uni-kl.de

Norbert Wehn

Microelectronic Systems Design

Research Group, TU Kaiserslautern

Kaiserslautern, Germany

wehn@eit.uni-kl.de

ABSTRACT
The increasing gap between the bandwidth requirements of modern

Systems on Chip (SoC) and the I/O data rate delivered by Dynamic
Random Access Memory (DRAM), known as theMemoryWall, limits

the performance of today’s data-intensive applications. General pur-

pose memory controllers use online scheduling techniques in order

to increase the memory bandwidth. Due to a limited buffer depth

they only have a local view on the executed application. However,

numerous applications, especially in the embedded systems domain,

have regular or fixed memory access patterns, which are not yet

exploited to overcome the memory wall. In this paper, we present a

new methodology to generate the configuration for an Application-
Specific Memory Controller (ASMC), which has a global view on the

application and utilizes application knowledge to decrease the en-

ergy and increase the bandwidth. Therefore, we analyze the DRAM

access pattern of the application offline by solving an instance of

the Min-k-Union problem and generate a configuration for a re-

configurable address mapper. For several applications we show an

improvement in energy efficiency of up to 8.5× and sustainable

bandwidth of 8.9×.

CCS CONCEPTS
• Hardware→ Dynamic memory; Software tools for EDA;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8899-3/20/09. . . $15.00

https://doi.org/10.1145/3422575.3422796

KEYWORDS
Application Specific Memory Controller, DRAM, Address Mapping,

Optimization, Min-k-Union, Combinatorics, Embedded Systems

ACM Reference Format:
Marco V. Natale, Matthias Jung, Kira Kraft, Frederik Lauer, Johannes Feld-

mann, Chirag Sudarshan, Christian Weis, Sven O. Krumke, and Norbert

Wehn. 2020. Efficient Generation of Application Specific Memory Con-

trollers. In The International Symposium on Memory Systems (MEMSYS 2020),
September 28-October 1, 2020, Washington, DC, USA. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/3422575.3422796

1 INTRODUCTION
The achievable bandwidth and energy efficiency of Dynamic Ran-
dom Access Memories (DRAMs) strongly depends on the access

patterns to the memory devices. Many applications have a regular

or fixed memory access pattern, either temporal (the commands fol-

low a well-defined rule) or spatial (the sequence of the accessed ad-

dresses is deterministic). Especially in embedded systems, which are

designed for specific purposes, we find applications with determin-

istic memory access patterns. Among them: streaming, real-time

image or signal processing, and the inference of many neuronal

networks.

On the computing architecture side this inherent application-

specific knowledge has been heavily utilized by techniques like

Hardware Accelerators (HWA) and Application-Specific Instruction-
Set Processors (ASIPs). However, on the memory side there is a lim-

ited amount of research that exploits the application knowledge for

customized application-specific memory controllers (cf. Section 3).

Thus, we propose the concept of designing an Application-Specific
Memory Controller (ASMC), which largely increases the overall ef-

ficiency of the DRAM subsystem. This ASMC can be implemented

in systems based on Field Programmable Gate Arrays (FPGA) and
in Application-Specific Integrated Circuits (ASICs), as shown in Sec-

tion 6. In contrast to commercial off-the-shelf DRAM controllers

(e.g. [22, 24]), which are targeting general purpose systems, an



MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA M. V. Natale, M. Jung, et al.

ASMC is lean, highly energy and area efficient while it can improve

the achievable bandwidth for the specific target application.

General purpose memory controllers use online scheduling al-

gorithms and quality of service methods [2, 28] in order to increase

the memory bandwidth. Due to a limited buffer depth they only

have a local view on the executed application. For applications

with deterministic memory access pattern an optimized DRAM ad-

dress mapping
1
(often called scrambler), can supersede the online

scheduler because it was designed beforehand with a global appli-
cation view. Such an address scrambler is a lean memory controller

frontend, because it can easily be realized by means of a simple

lookup table or a network of multiplexers in order to maximize the

number of row buffer hits and exploit the bank level parallelism of

the DRAM device (see Section 2).

This work is based on our previously presentedConGen approach
at MEMSYS’16 [12], where we showed for the first time how an

ASMC can be designed by an application-specific address scrambler.

The challenge for the scrambler design is to find a bijective boolean

function that scrambles the address bits according to application

knowledge in order to minimize the number of row misses, as

shown in Figure 3a. This function can be estimated by solving anNP-

hard mathematical optimization problem. Therefore, the previously

presented solution was based on an approximate heuristic, where

the size of the generated hardware architecture was unfortunately

unbound.

In this paper, we present an hybrid algorithm called ConGen2
which consists of two parts. The first part minimizes the penalties of

read write switches by using an online write buffer. The second part

presents an exact offline-algorithm for the address mapping prob-

lem that minimizes the number of rowmisses under given hardware

constraints. Figure 1 shows a configurable address scrambler, which

can also be found in commercial DRAM controllers such as [22]

or [24]. The goal of our optimization is to find a configuration for

this scrambler, such that the number of row misses is minimal for

a specific application. We show that this optimization problem is

equivalent to the NP-hard Min-k-Union problem. Furthermore, we

present, to the best of our knowledge, for the first time an exact

algorithm to efficiently solve this problem. The final bandwidth and

energy is estimated with the design space exploration framework

DRAMSys [14], as shown in Figure 4. For several applications we

can show an improvement in energy efficiency of up to 8.5× and
bandwidth of 8.9× by using an ASMC, compared to a state-of-the-

art controller that uses only online scheduling. With this approach

we bring relief to the system designer, who can fully concentrate

on the application itself and does not have to deal with the details

of the DRAM subsystem. Moreover, ConGen2 can be integrated

into the flow of High Level Synthesis (HLS) tools to facilitate fast

implementations of systems with DRAM.

The paper is structured as follows: Section 2 explains the back-

ground on DRAM. The related work is discussed in Section 3. Sec-

tion 4 shows the ConGen2 approach. It is proven that the problem

is equivalent to the Min-k-Union problem (cf. Appendix A) and an

exact algorithm based on a branch and bound approach is presented

in order to solve this problem efficiently. Section 5 discusses the

1
The address mapping, performed in the memory controller, defines the physical

location of the data elements in the DRAM (cf. Section 3.2).

implementation of the algorithm and presents results for several

benchmarks. A hardware implementation of the proposed address

scrambler and memory controller, including the PHY is shown in

Section 6. Finally the paper is concluded in Section 7.

2 DRAM BACKGROUND
In the following we explain the basic DRAM architecture and func-

tionality, to understand the limiting factors with respect to energy

and bandwidth. As depicted in Figure 2, a DRAM device is organized

as a set of memory banks (e.g. eight) that include memory arrays

(e.g. two). Each memory array has row and column decoders, mas-

ter wordline drivers and Secondary Sense Amplifiers (SSA). Busses,
buffers, control signals, voltage regulators, charge pumps and other

peripherals are shared between the different banks. The memory ar-

rays are formed in a hierarchical structure out of sub-arrays (SA) for
efficient wiring, increased speed and reduced power consumption.

Therefore, each SA is equipped with Primary Sense Amplifiers (PSA).
A typical memory SA consists of e.g. 512 cells · 512 cells = 256 Kb

2
.

For instance, a 64Mb DRAM bank is formed out of two memory

arrays, where each memory array consists of 8 · 16 = 128 SAs. A

single memory cell is built as a transistor capacitor pair where the

data is stored in the capacitor as a charge. The individual cells in

each sub-array are connected to Local Wordlines (LWL) and Local
Bitlines (LBL). The LBLs and LWLs are connected to global Master
Bitlines (MBL) and Master Wordlines (MWL), respectively, which

span over the complete memory array.

In the following, the basic DRAM operations are explained on

a single read transaction, noting that writing works similar. To

read data from the memory, a precharge command is issued by

the memory controler (PRE) to prepare the LBLs to a halfway volt-

age level. The time interval for this operation is called tRP (Row
Precharge). After the PRE an activate command (ACT) is issued to

drive the LWL high and transfer the charge between the memory

cells and the connected LBLs. The voltage difference caused by

this transfer of charge (data) is sensed by the PSAs. The complete

targeted row in that bank, called DRAM Page is now latched in

the PSAs. The time interval between the ACT command and data

ready at the PSAs is called tRCD (Row to Column Delay. Then, a
read (RD) command can be sent in order to move data from the PSAs

to the SSAs (tCL) and finally read specific columns of data from

the SSAs (tBU RST = tCCD ), which are interacting with the I/Os.

Once finished, the wordlines can be switched off, the cell capacitors

disconnected, and the LBLs can be precharged (PRE) again.
The combination of primary and secondary sense amplifiers of

the memory arrays in one bank are often conceived as a, so called,

row buffer. This row buffer is a model, which abstracts the real

physical DRAM architecture, i.e. PSAs and SSAs. The buffer has

usually a size ranging from 1KB to 8KB (called DRAM page size,

see Figure 2). It acts like a small cache that stores the most recently

accessed row of the bank. The latency of a memory access to a

bank largely varies depending on the state of this row buffer. If a

memory access targets the same row as the currently cached row in

the buffer (called row hit), it results in a low latency and low energy

memory access. Whereas, if a memory access targets a different

row as the current row in the buffer (called row miss), it results in

2
We use JEDEC’s notation for storage capacity: K = 2

10
, M = 2

20, G = 2
30



Efficient Generation of Application Specific Memory Controllers MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Figure 1: A Configurable Address Scrambler

Ban
ks

Page Size

LWL
Sub Arrays

MWL

PSA

Local Datalines

CSL

Master Datalines

LWL

Transistor

Capacitor

LBL

LBL

Bank 0

Column Decoder & SSA

R
ow

 D
ec

od
er

Memory Arrays

Interface

Figure 2: DRAM Architecture

higher latency and energy consumption: A precharge command

(PRE) must be issued before the required row can be loaded (ACT)
from the DRAM array into the row buffer. Activated rows in two

different banks can be accessed in parallel without a penalty. This,

so called Bank Parallelism, can be exploited for better performance.

