X-Centric: A Survey on Compute-, Memory- and
Application-Centric Computer Architectures

Sven Rheindt
sven.rheindt@tum.de
Technical University of Munich
Munich, Germany

Thomas Wild
Technical University of Munich
Munich, Germany

ABSTRACT

Big Data and machine learning constitute the multifaceted chal-
lenge of computer engineering in the past decade. The meaningful
processing of vast amounts of unstructured data from a myriad of
sensors and devices is a complicated endeavor already. Aggravated
by the need to enter the extremely power- and resource-constrained
pocket-size mobile domain, the computing as we know it is rapidly
evolving. Data-centric in- and near-memory computing, as well
as highly heterogeneous accelerator-equipped application-centric
architectures, are on the rise to tackle the unsatisfiable demand for
evermore compute performance and efficiency.

To learn from these innovations, this paper surveys compute-,
memory-, and application-centric architectures and related pro-
gramming paradigms and analyzes prominent chances and chal-
lenges. The key insights from the particular domains are: 1) The
high nominal processing performance of compute-centric systems
is thwarted by massively decreasing data-to-task locality and in-
creased data movement. Nevertheless, the commodity of shared-
memory programming and the presence of widespread legacy ap-
plications keep this domain alive. 2) Memory-centric designs help
to mitigate the data locality wall and significantly improve power
and performance efficiency. However, a memory-centric program-
ming paradigm is still missing. 3) Heterogeneity, customization, and
established ecosystems (like for mobile devices) enable application-
centric optimization under often tight thermal, power, and resource
constraints. However, a holistic SoC-level design approach is re-
quired to utilize and program the diversity of processing units in
different application domains efficiently.

A one-size-fits-all architecture approach seems not in sight be-
cause of the wide diversity in domain-specific requirements and
constraints. Therefore, established ecosystems, 3D-stacked logic-
enhanced memory devices, and commoditized architecture-aware
programming models seem fundamental for performant and pro-
grammable future-proof computer architectures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8899-3/20/09....$15.00
https://doi.org/10.1145/3422575.3422792

Temur Sabirov
Technical University of Munich
Munich, Germany

Oliver Lenke
Technical University of Munich
Munich, Germany

Andreas Herkersdorf
Technical University of Munich
Munich, Germany

CCS CONCEPTS

« Computer systems organization — Multicore architectures;
« Computing methodologies — Parallel programming languages.

KEYWORDS

computer architecture, programming model, architecture evolution,
memory-centric, application-centric, near-memory computing, sur-
vey, roofline model, heterogeneous architecture, mobile device

ACM Reference Format:

Sven Rheindt, Temur Sabirov, Oliver Lenke, Thomas Wild, and Andreas
Herkersdorf. 2020. X-Centric: A Survey on Compute-, Memory- and Appli-
cation-Centric Computer Architectures. In The International Symposium on
Memory Systems (MEMSYS 2020), September 28-October 1, 2020, Washington,
DC, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3422575.3422792

1 INTRODUCTION

“The world’s most valuable resource is no longer oil, but data.” [135]
is more than an article in the May 2017 issue of The Economist,
asking for a regulation of the internet giants. It is pointing to the
development of the rapidly growing global data sphere, which is,
according to IDC market research, still in its infancy [64]. It is,
however, not solely the vast amount of big data, supposedly 165-
175 Zettabytes by 2025, that needs to be processed. The extraction
of meaningful information out of the often highly unstructured
data, originating from massively distributed sensors, mobile and
IoT (Internet of Things) devices, cyber-physical systems, social net-
works, or multimedia applications, is an ever-growing challenge
that needs to be dealt with [64, 118]. Especially since big data and
machine learning-enabled data analytics in real-time have entered
the pocket-size mobile domain, where computing resources are lim-
ited and highly power-constrained. Therefore, it is more important
than ever to “work smart not hard” [64].

Performance scaling of computer architectures has been a ubig-
uitous and multifaceted problem throughout its history. There are
many important aspects besides providing evermore nominal com-
pute performance through homo- and heterogeneous multi- and
many-core architectures with increased transistor and core counts:
1) How can those architectures be efficiently programmed to exploit
the nominal compute performance? 2) How can they be properly
utilized under a given thermal constraint? 3) How do the appli-
cation data sets comply with the underlying processor, memory,

https://doi.org/10.1145/3422575.3422792
https://doi.org/10.1145/3422575.3422792
https://doi.org/10.1145/3422575.3422792

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

and interconnect architecture? 4) How to keep the architectures
user-friendly in terms of programmability? And many more.