In the following we explain the important DRAM performance

and energy penalties, where Table 1 shows the key timing and

current parameters for a DDR3 DRAM device:

• Row Misses: A row miss causes a large penalty on the

DRAM’s databus, e.g. in the worst case tWR + tRP + tRCD +
tCL = 42 cycles and additional energy, e.g. EMiss = VDD ·
(IDD0 · tRC − IDD3N · tRAS − IDD2N · tRP ) = 1.78 nJ for a

DDR3-1600 Device [13].

• RD/WR-Switching: Switching from a RD to a WR on the same

row needs a bus turnaround time (e.g. 2 cycles on DDR3-

1600). However, switching from a WR to a RD needs a much

longer turnaround time which results in a larger penalty on

the databus (e.g. tWTR + tCL = 16 cycles).

• Refresh: DRAM has to be refreshed regularly due to its

charge-based bit storage property (capacitor) which suffers

from leakage currents. The refresh performance penalty for

a 1Gb DDR3-1600 device is 1.5%. However, it is a fact that

40% to 50% of the bandwidth in future 32 or 64Gb DRAMs

has to be attributed to refresh commands [20].

Techniques for reducing refresh and RD/WR-switching penalties are

presented in [9, 15]. Since row misses and RD/WR switches have

the highest performance and energy penalty we focus on their

minimization in this paper.

3 RELATEDWORK
Several DRAM controller approaches exist to mitigate the afore-

mentioned penalties, which are covered in this section.

3.1 Online Scheduling
General purpose DRAM controllers use online scheduling tech-

niques to reduce the number of row misses. Usually, they have

two major modes, called Open Page Policy (OPP) and Closed Page
Policy (CPP). The OPP keeps the current row active after a RD



MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA M. V. Natale, M. Jung, et al.

Table 1: Key Parameters for a DDR3-1600 Device [11, 23]

Name Explanation Value

tBURST
Data Burst Duration: The time period that a data burst occupies

the data bus.
4 clk

tCCD
Column to Column Delay: The minimum column command tim-

ing, determined by internal burst (prefetch) length.
4 clk

tRP
Row Precharge: The time interval that it takes for a DRM array to

be precharged (PRE) and prepared for antoher row access.
10 clk

tRCD

Row to Column Delay: The time interval between row access and

data ready at PSAs, in other words: The time interval between

ACT and RD on the same bank.

10 clk

tRAS

Row Access Strobe: The minimum active time for a row, in other

words: The time interval between row access command and data

restoration in a DRAM array.

28 clk

tRC

Row Cycle: The fastest time to ACT and PRE the same row (tRC =
tRAS + tRP ), in other words: The time interval between ac-

cesses to different rows in a bank.

38 clk

tCL

CAS Latency: The time needed to transfer the data from the PSAs

to the SSA and the interface, in other words: The delay from a

RD/WR command until data can be read/written at the interface.

10 clk

tWR
Write Recovery: The minimum time interval between the end of

a WR burst and a PRE command.
12 clk

tWTR
Write to Read: The minimium time interval betwen the end of a

WR burst and a RD command.
6 clk

IDD0

One Bank Active Precharge Current: Measured across ACT and PRE
commands to one bank (other banks remain precharged).

70 mA

IDD2N
Precharge Standby Current: Measured when all banks are

precharged (PRE). 45 mA

IDD3N Active Standby Current: Measured when one bank is active (ACT). 45 mA

VDD Supply Voltage 1.5 V

or WR, whereas the CPP precharges the row automatically (Auto-

Precharge: RDA/WRA). The CPP is often used for server applications

(e.g. webserver), where the accessed DRAM addresses are uniformly

random. The OPP is used in desktop PCs and mobile devices where

row hits are more likely to a higher data locality. For further im-

provement of row buffer hits in the OPP, online scheduling tech-

niques are used. The most common online DRAM scheduler, called

First Ready First Come First Served (FR-FCFS), has been presented by

Rixner et al. [28]. The FR-FCFS scheduler places incoming requests

into a queue in such a way that they are placed next to requests that

target the same row. By using this strategy, groups of row hits are

formed (row-hit-first policy). If there are no row hits in the queue

of the scheduler, the oldest request in the scheduler will be issued

(oldest-first policy). This approach has been improved for general

purpose processors by [9] and for multicore and heterogeneous

systems in [27] and [2]. In order to reduce the number of RD/WR-
switches DRAM controllers buffer RD and WR commands in two

distinct queues. An arbiter switches between RD and WR mode to

diminish the penalty. The before presented techniques are used in

commercial off-the-shelf DRAM controllers such as [24] and [22].

3.2 Address Mapping
Another approach to reduce the number of row misses is an op-

timized physical DRAM address mapping, that can assist or even

outperform an online scheduler in specific cases. The straight for-

ward address mapping, called Linear Addressing, shown in Figure 3b,
is rarely used in practice. The most common addressing scheme,

called Page Mode or Bank Interleaving [11, 29], brings the upper

bank bits of the address down between the row and the column bits

(shown in Figure 3c) to ensure a better bank utilization. State-of-

the-art memory controllers like [22, 24, 25] support both, the linear

Output Address

Any Bijective Mapping

Input Address

Application Knowledge

(a) Generalized Address Mapping [12]

RowBank Column

Input Address

(b) Linear Addressing, or BRC [12]

Row Bank Column

Input Address

(c) Page Mode, Bank Interleaving, or RBC [11, 29]

Row Bank* Column

+

Row Bank Column

Input Address

(d) Permutation-Based Page Interleaving [19, 34]

Row Bank Column

Input Address

(e) Bit-Reversal Address Mapping [31]

Row Bank Column

Input Address

(f) Toggling Rate Analysis [14, 17]

Figure 3: Different Address Mappings and Scramblers

Bank-Row-Column (BRC) and interleaved Row-Bank-Column (RBC)

address mapping scheme. Sophisticated memory controllers used

in high end CPUs support the Permutation-Based Page Interleav-
ing technique [19, 34]. Figure 3d explains this advanced mapping

scheme: the accesses to different rows in the same bank are trans-

formed into accesses to different banks by XORing the bank bits

with selected row bits. The authors of [31] present a Bit-Reversal ad-
dress mapping, shown in Figure 3e, in order to improve the DRAM



Efficient Generation of Application Specific Memory Controllers MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

bandwidth and access latency. However, as we will show in Obser-

vation 2 in Section 4.2.1 the reversing of the bits does not change

the number of row misses, but results only in a renumbering of

the banks, rows and columns. Virtual platform tools like Synopsys
DesignWare DDR Explorer [17] or DRAMSys [14] provide capabili-
ties to analyze the toggling rates of each address bit for a specific

application, as shown in Figure 3f. This information can help to

create custom address scramblers used as a frontend for e.g. the

MIG (Memory Interface Generator) memory controller on FPGAs

or it can assist to configure the address mapping of memory con-

trollers that target ASIC implementations, such as [24] and [22].

The authors of DReAM [8] analyze the toggling rates during run-

time and they change the address mapping on the fly. However, this

approach has a large overhead due to data movement when the ad-

dress mapping is changed. In [3] the authors proposed a scrambling

mechanism based on substitution-permutation networks to reduce

the vault/bank conflicts in HMC and to enable robust operation

even in the presence of pathological traffic patterns. The authors

of [1] presented HAMLeT, an address remapping memory controller

architecture for 3D-Stacked DRAMs. However, formal analysis of

the address remapping was beyond the scope of their work. Re-

cently, Hur et al. [10] presented an heuristic approach called Bank
Flip Address Map. With their approach they focus mainly on sim-

ple image processing tasks e.g. rotation. Since the approach is an

heuristic they do not target the optimal solution.

3.3 Application-Specific Approaches
The authors of [5] present PARDIS, a programmable memory con-

troller based on a standard Reduced Instruction-Set Computer (RISC).
However, implementing a sophisticated address mapping with this

controller results in a large program and therefore in a large latency.

Bayliss and Constantinides present an offline method for applica-

tions specific reuse and reordering [4]. In their approach they try to

cache reoccurring addresses in an on-chip buffer to create a mono-

tonic address pattern for the DRAM in order to maximize the num-

ber of row hits. The Impulsememory controller [6] is using physical

address space, which is not backed by DRAM in order to constitute a

shadow address space that allows application-specific optimizations

by restructuring data. However, additional software, compiler and

operating system support is needed for this controller. Techniques

to overcome strided memory access pattern have been presented

in [30]. Furthermore, the authors of [7] and [18] present an specific

access pattern optimization for FFT based applications in order

to optimize the bandwidth. In the previously presented ConGen
approach [12] was based on an approximate heuristic. Therefore, a

minimal number of row misses could only be approximated. The

heuristic found a boolean function for the address mapping, that

could be used by a synthesis tool. However, the boolean function

could lead to a arbitrarily complex hardware architecture. Software

and compiler techniques for access pattern optimizations are pre-

sented in [16, 26]. However, in software-less systems like ASICs

or FPGA these approaches cannot be applied. In [15] it is shown

that DRAM refresh can be switched off for applications with a data

lifetime that is smaller than the currently required refresh period

to gain additional bandwidth.

Bandwidth &
Energy Estimation

II. Minimizing Row-Misses

WR WR

WR WR

I. Minimizing R/W Switches

Mathematical
Optimization

Figure 4: ConGen2 Methodology

4 CONGEN2 APPROACH
In this section, we explain our novel ConGen2 approach for appli-

cations that feature a deterministic DRAM access pattern, shown in

Figure 4. The methodology receives the deterministic DRAM access

trace as input and processes this trace in two consecutive steps:

I. Minimization of RD/WR switches: The behavior of an on-

line write buffer, which minimizes the number of RD/WR
switches by buffering the WR accesses, is anticipated and

the input trace is transformed into a new trace that reflects

the behavior of the online write grouper (c.f. Section 4.1).

The new trace is used as input for the optimization algorithm

in Step II.

II. Minimization of row misses: The presented algorithm

calculates an application specific address mapping such that

the number of row misses is minimal. This is the core of the

presented ConGen2 approach and it is described in detail.

Therefore, first, Section 4.2.1 defines a mathematical model

of DRAMs as foundation of the further sections. Then, we

show in Section 4.2.2 how the number of row misses can be

minimized with an artificial DRAM that consists only of one

single bank and prove that our problem is an instance of the

Min-k-Union problem. In Section 4.2.3 we show how DRAMs

with more than one bank (e.g. 8 and 16) can be transformed

into an artificial DRAM with only one bank in order to solve

the address mapping problem for real DRAM devices. The

Sections 4.2.5 and 4.2.4 present a Branch & Bound algorithm

in order to estimate a configuration for the address scrambler

shown in Figure 1 such that the number of row misses is

minimal.

The calculated minimization of RD/WR switches and row misses is

then evaluated by the DRAM subsystem simulator DRAMSys to

obtain the actual metrics like bandwidth, latency and energy, as

shown in Section 5. In the following sections, we will detail our

two steps.



MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA M. V. Natale, M. Jung, et al.

4.1 Minimizing RD/WR Switches
In order to reduce the overheads of RD/WR-Switches, memory con-

trollers usually implement a Write Buffer semantic. The memory

controller is either in a read mode, where only reads (RD) are issued,
or in a write mode, where only writes (WR) are issued. Since reads
have the highest priority, they are passed through this buffer and

write transactions are buffered until the buffer is full or a RD/WR
hazard occurs. In both cases the controller will switch from RD-
to WR-mode and the write buffer will be flushed. This technique

ensures that the number of RD/WR switches is minimized. The usage

of such an online write buffer would destroy the offline calculated

optimizations of the Step II in our approach (Minimization of row

misses, Section 4.2) since the memory transactions are reordered

online. Therefore, we introduce the preprocessing Step I in our

approach, that is performed before the actual row miss minimiza-

tion in order to overcome this issue. The preprocessing follows the

following idea: Because the write buffer has a deterministic behav-

ior for a deterministic memory access pattern, its behavior can be

fully anticipated, like buffer effects including RD/WR hazards. Thus,

the deterministic memory access trace is transformed, such that it

reflects the behaviour of an online write grouper. The algorithm

for this preprocessing of the trace is presented in Algorithm 1.

4.2 Minimizing Row Misses
This section presents the core of the presented ConGen2 approach

and it is described in detail including all the mathematical founda-

tions. The main goal of the algorithm is to minimize the number

of row misses for the given application specific memory access

pattern. In the next subsection we describe a mathematical model

which serves as the base for the development of the algorithm in

the following subsections.

4.2.1 Mathematical Model. We start with describing the mathe-

matical model for minimizing the number of row misses of a given

application specific memory access pattern for some DRAM.

Let a = (a0,a1, . . . ,am−1) be a finite application-specific se-

quence of memory accesses, where each ai is a binary vector

of length n containing the address of the i-th memory access in

the given sequence. Formally, ai = (ai,0,ai,1, . . . ,ai,n−1), with
ai, j ∈ {0, 1}.

For a memory consisting of B = 2
b
banks, R = 2

r
rows per bank,

andC = 2
c
columns per row, the address of the i-th memory access

ai can, according to a BRC mapping, be represented as follows (see

Figure 3b): The first b bits (ai,0, . . . ,ai,b−1
) =: b(ai ) are the bank

bits, the following r bits (ai,b , . . . ,ai,b+r−1
) =: r(ai ) are the row

bits, and the last c bits (ai,b+r , . . . ,an−1) =: c(ai ) are the column
bits. An example is illustrated in Table 2 for a DRAM with B = 2

banks (b = 1), R = 4 rows per bank (r = 2), and C = 4 columns per

row (c = 2).

The request to a memory bank induces a row miss if and only if

no row in the corresponding bank has been activated so far (ACT),
or if the last activated row in a bank differs from the currently

requested. Formally, this leads to the following observation.

Observation 1. The request of an element ai , i ∈ {0, . . . ,m − 1},
in a induces a row miss if and only if one of the following conditions
hold:

Algorithm 1 Offline Preprocessing

Input: A sequence T of n transactions, transferred to the write

buffer, where a transaction consists of an address and access

type.

Output: A sequence T ′ of n transactions, transferred from the

write buffer to the DRAM.

1: Let B be a Buffer with a depth of k transactions

2: Let c be the number of valid entries in buffer B
3: Let S be a state register with the valid states Last Transaction

Read (LTR) and Last Transaction Write (LTW)

4: S := LTR
5: k := 32

6: c := 0

7: for i = 0, . . . ,n − 1 do
8: if T [i].Access = Read then
9: if T [i].Address = B[j].Address for some j ∈ {0, ..., c − 1}

then
10: T ′.append(B[j]), j = 0, . . . , c − 1

11: c = 0

12: T ′.append(T [i])
13: S = LTR
14: else
15: if S = LTW then
16: T ′.append(T [i])
17: else if c < k then
18: B[c] = T [i]
19: c = c + 1

20: else
21: T ′.append(B[j]), j = 0, . . . , k − 1

22: c = 0

23: T ′.append(T [i])
24: S = LTW
25: T ′.append(B[j]), j = 0, . . . , c − 1

26: return T ′

Table 2: Sequence of Memory Addresses

b(a) r(a) c(a)
a ai,0 ai,1 ai,2 ai,3 ai,4
a0 0 1 0 1 0 miss

a1 0 000 0 1 0 miss

a2 1 1 1 1 1 miss

a3 1 1 1 0 0 hit

a4 1 000 1 0 0 miss

a5 0 0 0 1 0 hit

a6 1 0 1 1 0 hit

a7 0 111 111 1 0 miss

(1) For all l ∈ {0, . . . , i − 1} it holds that b(al ) , b(ai ).
(2) There exists an l ∈ {0, . . . , i − 1} with b(al ) = b(ai ) and

r(ak ) , r(ai ) for k := max{l ∈ {0, . . . , i−1} | b(al ) = b(ai )}.

Example 1. Consider the sequence of memory addresses in Ta-

ble 2. The sequence contains 8 addresses, each of them consisting

again of b = 1 bank bit, r = 2 row bits, and c = 2 column bits.

The number of row misses in this sequence is 5. Note that there



Efficient Generation of Application Specific Memory Controllers MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Table 3: Sequence of Memory Addresses with Bit-
Permutation

b(a) r(a) c(a)
a ai,0 ai,1 ai,2 ai,3 ai,4
a0 0 1 0 1 0 miss

a1 0 1 0 0 0 hit

a2 1 1 1 1 1 miss

a3 1 000 000 1 1 miss

a4 1 0 0 0 1 hit

a5 0 1 0 0 0 hit

a6 1 111 0 0 1 miss

a7 0 1 0 1 1 hit

is no row miss from i = 4 to i = 5, because bank 0 is already ac-

tive, i.e., we have b(al ) = b(a5) for l ∈ {0, 1}, and memory address

a5 targets the same row as the last access to this bank, i.e., for

1 = max{l ∈ {0, . . . , i − 1} | b(al ) = b(a5)} we have r(a1) = r(a5).
A row miss is induced for the first access to a bank and for a change

in the row bits highlighted in bold.

Example 2. Consider again the sequence of memory addresses

in Table 2. Suppose that we switch the address bits for rows and

columns, i.e., we permute the bits according to a permutation σ
defined by σ (0) = 0,σ (1) = 3,σ (2) = 4,σ (3) = 1,σ (4) = 2 as

illustrated in Table 3. Then the number of row misses decreases

by 1.

Thus, the goal of our optimization is to find a permutation of the

address bits such that the number of row misses is minimized. To

this end, we need the following definition.

Definition 1. Let a = (a0, . . . ,an−1) ∈ {0, 1}n−1
be a binary

vector and σ : {0, . . . ,n − 1} → {0, . . . ,n − 1} a permutation. We

call aσ := (aσ (0), . . . ,aσ (n−1)) the vector obtained from a and σ .
For a sequence of binary vectors a = (a0, . . . ,am−1) we call Aσ :=

(aσ
0
, . . . ,aσm−1

) the sequence obtained from σ .