In the past, crucial architectural innovations were triggered by
hitting several walls of computer architecture. The memory wall
has led to sophisticated cache hierarchies and many micro archi-
tectural developments. The power wall (i.e., the end of Dennard
scaling) was tackled by the shift from single- to multi- and many-
core architectures and even bigger caches. Meanwhile, as described
earlier, application requirements and the data sphere are rapidly
changing over the last years. Application’s data sets used to have
plenty of spatial and temporal locality, thus being a good fit for
caching. However, the emergence of application classes with large,
unstructured, irregular, and thus cache-unfriendly data sets restricts
their efficiency. Both changing application characteristics and to-
day’s heterogeneous many-core architectures, lead to a reduced
data-to-task locality. At the MEMSYS 2017 conference, Peter Kogge,
University of Notre Dame, showed evidence for this new locality
wall, especially for the arising memory-intensive application [78].
For those, data transfers between processor cores and main mem-
ory contribute significantly to the overall energy consumption and
performance limitations since accesses to global memory compared
to local registers have several magnitudes higher energy costs and
access latencies [9, 78, 118]. The data locality wall, being closely
tied to the “von Neumann bottleneck”, i.e., processors exhibiting
limited memory bandwidth, has been further confirmed by several
papers from industry and academia [14, 31, 45, 69, 79, 118].

Already in his 1977 ACM Turing award lecture, John Backus
stated [10]: “Surely there must be a less primitive way of making
big changes in the store than by pushing vast numbers of words
back and forth through the von Neumann bottleneck. Not only is this
tube a literal bottleneck for the data traffic of a problem, but, more
importantly, it is an intellectual bottleneck that has kept us tied to
word at-a-time thinking instead of encouraging us to think in terms of
the larger conceptual units of the task at hand. Thus programming is
basically planning and detailing the enormous traffic of words through
the von Neumann bottleneck, and much of that traffic concerns not
significant data itself but where to find it.”

Ever since, yet especially in the past decade, this has lead to a ma-
jor rethinking of computer architectural design. Instead of building
mainly compute-centric architectures (i.e., designing the systems
around the processor and fetching data close to it), more recent
memory-centric designs leverage the increased bandwidth and prox-
imity when processing in- or near-memory [78, 118, 125]. Besides
this, and although compute-centric general-purpose computing still
has a huge market, there is yet another trend towards heterogeneous
multi- and many-core architectures with more power-efficient and
application-specific accelerators [16, 65]. Prime examples are deep
learning and Al accelerators in nearly all of today’s high-end mobile
devices. This application-centric design trend is a key enabler of
real-time and power-efficient, pocket-size, smart data processing:
face, speech, text, gesture and activity recognition, many natural
language processing (NLP) tasks, computer vision problems, or
even augmented reality are only a few examples [65].

Much can be learned from the innovations in all three domains.
In the compute-centric domain, the authors of [16] provide a sur-
vey on general-purpose multi-core processors. By analyzing sev-
eral commercial products, they concluded that there needs to be a

Rheindt et al.

balance between specialization and programmability. In 2008, the
authors of [14] analyzed the “Computing as We Know it” in view
of the upcoming exascale era with emerging memory-intensive
application characteristics. They point out several challenges and
key research areas for future systems that could enable a 1000x
performance increase by 2015. However, the demand for the next
1000x is still not satisfied in 2020. Besides, the memory-centric do-
main has experienced a revival in the last decade. Already in 2013,
the authors of [66] presented a taxonomy on processing-in-memory
(PIM) and argue for studying fixed-function PIM architectures. The
authors of [125] surveyed the evolution of processing-in-memory
with a particular focus on memory technology. They elaborate on
the differences between the first PIM attempts in the ’90s and the
innovations of the years prior to 2016. More recently, in 2019, the
authors of [126] provided an overview and classification of existing
near-memory computing architectures. They discuss arising chal-
lenges and open issues, focusing on cache coherence, virtual mem-
ory, the lack of programming models and data mapping schemes.
Similarly, also the application-centric domain undergoes tremen-
dous innovations in the past decade. The authors of [65] presented
the evolution of mobile device Al accelerators and also compared
them to desktop CPUs and GPUs. They further gave a perspective
on future hardware and software developments in the mobile Al
domain. However, they confine their analysis to deep learning in
the Android ecosystem. Moreover, the authors of [96] have exten-
sively reviewed diverse heterogeneous computing approaches from
different perspectives in CPU-GPU systems. They also discussed
challenges in achieving synergistic computing due to extremely
different architectures and programming models.