We are now ready to formulate our optimization problem for

minimizing the number of rowmisses of a given application-specific

memory access pattern: Given a sequence of memory addresses

a = (a0, . . . ,am−1),ai ∈ {0, 1}n , i = 0, . . . ,m − 1, and natural

numbers b, r , c ∈ N denoting the number of bank, row, and column

bits, find a permutation σ : {0, . . . ,n − 1} → {0, . . . ,n − 1} such
that the number of row misses of the sequence aσ obtained from

σ is minimum. We call this problem Min-Row-Misses in the setting
(b, r , c).

There are n! possibilities for a permutation σ , so there are 5! =

120 different possibilities for the setting in Example 1. For the case

of the realistic configurable address scrambler from Figure 1, where

n = 24 bits can be permuted, this results in n! ≈ 6.2 · 10
23

different

possibilities, which is far too much for a simple enumeration.

To reduce the number of possible permutations, note that per-

muting the bank, row, and column bits within themselves does not

change the number of row misses but only results in a renumbering

of the banks, rows, and columns. This observation is formalized in

the following.

Observation 2. Let σ ,π : {0, . . . ,n−1} → {0, . . . ,n−1} be two
permutations with the following properties:

(1) σ ({0, . . . ,b − 1}) = π ({0, . . . ,b − 1}),
(2) σ ({b, . . . ,b + r − 1}) = π ({b, . . . ,b + r − 1}),
(3) σ ({b + r , . . . ,n − 1}) = π ({b + r , . . . ,n − 1}).

Then the number of row misses of the sequences aσ and aπ obtained
from σ and π , respectively, are equal.

A direct consequence of the above observation is that it suffices

to partition the set {0, . . . ,n − 1} into three subsets indicating the

bank, row, and column bits. This reduces the number of possible

permutations to

(n
b
)
·
(n−b
r
)
, resulting in only

(
5

1

)
·
(
4

2

)
= 30 possible

permutations for the setting (b, r , c) = (1, 2, 2) from Example 1

and

(
24

3

)
·
(
21

14

)
≈ 2.4 · 10

8
possible permutations for the setting

(b, r , c) = (3, 14, 7) from Figure 1. Including the XORs from Figure 1

into this consideration will further increase the number of possible

permutations (see Section 4.2.4). Thus, a clever strategy for solving

Min-Row-Misses is needed.

4.2.2 The Artificial Case of a Single Bank. In this section, we

will show how to solve Min-Row-Misses in the setting (b, r , c) for
the special case where b = 0, i.e., we assume that our DRAM only

consists of a single bank. As described in the next section, the

general case can always be reduced to this single bank case.

Following Observation 2, in case of a single bank, we have to

choose a set R∗ ⊆ {0, . . . ,n − 1} of size r whose elements are going

to be the row bits. Clearly, since b = 0 and n = r + c , the column

bits are then determined by {0, . . . ,n − 1}\R∗. Recall that there are(r+c
r
)
possibilities for the set R∗.

Example 3. Consider the sequence of memory accesses given in

Table 4. The address bits, which toggle from one access to the next,

are highlighted as bold numbers. Note that this toggling can be

observed column-wise. Therefore, for every column ai,0, . . . ,ai,4
of Table 4, we define sets Sj , j ∈ {0, . . . , 4}, containing exactly

those i ∈ {0, . . . , 8} for which there is a bit change in ai, j , i.e.,
the highlighted numbers in the table. For the specific case, we

get S0 = {1, 6}, S1 = {3, 8}, S2 = {2, 6, 8}, S3 = {1, 3, 4, 5} and
S4 = {2, 3, 6, 7}. Note that the size of set Sj gives the number of bit

changes for the j-th address bit.

Assume that we want to choose r = 3 positions as row bits. To

obtain the number of row misses when choosing certain row bits,

consider the union of three of the sets Sj , e.g., of the sets S0, S1

and S2 given by T := S0 ∪ S1 ∪ S2 = {1, 2, 3, 6, 8}. The elements

of T are exactly the positions of bit changes happening combined

in columns 0, 1 and 2 and the size of T equals the number of row

misses of a minus 1 for R∗ = {0, 1, 2}, since the initial row miss

when activating the bank is not counted.

In the following, we will generalize the previous example. To

this end, we need the following definition.

Definition 2. Let V be a finite set and E ⊆ P(V ), where P(V )
denotes the power set of V , be a set of subsets of V . We call the

pair H = (V , E) a hypergraph, the elements in V vertices and the

elements of E hyperedges.

Note that, in contrast to edges in a usual graph that connect only

two vertices, hyperedges connect an arbitrary subset of V .



MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA M. V. Natale, M. Jung, et al.

Table 4: Sequence of Memory Addresses with Highlighted
Bit-Toggling

a ai,0 ai,1 ai,2 ai,3 ai,4
a0 1 0 0 0 1

a1 000 0 0 111 1

a2 0 0 111 1 000

a3 0 111 1 000 111

a4 0 1 1 111 1

a5 0 1 1 000 1

a6 111 1 000 0 000

a7 1 1 0 0 111

a8 1 000 111 0 1

6    2    8
1    3    4    5

      7

(a) Problem

6    2    8
1    3    4    5

      7

(b) Solution

Figure 5: The Hypergraphs Corresponding to Table 4

For a given hypergraph H = (V , E) and natural number k ∈ N
with k < |E |, the goal of the Min-k-Union problem is to choose a

subset F ⊆ E of size k such that |⋃E∈F E | is minimum.

Theorem 1. Solving Min-Row-Misses in the setting (0, r , c) is
equivalent to solving Min-k-Union with k = r .

A formal proof to Theorem 1 is given in Appendix A.

Example 4. Consider again the setting from Example 3. The

corresponding hypergraph with vertices V = {1, . . . , 8}, corre-
sponding to the memory accesses from Table 4, and hyperedges

E = {S0, . . . , S4}, corresponding to the bitchanges of the individ-

ual address bits, is illustrated in Figure 5a. It can be verified, that

choosing F = {S0, S1, S2} is a solution to Min-k-Union for k = 3

(see Figure 5b). According to Theorem 1, this means that choosing

bits 0, 1 and 2 as row bits is a solution to Min-Row-Misses in the

setting (0, 3, 2) (see Table 5). Note that the resulting number of row

misses equals |F| + 1 = 6.

In [33], Vinterbo showed that the so-called Max-k-Intersection
problem, which is equivalent to maximizing the number of row hits

in the setting (0, r , c) with r = k , is NP-hard. Since maximizing the

number of row hits is equal tominimizing the number of rowmisses,

we can conclude that Min-Row-Misses and, thus, also Min-k-Union
are NP-hard.

4.2.3 The Case of Multiple Banks. We now show how the gen-

eral case with multiple DRAM banks, i.e. a realistic DRAM device

with 8 or 16 banks, can be reduced to the artificial case of a sin-

gle bank discussed in the previous section. By Observation 1, we

know that whether a memory request admits a row hit or miss only

depends on the previous access to the same bank. Hence, we can

Table 5: Partition into Row and Column Bits

r(a) c(a)
a ai,0 ai,1 ai,2 ai,3 ai,4
a0 1 0 0 0 1 miss

a1 000 0 0 1 1 miss

a2 0 0 111 1 0 miss

a3 0 111 1 0 1 miss

a4 0 1 1 1 1 hit

a5 0 1 1 0 1 hit

a6 111 1 000 0 0 miss

a7 1 1 0 0 1 hit

a8 1 000 111 0 1 miss

split our memory access sequence a into 2
b
subsequences, each of

which corresponds to a single bank.

Definition 3. Let a = (a0, . . . ,am−1) be a sequence of memory

accesses, where each memory access is a length-n bit vector of

the form ai = (b(ai ), r(ai ), c(ai )). For a bit vector d ∈ {0, 1}b let

1 ≤ i0 < i1 < . . . < iд ≤ m be all indices for which b(ai j ) = d , i.e.,
all memory accesses with bank bits equal to d . Then we define

a[d] :=((ai0,b , . . . ,ai0,n−1), (ai1,b , . . . ,ai1,n−1),
. . . , (aik ,b , . . . ,aik ,n−1))

to be the subsequence of memory accesses with bank bits equal to

d . Note that the sequence only includes the row and column bits,

while the bank bits are omitted.

Note that the order inside the per-bank subsequences is not al-

tered from the whole sequence, thus, the number of row misses

inside each subsequence equals the number of rowmisses in the cor-

responding bank. These subsequences a[d] are then concatenated

to a single sequence. The number of row misses in this sequence

now reflects the number of row misses in the original sequence

- however, errors can occur at the boundaries between the subse-

quences, as the first access to a bank should always result in a row

miss.

Example 5. Consider the sequence of memory accesses a from
Table 2. The result ã after extracting the per-bank subsequences

and concatenating them is shown in Table 6. It can be seen that the

number of rowmisses is not equal:While the original sequence from

Table 2 yielded 5 row misses, the concatenated sequence without

bank bits from Table 6 results in 4 row misses. This is due to the

initial row miss for activating Bank 1 not being counted, since the

row bits of the last access to Bank 0 and the first access to Bank 1

coincide.

To correctly calculate the number of row misses in the bound-

ary cases, our goal is to eventually invert some of the per-bank

sequences a[d] in case that their first access does not result in a

row miss. To this end, we define ¬a := (¬a0, . . . ,¬an−1) to be the

negated vector for a binary vector a ∈ {0, 1}n . Accordingly, for a
sequence of memory accesses, we define ¬a := (¬a0, . . . ,¬am−1).

Observation 3. A memory access sequence a induces the same
amount of row misses as the negated sequence ā.



Efficient Generation of Application Specific Memory Controllers MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Table 6: Reduction to a Single Bank

r(a) c(a)
a ai,1 ai,2 ai,3 ai,4
ã0 1 0 1 0 miss

Bank 0 ã1 000 0 1 0 miss

a[0] ã2 0 0 1 0 hit

ã3 111 111 1 0 miss

ã4 1 1 1 1 hit
Bank 1 ã5 1 1 0 0 hit

a[1] ã6 000 1 0 0 miss

ã7 0 1 1 0 hit

Table 7: Reduction to a Single Bank with the Negated Se-
quence

r(a) c(a)
a ai,1 ai,2 ai,3 ai,4
ã0 1 0 1 0 miss

Bank 0 ã1 000 0 1 0 miss

ā0 ã2 0 0 1 0 hit

ã3 111 111 1 0 miss

¬ã4 0 0 0 0 miss
Bank 1 ¬ã5 0 0 1 1 hit

ā1 ¬ã6 111 0 1 1 miss

¬ã7 1 0 0 1 hit

Definition 4. Let a be a sequence of memory accesses and for

k = 2
b
let {d0, . . . ,dk−1

} be the set of all bit-vectors of length b.
Then we define ā := ā0 ◦ ā1 ◦ · · · ◦ āk−1

as the sequence obtained

by concatenating ā0, . . . , āk−1
, where

āi :=


a[di ], if i = 1 or the last row bits of a[di−1] differ

from the first row bits of a[di ],
¬a[di ] otherwise.

Note that, by definition of ā, the first request to āj , j = 0, . . . ,k ,
always induces a rowmiss. By Observation 1, we know that whether

a memory access ai induces a row miss only depends on the last

access to the same bank. Hence, the number of row misses of a
in the setting (b, r , c) in the bank corresponding to the bit vector

d ∈ {0, 1}b equals the number of row misses of a[d] in the setting

(0, r , c) and thus, by Observation 3, also the number of row misses

of ¬a[d] in the setting (0, r , c).

Observation 4. The number of row misses of the sequence a in
the setting (b, r , c) equals the number of row misses of the sequence ā
in the setting (0, r , c).

Example 6. Following Example 5, Table 7 depicts the sequence

ā, where all accesses to Bank 1 are negated. It can be seen that

the initial access to Bank 1 is now correctly counted as a row miss

and that the total number of row misses is now equal to the total

number of row misses in the original sequence from Table 2.

It follows from Observation 4 that, once we know which bits are

the bank bits, the problem is reduced to the case of a single bank

from Section 4.2.2 and can thus be solved by solving Min-k-Union.

There are (
n

b

)
different possibilities for choosing the bank bits. In the setting of

the configurable address scrambler from Figure 1, this means that

there are

(
24

3

)
= 2024 different possibilities for choosing the bank

bits when omitting the XOR gates.

4.2.4 Using the XOR Gates. To be compliant with the targeted

configurable address scrambler in Figure 1, up to now, we would

be able to find a solution for the 24 MUX-24 that perform the per-

mutation σ , which is the solution to the Min-k-Union. Now, as a
last step, the configuration for the x XOR gates has to be found (in

the figure, x = 3). This step is done by a simple enumeration. To

be precise, we need to choose x bank bits and x row bits, i.e., in

total 2x bits, that will be connected by an XOR. Note that the order
of choosing these bits matters, as interchanging the bank and row

bits, or XORing different bank and row bits changes the result. There

are
n!

(n−2x )! different possibilities of choosing 2x bits out of n bits.

However, as we will see in the following example, some of these

combinations yield the same result.

Example 7. Assume that we have chosen 2x bits in such a way,

that the first x bits a0,a1, . . . ,ax−1, corresponding to the bank

bits, are to be XORed with the second x bits ax ,ax+1, . . . ,a2x−1,

corresponding to the row bits. Then, any permutation within the

first x bank bits, that is also applied to the second x row bits, only

permutes the result within the bank and row bits. By Observation 2,

this results in the same number of row misses and can thus be

neglected.

Following this example, there are x ! different possibilities to

choose a permutation within x bits. Thus, the total number of

choosing the XOR bits reduced to

n!

x !(n − 2x !) .

The overall number of possible configurations of a configurable

address scrambler can now be computed by

n!

x !(n − 2x)! ·
(
n − 2x

b − x

)
·
(
n − x − b
r − x

)
,

where the first factor accounts for choosing the 2x bits that are

connected by an XOR gate, the second factor accounts for choosing

the remaining bank bits in the case that x , b, and the third factor

accounts for choosing the remaining r − x row bits out of the

remaining total number of bits. For the setting in Figure 1, where

(b, r , c) = (3, 14, 7) and x = 3, there exist ∼ 5.1 · 10
11

different

meaningful configurations.

4.2.5 The Branch and BoundMethod for SolvingMin-Row-Misses.
In this section, we will present our algorithm for finding a configu-

ration of the address scrambler that results in a minimum number

of row misses for a given memory access sequence. The heart of

this algorithm is a branch and bound method for solving theMin-k-
Union problem. Recall that, by Theorem 1, solving Min-k-Union is

equivalent to solvingMin-Row-Misses in the case of a single DRAM

bank. Therefore, our algorithms consists of two steps:



MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA M. V. Natale, M. Jung, et al.

• Enumerate all possibilities for choosing the XOR gates (and
the remaining bank bits in the case that x , b). For each
possibility, construct the corresponding one-bank sequence ā
as described in Section 4.2.3.

• Solve Min-k-Union for the sequence ā using a branch and

bound algorithm.

For the first step, there are

n!

x !(n − 2x)! ·
(
n − 2x

b − x

)
different possibilities (cf. Section 4.2.4) for reducing the input se-

quence to a one-bank sequence. For the configurable address scram-

bler in Figure 1, this results in 16.151.520 different sequences ā.
For each of these sequences, the Min-k-Union problem has to be

solved. To the best of our knowledge, no work has been done so

far in solving Min-k-Union computationally, so we will present our

algorithm in the following. Since Min-k-Union is shown to be NP-

hard, not surprisingly, the worst case running time is exponential

in the size of the input, i.e., the length m of the memory access

sequence and the number n of address bits per access.

Our algorithms uses the branch and bound method, i.e., it spans

up an enumeration tree, repeatedly computes upper bounds on

the optimal solution, and prunes parts of the tree that do not con-

tain the optimal solution in order to reduce the search space. To

construct the enumeration tree, let H = (V , E) be the hypergraph
with hyperedges E = {E0, . . . ,Em−1} corresponding to the input

memory access sequence (cf. Section 4.2.2). For i ∈ {0, . . . ,m − 1},
level i of the enumeration tree corresponds to the hyperedge Ei ,
i.e., depending on which branch we choose at level i , the hyperedge
Ei is included in our solution set F or not. Recall that the goal of

Min-k-Union is to find a subset F of E of size k such that |⋃E∈F E |
is minimum.

There are two ways to prune the enumeration tree: pruning by
infeasibility and pruning by bound. To prune by infeasibility, assume

that we are currently examining level i of the enumeration tree.

Then at mostm − i further hyperedges can be included to F. Thus,
if |F| +m − i < k , then there are not enough hyperedges left to

ensure that the final set F containsk elements, so the corresponding

subtree does not contain a feasible solution and can be pruned. To

prune by bound, suppose we have an upper bound α on the optimal

value of Min-k-Union for the hypergraph H . If, at any point in the

enumeration tree, the union of the hyperedges contained in the set

F already contains α or more elements, i.e., |⋃E∈F E | ≥ α , then
no better solution can be found in the current subtree, since adding

more hyperedges to F only worsens the result. Thus, there is no

need to further examine the current subtree and it can be pruned.

Upper bounds are obtained by two ways in the algorithm: First,

every solutions for Min-k-Union applied to the one-bank-sequence

corresponding to some enumeration for the XOR and bank bits yields
an upper bound for the whole optimization problem. Second, for

every enumeration for the XOR and bank bits, we create a starting

solution for Min-k-Union by choosing as row bits exactly those bits

that have a minimum toggling rate (cf. Figure 3f).

The whole algorithm is presented in Algorithm 2. Algorithm 3

presents the branch and bound subroutine for repeatedly solving

the Min-k-Union problem.