All in all, these related surveys are often tied to a single domain.
To the best of our knowledge, there is no other work covering all
of these, trying to gain holistic inter-domain insights. Therefore,
the goal of this paper is to:

e survey the evolution of compute-, memory-, and application-
centric systems,

e elaborate on their architectures and programming models,

e apply the Roofline model to these domains, and

o qualitatively analyze their chances and challenges and pro-
vide valuable insights.

The paper is structured as follows: Section 2 provides background on
the Roofline model and how it can be used to gain first architectural
insights. It is followed by the survey and discussion of compute-,
memory- and application-centric systems in Section 3, 4 and 5,
respectively. Finally, the main insights are summarized in Section 6.

2 INSIGHTS FROM THE ROOFLINE MODEL

With the emergence of numerous diverse and evermore complex
architectural design approaches, an intuitive and insightful model
to analyze the influence of various architectural aspects is be-
coming exceedingly valuable. The Roofline model, presented by
Williams et al. [138], provides a simple yet powerful means to an-
alyze the performance of applications executed on a multi-core
architecture. It further allows to obtain insights on critical sys-
tem bottlenecks (i.e., to characterize whether a system is bound
by its compute performance, or by memory bandwidth and access
latencies), and to identify potential optimizations.

X-Centric: A Survey on Compute-, Memory- and Application-Centric Computer Architectures

Ops/s

©) x

Ops/Byte

Figure 1: The original Roofline model based on Williams et al. [138].

The Roofline model contains two roofs: the horizontal roof rep-
resents the nominal compute performance in (floating-point) op-
erations per second, and the diagonal roof denotes the effective
streaming memory bandwidth. Both are considered as maximum
achievable values, which can be determined e.g., by running dedi-
cated streaming applications and microbenchmarks. Applications,
consisting of operations and memory accesses, have a specific op-
erational intensity (operations performed per Byte accessed from
main memory: (F1)Ops/Byte). This value is plotted on the horizontal
axis of the diagram and projected vertically until it intersects one of
the aforementioned roofs. The vertical intersection of a measured
operating point with the horizontal or diagonal roof determines
whether the application is compute- or memory-bound, respec-
tively, when more Ops/s would be attained.

In order to analyze the impact of several architectural improve-
ments, we slightly modify the Roofline model, compared to the def-
inition of Williams et al. We assume an operating point being char-
acterized by both dimensions, the operational intensity in Ops/Byte
and the actual compute performance, denoted in Ops/s. Obviously,
this operating point is always below both boundaries.

Figure 1 is based on the original Roofline model of Williams
etal. and depicts how micro-architectural improvements of the
processing units as well as the step from single-core to multi-core
systems both increase the nominal compute performance. Thus, it
leads to the blue shift of the horizontal boundary (@), which makes
the system potentially more memory-bound, as the intersection of
both roofs shifts to the right. Correspondingly, improvements in
memory or interconnect technology effectuate a shift of the diago-
nal boundary, visualized in red (), resulting in a higher compute
boundedness of the system. The instantiation of caches reduces the
overall number of Bytes to/from memory, and thus increases the
Ops/Byte, which shifts the operating point to the right 3).

We propose to use the Roofline model to visualize the influ-
ence of typical design approaches in the compute-, memory- and
application-centric domains. Throughout the paper, we apply it to
exemplary architectures in these domains. We distinguish between
improvements of the nominal efficiency of the system, characterized
by the two roofs, and variations of the operating point.

3 COMPUTE-CENTRIC SYSTEMS

The Roofline model, as explained in Section 2, focuses on the com-
pute performance and memory bandwidth, as the interplay between
processors and memory is crucial for the overall system. Through-
out the history of computer engineering, the majority of systems
have been compute-centric [14]. Therefore, this survey begins with
elaborating on the evolution of compute-centric architectures and
their related programming paradigms and discusses several chances
and challenges of such systems.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

3.1 Evolution of Compute-Centric Systems

The driving forces for increasing single-core processor performance
were process scaling, clock frequency scaling, along with supply and
threshold voltage scaling, which have been on an exponential trend
in the *90s [105]. However, the advantages of particular techniques
were counteracted by the adverse effects of others.