Algorithm 2 Solving Procedure

Input: A sequence A of n-dimensional bit-vectors, natural num-

bers x ,b, r , c ∈ N with b + r + c = n
Output: A partition into sets Bx ,Rx ,B,R as a solution toMin-Row-

Misses in the setting (b, r , c) using x XOR gates
1: α := ∞
2: Bx ,Rx ,B,R ← none
3: for all possibilities of choosing the XOR bits B∗x ,R

∗
x and the

remaining bank bits B∗ do
4: Create the corresponding one-bank sequence ā, where the

bits corresponding to R∗x are omitted

5: Let H = (V , E) be the hypergraph corresponding to ā
6: Let E = {E0, . . . ,Ec+r−x−1} with |E0 | ≤ . . . ≤ |Ec+r−x−1 |
7: F∗ = {E0, . . . ,Er−x−1}
8: α∗ := |⋃E∈F∗ E ∪

⋃
j ∈R∗x Ej |

9: (F′,α ′) := BBRecursion(H , ∅, r − x ,min{α ,α∗},R∗x )
10: if min{α ′,α∗} < α then
11: B ← B∗

12: Bx ← B∗x
13: Rx ← R∗x
14: if α ′ < α then
15: α ← α ′

16: Let R be the indices corresponding to F′
17: else if α∗ < α then
18: α ← α∗

19: Let R be the indices corresponding to F∗

Algorithm 3 BB-Recursion

Input: A hypergraph H = (V , E), a collection of hyperedges F, a
natural number k ∈ N indicating how many more hyperedges

have to be included to F, the value of the currently best solution
α ∈ N, and a set of indices Rx corresponding to the row bits

that are connected via an XOR gate
Output: A set F representing the optimum solution of Min-k-

Union and the corresponding objective value α
1: if k = 0 then
2: return (F, |⋃E∈F E ∪

⋃
j ∈Rx Ej |)

3: α1 := α2 := ∞
4: Choose E1 ∈ E
5: if |⋃E∈F E ∪

⋃
j ∈Rx Ej ∪ E1 | < α then

6: (F1,α1) := BBRecursion(H − E1,F ∪ {E1},k − 1,α ,Rx )
7: if |F| +m − 1 ≥ k then
8: (F2,α2) := BBRecursion(H − E1,F,k,α ,Rx )
9: if min{α1,α2} < α then
10: if α1 < α2 then
11: return (F1,α1)
12: else
13: return (F2,α2)
14: else
15: return (F,α)



Efficient Generation of Application Specific Memory Controllers MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

5 RESULTS
The results of the Steps I and II of our approach can be used to

set up the configurable address scrambler shown in Figure 1 for a

memory controller with write buffer, in order to reduce the number

of row misses.

To demonstrate the practical applicability we conducted sev-

eral experiments with the same bandwidth demanding applications

used in [12]. All applications produce deterministic memory access

pattern, which can be found in typical embedded systems applica-

tions:

• Image Rotation: An image with a resolution of 1024×576
pixels is rotated by 90°. Therefore, the image is written into

the DRAM in x-direction and is read in y-direction, which
results in a large number of row misses for a BRC mapping.

We varied the pixel size from 8 to 256 bit.

• Convolutional Neural Network (CNN):An optical neigh-
borhood operation is performed on an image with a resolu-

tion of 1024×576 pixels. We varied the kernel size between

3×3 and 11×11 and pixel size from 8 to 64 bit.

• 3D Image Rotation: A three-dimensional image with 128

×128×128 voxels is rotated. We varied the pixel size between

8 and 128 bit.

To generate the appropriate scrambler configurations the Min-k-
Union solver was implemented using Python and OpenMPI, which

enabled a parallel execution on a high performance computing

cluster. In addition to the configurable address scrambler, a read-

write buffer with depth of 32 was used to minimize the number of

read-write switches.

For the validation of our approach we performed 18×5 runs of
Algorithm 2 and 211261 DRAM simulations. There exist several

solutions with a minimum number of row misses, as shown in

Figure 7. It can be observed that there is only one solution for

configurations using no XOR gates. If at least one XOR gates is

used, there is always more than one solution. This number varies

largely depending on the application. In our tests it ranges from 2

to over 65000.

Since we have mostly more than one solution with respect to

the minimum number of row misses, all possible configurations

are tested using DRAMSys [14] to determine both the bandwidth

usage and the energy consumption of each and therefore to se-

lect the optimal solution with respect to bandwidth usage and

energy consumption. As shown in Figure 8, the solution quality

may vary despite the same minimal number of row misses. This can

be explained by looking at the remaining row misses that might

be masked by bank parallelism. For example, for the CNN appli-

cations all solutions show similar bandwidth usage and energy

consumption behaviour, whereas Rotation and 3D-Rotation show

a large difference especially for large pixel quantization. In some

solutions the row misses are well hidden, since there are read or

write accesses on other banks executed in parallel. In the worst

solutions most row misses stall the transfer, because the bank level

parallelism is not exploited. Thus, their delay has a greater impact

on the bandwidth usage and energy consumption.

The benefit of enabling the XOR gates is presented in Figure 9g

and 9h for three example benchmarks, namely 3D Rotation 128, Filter
11x11x8 and Rotation 256. If the application features for example a

stride access pattern, a simple permutation without XORs is often

insufficient to achieve a near maximum bandwidth usage. This is

the case for the Image Rotation and 3D Image Rotation benchmarks.

With three enabled XORs ConGen2 is able to increase the bandwidth

by over 20% while decreasing the energy consumption. However,

the access pattern of all Filter benchmarks fits quite well to the

DRAM structure because it is primarily a linear access pattern.

Therefore, the default address mappings, like RBC, achieve already

a high bandwidth usage and more enabled XORs cannot bring any

further improvement. This is the reason why it is necessary to test

all XOR combinations.

In Figure 9 we selected the best solution for each application

with respect to the highest bandwidth usage (CONGEN2-BW) and

lowest energy consumption (CONGEN2-E) to compare them with

the state-of-the-art addressmappings, scheduling (FRFCFS) [28] and

the original ConGen1 [12]. It can be observed that we improved our

results in every application compared to the predecessor ConGen1

with much less hardware overhead, since ConGen2 is an exact

solver under hardware constraints, unlike ConGen1, which is an

hardware unconstrained heuristic.

Both standard mappings Row-Bank-Column (RBC) and Bank-
Row-Column (BRC) show for all Rotation and 3D-Rotation applica-

tions the same results independent of the scheduler used. However,

for the CNN applications the FRFCFS scheduler reduced the band-

width by more than 25% and highly increased the energy consump-

tion if a BRC mapping is used. Furthermore, it can be observed,

that the state-of-the-art RBC mapping is able to get close to the

optimal ConGen2 solution for all CNN applications and Rotation
applications with small pixel quantization. In contrast, none of the

standard mappings performs well for 3D-Rotation applications.

In general, it can be clearly seen, that ConGen2 outperforms the

state of the art online scheduling scheduler by exploiting the full

application knowledge. The missing gap towards 100% bandwidth,

is due to the refresh overhead.

Furthermore, both solutions CONGEN-BW and CONGEN-E do

not differ significantly in any application and are able to reach more

than 95% bandwidth usage without any fluctuations or drops as it

can be seen with Row-Bank-Column (RBC) and Bank-Row-Column
(BRC) mappings.

Overall, the generated configurations outperform every other

address mapping and scheduler in each application. We achieved

an energy reduction up to 88% and a bandwidth increase of a factor

8.9 compared to a RBC mapping.

6 CHIP IMPLEMENTATION
The proposed configurable address scrambler (Figure 1) is imple-

mented in a DDR3 memory controller which is presented in [32].

This controller is integrated in a RISC-V based chip, which is im-

plemented in a UMC 65 nm technology, that targets transprecision

computing [21]. Thus, the DDR3 memory controller is designed for

low power and low latency embedded applications. The proposed

ConGen2 methodology plays an important role for these appli-

cations and the proposed configurable address scrambler ensures

that the DRAM has minimum number of page misses for a given

application and therefore a high energy efficiency. The controller



MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA M. V. Natale, M. Jung, et al.

and it’s PHY, operate at a maximum frequency of 500Mhz, con-

sume an average power of 129.33mW and a total area of 4.71mm2
.

Figure 6 shows the floorplan of our DDR3 memory controller, con-

sisting of the PHY and the controller logic which includes the

configurable address scrambler. The address scrambler occupies an

area of 2292.1 µm2
, which is negligibly compared to other blocks

of the controller. The proposed configurable address scrambler has

a latency of 1.06ns .

PHY and I/Os

DRAM Controller including
Address Scrambler

DRAM Controller including
Address Scrambler

PHY and I/Os

Figure 6: Chip Implementation

7 CONCLUSION
We presented a new methodology to automatically generate an

ASMC, which has a global view on the application and can there-

fore exploit application knowledge to decrease energy consumption

and increase bandwidth. The approach consists of two parts, where

the first part minimizes the penalty of RD/WR switches, whereas

the second part minimizes the number of row misses by using a

configurable address scrambler. We showed that the problem to find

the optimal configuration for this scrambler for a given application

is equivalent to the NP-hard Min-k-Union problem and presented

an exact algorithm to efficiently solve this problem. In a last step,

we demonstrated the advantages of our approach by using typical

DRAM access sequences of today’s embedded systems. Overall, our

approach could outperform every other address mapping and sched-

uler. We achieved an energy reduction up to 88% and a bandwidth

increase of a factor 8.9 compared to a typical RBC mapping.

A PROOF OF THEOREM 1
Proof. Min-Row-Misses is an instance of Min-k-Union: Let H =

(V , E) be a hypergraph with vertex set V = {v0, . . . ,vm−1} and
hyperedges E = {E0, . . . ,En−1}. Moreover, let k ∈ N with k ≤ |E|.
We construct the sequence a = (a0,a1, . . . ,am−1) as follows: a0 :=

(0, . . . , 0) ∈ {0, 1}n consists of exactly n zeros; for i = 0, . . . ,m − 1,

we define ai := (ai,0, . . . ,ai,n−1) where

ai, j :=

{
¬ai−1, j , if vi ∈ Ej
ai−1, j , otherwise.

Finally, we set b := 0, r := k and c := n − r . Let σ be a permutation

of {0, . . . ,n − 1} and consider the sequence aσ . The request of aσi ,
i ∈ {1, . . . ,m−1}, induces a row miss if and only if r(aσi−1

) , r(aσi ).
This is true if and only if there is a j ∈ {0 . . . , r − 1} with ai,σ (j) ,
ai−1,σ (j). By construction, this is the case if and only if vi ∈ Eσ (j).
Hence, the number of row misses in aσ is equal to |⋃r−1

j=0
Eσ (j) | + 1.

Min-k-Union is an instance of Min-Row-Misses: Now, conversely,
let a = (a0, . . . ,am−1) be a sequence of n-dimensional bit-vectors in

the setting (0, r , c). Let H = (V , E) be the hypergraph with vertices

V = {1, . . . ,m − 1} and hyperedges E = {E0, . . . ,En−1} where ver-
tex i ∈ Ej if and only ifai−1, j , ai, j . Moreover, let {Fj0 , . . . , Fjk−1

} ⊆
E be a subset of the hyperedges of size k = r . Finally, let σ be a per-

mutation of {0, . . . ,n−1} with σ (l) = jl for l = 0, . . . , r −1. Clearly,

i ∈ ⋃k−1

l=0
Ejl if and only if there is a l ∈ {0, . . . , r − 1} with i ∈ Ejl .

By construction this holds if and only if ai−1,σ (l ) = ai−1, jl , ai, jl =
ai,σ (l ). This in turn is equivalent to r(aσi−1

) , r(aσi ) and the request
to ai incurs a row miss. Thus, |⋃k−1

l=0
Ejl | −1 is equal to the number

of row misses in aσ in the setting (0, r , c). □

ACKNOWLEDGMENT
This work was supported within the Fraunhofer and DFG cooper-

ation programme (Grant no. WE2442/14-1) and supported by the

Fraunhofer High Performance Center for Simulation- and Software-
based Innovation. Simulations and solver runs were conducted on

the high performance cluster Elwetritsch at Technische Universität

Kaiserslautern, which is part of the Alliance of High Performance
Computing Rhineland-Palatinate (AHRP). Furthermore, we thank

Synopsys and the anonymous reviewers for their support.

REFERENCES
[1] B. Akin, J. C. Hoe, and F. Franchetti. 2014. HAMLeT: Hardware accelerated

memory layout transformwithin 3D-stackedDRAM. InHigh Performance Extreme
Computing Conference (HPEC), 2014 IEEE. 1–6. https://doi.org/10.1109/HPEC.

2014.7040954

[2] Rachata Ausavarungnirun, Kevin Kai-Wei Chang, Lavanya Subramanian,

Gabriel H. Loh, and Onur Mutlu. 2012. Staged Memory Scheduling: Achiev-

ing High Performance and Scalability in Heterogeneous Systems. In Proceed-
ings of the 39th Annual International Symposium on Computer Architecture
(ISCA ’12). IEEE Computer Society, Washington, DC, USA, 416–427. http:

//dl.acm.org/citation.cfm?id=2337159.2337207

[3] E. Azarkhish, C. Pfister, D. Rossi, I. Loi, and L. Benini. 2016. Logic-Base Inter-

connect Design for Near Memory Computing in the Smart Memory Cube. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems PP, 99 (2016), 1–14.
https://doi.org/10.1109/TVLSI.2016.2570283

[4] Samuel Bayliss and George A. Constantinides. 2011. Application Specific Memory

Access, Reuse and Reordering for SDRAM. In Proceedings of the 7th International
Conference on Reconfigurable Computing: Architectures, Tools and Applications
(ARC’11). Springer-Verlag, Berlin, Heidelberg, 41–52. http://dl.acm.org/citation.

cfm?id=1987535.1987544

[5] Mahdi Nazm Bojnordi and Engin Ipek. 2012. PARDIS: A Programmable Memory

Controller for the DDRx Interfacing Standards. SIGARCH Comput. Archit. News
40, 3 (June 2012), 13–24. https://doi.org/10.1145/2366231.2337162

[6] John Carter, Wilson Hsieh, Leigh Stoller, Mark. Swanson, Lixin Zhang, Erik.

Brunvand, Al. Davis, Chen-Chi Kuo, Ravindra Kuramkote, Michael Parker, Lam-

bert Schaelicke, and Terry Tateyama. 1999. Impulse: building a smarter memory

controller. In High-Performance Computer Architecture, 1999. Proceedings. Fifth
International Symposium On. 70–79. https://doi.org/10.1109/HPCA.1999.744334

[7] Ren Chen and Viktor K. Prasanna. 2015. DRAM Row Activation Energy Optimiza-

tion for Stride Memory Access on FPGA-Based Systems. InApplied Reconfigurable



Efficient Generation of Application Specific Memory Controllers MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

0.1

1

10

100

1000

10000

100000

Rotation 8 Rotation 16 Rotation 32 Rotation 64 Rotation 128 Rotation 256 Filter 3x3x8 Filter 3x3x16 Filter 3x3x32 Filter 3x3x64 Filter 11x11x8 Filter 11x11x16 Filter 11x11x32 3D Rotation 8 3D Rotation 16 3D Rotation 32 3D Rotation 64 3D Rotation 128

N
um

be
r 

of
 O

pt
im

al
 S

ol
ut

io
ns

XOR 0 XOR 1 XOR 2 XOR 3

Figure 7: Number of Solutions with a Minimum Number of Row Misses

0

10

20

30

40

50

60

70

80

90

100

8 16 32 64 128 256

B
an

dw
id

th
 [M

iB
its

/s
]

Pixel size [Bits]

(a) Rotation Bandwidth

0

2E+09

4E+09

6E+09

8E+09

1E+10

1.2E+10

1.4E+10

8 16 32 64 128 256

E
ne

rg
y 

[p
J]

Pixel size [Bits]

(b) Rotation Energy

0

10

20

30

40

50

60

70

80

90

100

3x3x8 3x3x16 3x3x32 3x3x64 11x11x8 11x11x16 11x11x32

B
an

dw
id

th
 [M

iB
its

/s
]

Filter size [Bits]

(c) Filter Bandwidth

0

2E+10

4E+10

6E+10

8E+10

1E+11

1.2E+11

3x3x8 3x3x16 3x3x32 3x3x64 11x11x8 11x11x16 11x11x32

E
ne

rg
y 

[p
J]

Filter size [Bits]

(d) Filter Energy

0

10

20

30

40

50

60

70

80

90

100

8 16 32 64 128

B
an

dw
id

th
 [M

iB
its

/s
]

Pixel size [Bits]

(e) 3D-Rotation Bandwidth

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

3E+10

3.5E+10

4E+10

8 16 32 64 128

E
ne

rg
y 

[p
J]

Pixel size [Bits]

(f) 3D-Rotation Energy

Figure 8: Distributions of Results for Bandwidth and Energy



MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA M. V. Natale, M. Jung, et al.

0

20

40

60

80

100

120

8 16 32 64 128 256

B
an

dw
id

th
 [M

iB
it/

s]

Pixel size [Bits]

BRC-FIFO

BRC-FRFCFS

RBC-FIFO

RBC-FRFCFS

CONGEN1

CONGEN2-BW

CONGEN2-E

Max. Bandwidth

(a) Rotation Bandwidth

0

1E+10

2E+10

3E+10

4E+10

5E+10

6E+10

8 16 32 64 128 256

E
ne

rg
y 

[p
J]

Pixel size [Bits]

BRC-FIFO

BRC_FRFCFS

RBC-FIFO

RBC-FRFCFS

CONGEN1
CONGEN2-BW

CONGEN2-E

(b) Rotation Energy

0

20

40

60

80

100

120

3x3
x8

3x3
x1

6

3x3
x3

2

3x3
x6

4

11x
11

x8

11x
11

x1
6

11x
11

x3
2

B
an

dw
id

th
 [M

iB
it/

s]

Filter size [Bits]

BRC-FIFO

BRC-FRFCFS

RBC-FIFO

RBC-FRFCFS

CONGEN1
CONGEN2-BW

CONGEN2-E

Max. Bandwidth

(c) Filter Bandwidth

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

3.5E+11

4E+11

3x
3x
8

3x
3x
16

3x
3x
32

3x
3x
64

11
x1
1x
8

11
x1
1x
16

11
x1
1x
32

E
ne

rg
y 

[p
J]

Filter size [Bits]

BRC-FIFO

BRC-FRFCFS
RBC-FIFO

RBC-FRFCFS

CONGEN1

CONGEN2-BW

CONGEN2-E

(d) Filter Energy

0

20

40

60

80

100

120

8 16 32 64 128

B
an

dw
id

th
 [M

iB
it/

s]

Pixel size [Bits]

BRC-FIFO

BRC-FRFCFS

RBC-FIFO

RBC-FRFCFS

CONGEN1

CONGEN2-BW

CONGEN2-E

Max. Bandwidth

(e) 3D-Rotation Bandwidth

0

2E+10

4E+10

6E+10

8E+10

1E+11

1.2E+11

1.4E+11

1.6E+11

1.8E+11

2E+11

8 16 32 64 128

E
ne

rg
y 

[p
J]

Pixel size  [Bits]

BRC-FIFO

BRC-FRFCFS

RBC-FIFO

RBC-FRFCFS

CONGEN1

CONGEN2-BW
CONGEN2-E

(f) 3D-Rotation Energy

0 20 40 60 80 100 120

0

1

2

3

Bandwidth [MiBit/s]

X
O

R
 C

ou
nt

3D Rotation 128

Filter 11x11x8

Rotation 256

(g) XOR Comparison Bandwidth

0 2E+10 4E+10 6E+10 8E+10

0

1

2

3

Energy [pJ]

X
O

R
 C

ou
nt

3D Rotation 128

Filter 11x11x8

Rotation 256

(h) XOR Comparison Energy

Figure 9: Results for Bandwidth and Energy and Analysis of the Used Number of XORs



Efficient Generation of Application Specific Memory Controllers MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Computing - 11th International Symposium, ARC 2015, Bochum, Germany, April
13-17, 2015, Proceedings. 349–356. https://doi.org/10.1007/978-3-319-16214-0

[8] Mohsen Ghasempour, Aamer Jaleel, Jim D. Garside, and Mikel Luján. 2016.

DReAM: Dynamic Re-arrangement of Address Mapping to Improve the Per-

formance of DRAMs. In Proceedings of the Second International Symposium on
Memory Systems (MEMSYS ’16). ACM, New York, NY, USA, 362–373. https:

//doi.org/10.1145/2989081.2989102

[9] Ibrahim Hur and Calvin Lin. 2004. Adaptive History-Based Memory Schedulers.

In Proceedings of the 37th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO 37). IEEE Computer Society, Washington, DC, USA, 343–354.

https://doi.org/10.1109/MICRO.2004.4

[10] J. Y. Hur, S. W. Rhim, B. H. Lee, and W. Jang. 2019. Adaptive Linear Address Map

for Bank Interleaving in DRAMs. IEEE Access 7 (2019), 129604–129616.
[11] Bruce Jacob, S. Ng, and D. Wang. 2010. Memory Systems: Cache, DRAM, Disk.

Elsevier Science.

[12] Matthias Jung, Irene Heinrich, Marco Natale, Deepak M. Mathew, Christian

Weis, Sven Krumke, and Norbert Wehn. 2016. ConGen: An Application Specific

DRAM Memory Controller Generator. In Proceedings of the Second International
Symposium on Memory Systems (MEMSYS ’16). ACM, New York, NY, USA, 257–

267. https://doi.org/10.1145/2989081.2989131

[13] Matthias Jung, Christian Weis, Patrick Bertram, and Norbert Wehn. 2013. Power

Modelling of 3D-Stacked Memories with TLM2.0 based Virtual Platforms. In

Synopsys User Group Conference (SNUG), May, 2013, Munich, Germany.
[14] Matthias Jung, Christian Weis, and Norbert Wehn. 2015. DRAMSys: A flexible

DRAM Subsystem Design Space Exploration Framework. IPSJ Transactions on
System LSI Design Methodology (T-SLDM) (August 2015). https://doi.org/10.2197/

ipsjtsldm.8.63

[15] Matthias Jung, Éder Zulian, Deepak Mathew, Matthias Herrmann, Christian

Brugger, Christian Weis, and Norbert Wehn. 2015. Omitting Refresh - A Case

Study for Commodity and Wide I/O DRAMs. In 1st International Symposium on
Memory Systems (MEMSYS 2015). Washington, DC, USA.

[16] H. S. Kim, N. Vijaykrishnan, M. Kandemir, E. Brockmeyer, F. Catthoor, and M. J.

Irwin. 2003. Estimating influence of data layout optimizations on SDRAM energy

consumption. In Low Power Electronics and Design, 2003. ISLPED ’03. Proceedings
of the 2003 International Symposium on. 40–43. https://doi.org/10.1109/LPE.2003.

1231832

[17] Tim Kogel. 2016. Optimizing DDR Memory Subsystem Efficiency - The Unpre-

dictable Memory Bottleneck. Synopsys Inc. (January 2016).

[18] S. Langemeyer, P. Pirsch, andH. Blume. 2011. Using SDRAMs for two-dimensional

accesses of long 2n x 2m-point FFTs and transposing. In Embedded Computer
Systems (SAMOS), 2011 International Conference on. 242–248. https://doi.org/10.

1109/SAMOS.2011.6045467

[19] Wei-Fen Lin, S.K. Reinhardt, and D. Burger. 2001. Reducing DRAM latencies

with an integrated memory hierarchy design. In High-Performance Computer
Architecture, 2001. HPCA. The Seventh International Symposium on. 301–312. https:
//doi.org/10.1109/HPCA.2001.903272

[20] Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu. 2013.

An Experimental Study of Data Retention Behavior in Modern DRAM Devices:

Implications for Retention Time Profiling Mechanisms. SIGARCH Comput. Archit.
News 41, 3 (June 2013), 60–71. https://doi.org/10.1145/2508148.2485928

[21] A. C. I. Malossi, M. Schaffner, A. Molnos, L. Gammaitoni, G. Tagliavini, A. Emer-

son, A. TomÃąs, D. S. Nikolopoulos, E. Flamand, and N. Wehn. 2018. The

transprecision computing paradigm: Concept, design, and applications. In 2018
Design, Automation Test in Europe Conference Exhibition (DATE). 1105–1110.
https://doi.org/10.23919/DATE.2018.8342176

[22] Cadence Inc. 2014, last access 18.02.2015. Cadence Denali DDR Memory IP. http:

//ip.cadence.com/ipportfolio/ip-portfolio-overview/memory-ip/ddr-lpddr. (Oc-

tober 2014, last access 18.02.2015).

[23] Micron Technology Inc. 2006. 1Gb: x4, x8, x16 DDR3 SDRAM. (July 2006).

[24] Synopsys, Inc. 2015, Last Access: 18.02.2015. DesignWare DDR IP.

http://www.synopsys.com/IP/InterfaceIP/DDRn/Pages/. (2015, Last Access:

18.02.2015).

[25] Xilinx, Inc. 2015, Last Access: 18.02.2015. Memory Interface Generator (MIG).

http://www.xilinx.com/products/intellectual-property/mig.html. (2015, Last Ac-

cess: 18.02.2015).

[26] Wei Mi, Xiaobing Feng, Jingling Xue, and Yaocang Jia. 2010. Software-hardware

Cooperative DRAM Bank Partitioning for Chip Multiprocessors. In Proceedings of
the 2010 IFIP International Conference on Network and Parallel Computing (NPC’10).
Springer-Verlag, Berlin, Heidelberg, 329–343. http://dl.acm.org/citation.cfm?id=

1882011.1882045

[27] Onur Mutlu and Thomas Moscibroda. 2008. Parallelism-Aware Batch-Scheduling:

Enhancing both Performance and Fairness of Shared DRAMSystems. In 35th Inter-
national Symposium on Computer Architecture (ISCA). Association for Computing

Machinery, Inc. http://research.microsoft.com/apps/pubs/default.aspx?id=79626

[28] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D. Owens.

2000. Memory Access Scheduling. In Proceedings of the 27th Annual International
Symposium on Computer Architecture (ISCA ’00). ACM, New York, NY, USA,

128–138. https://doi.org/10.1145/339647.339668

[29] Tomas Rockicki. 1996. Indexing memory banks to maximize page mode hit

percentage andminimizememory latency. Hewlett-Packard Laboratories Technical
Report, HPL-96-95 (1996).

[30] Vivek Seshadri, Thomas Mullins, Amirali Boroumand, Onur Mutlu, Phillip B.

Gibbons, Michael A. Kozuch, and Todd C. Mowry. 2015. Gather-scatter DRAM: In-

DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided

Accesses. In Proceedings of the 48th International Symposium on Microarchitecture
(MICRO-48). ACM, New York, NY, USA, 267–280. https://doi.org/10.1145/2830772.

2830820

[31] Jun Shao and Brian T. Davis. 2005. The Bit-reversal SDRAM Address Mapping.

In Proceedings of the 2005 Workshop on Software and Compilers for Embedded
Systems (SCOPES ’05). ACM, New York, NY, USA, 62–71. https://doi.org/10.1145/

1140389.1140396

[32] Chirag Sudarshan, Jan Lappas, Christian Weis, Deepak M. Mathew, Matthias

Jung, and Norbert Wehn. 2019. A Lean, Low Power, Low Latency DRAMMemory

Controller for Transprecision Computing. In Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation, Dionisios N. Pnevmatikatos, Maxime Pelcat,

and Matthias Jung (Eds.). Springer International Publishing, Cham, 429–441.

[33] S.A. Vinterbo. 2002. Maximum k -Intersection, Edge Labeled Multigraph Max
Capacityk -Path, andMax Factork -gcd are all NP-hard. Technical Report. Decision
Systems Group, Harvard Medical School.

[34] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. 2000. A Permutation-based

Page Interleaving Scheme to Reduce Row-buffer Conflicts and Exploit Data

Locality. In Proceedings of the 33rd Annual ACM/IEEE International Symposium
on Microarchitecture (MICRO 33). ACM, New York, NY, USA, 32–41. https:

//doi.org/10.1145/360128.360134