Figure 2 depicts significant evolutionary steps of computer ar-
chitectures. As memory speed increases significantly slower than
processor speed, the gap between rapidly growing compute per-
formance and moderately growing memory performance widens
continually [108]. Computer architects tried to overcome this by
leveraging and optimizing cache hierarchies and bringing data as
close as possible to the processors (cf. Figure 2b). However, already
in 1994, Wulf et al. pointed out that this will not fully solve the
problem as the disparity grows exponentially [140]. Also, the off-
chip memory bandwidth loss and the problem of highly distributed
and thus cache-unfriendly data structures cannot be compensated
well by caching [78, 125].

Despite the memory wall, processor performance kept increasing
rapidly. As a result, power dissipation and energy consumption,
along with increasing design complexity, became an insurmount-
able barrier for further improvement of clock frequencies [77]. This
obstacle of compute-performance scaling is referred to as the power
wall. As the demand to increase compute-performance continued
to rise, companies were exploring different concepts to overcome
the power wall. Multi-core processors, also referred to as Chip Mul-
tiprocessors (CMPs), have been introduced. They integrate multiple
processing cores onto the same chip. Through the achieved paral-
lelism, i.e., splitting the workload to multiple cores, a multi-core
processor is able to perform more tasks while being driven with
a lower voltage and frequency [20, 105], of course, bounded by
Amdahl’s law. Both homogeneous and heterogeneous architectures
have seen much interest (cf. Figure 2c and Section 3.2).

Due to the increasing scaling complexity of conventional multi-
cores, several recent approaches focus on tile-based or clustered
architectures (cf. Figure 2d). These architectures can be scaled better
than traditional multi-core processors, and hot-spots can be avoided
more easily [137]. Nevertheless, potential data-to-task dis-localities
arise when both processing nodes and memory are organized in
a physically distributed manner. This uprising challenge was de-
scribed by Kogge as the locality wall in 2017 [78].

3.2 Compute-Centric Architectures

As described above, compute-centric systems lived through a tremen-
dous evolution. These days, a variety of both homogeneous and
heterogeneous architectures (cf. Figure 2c) are still leveraged in
mainstream chip multiprocessors. Whereas homogeneous architec-
tures combine several identical cores in one system, heterogeneous
systems benefit from a combination of different processing ele-
ments, such as strong and weak cores, or processors and additional
accelerators. Besides, tile-based architectures, often equipped with
apowerful NoC, are also deployed, mainly due to scalability reasons.
This section provides an overview of different exemplary designs
in these categories. Although tile-based architectures are covered
under the umbrella of homogeneous systems, they also exist in a
heterogeneous manner [59].

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Rheindt et al.

| Heterogeneous |

Het.
Core

B

,c

))
Bu

1.
>

DRAM

TIVM ALI'TVDOT

TIVAA ALI'TIGVIVOS

| Homogeneous I
= Hom.
g 3
% Z

=
5 = < By >
z
z =
= =
- i
\~_ _} [NVM]

[

Nim]\

I{
N

[

a) Single-Core Architecture
w/o Cache Hierarchy

b) Single-Core Architecture
with Cache Hierarchy

¢) Multi-Core Architecture (Homogeneous / Heterogeneous)

d) Many-Core Tile-based Architecture

Figure 2: Evolution of compute-centric systems, including the major walls of computer architecture.

3.2.1 Homogeneous Architectures. For conventional homogeneous
CMPs, there fundamentally exist two different approaches [77].
The multi-core approach integrates multiple (up to 64 [112]) power-
ful, multi-instruction issue, out-of-order homogeneous cores of the
same kind into a single processor, pursuing the highest performance
of a single or a few threads per core. The indicative examples of
desktop multi-core processors are the Intel Core processor family
and AMD Ryzen processors [46, 113]. In contrast, the many-thread
approach utilizes a significantly larger number (up to several thou-
sand for e.g., GPUs [117]) simple, narrow-issue, in-order cores, thus
being oriented to throughput-critical parallel applications.

Since their announcement, homogeneous CMPs have also found
their application in the server industry, as well as in clouds and
clusters [21, 40]. Meanwhile, many homogeneous architectures in
this context follow a tile-based or clustered many-core approach,
which brings advantages in interconnect capacity and scalability.

Tilera’s TILE64 architecture is a well-known prime example of a
tile-based many-core architecture: it consists of 64 compute tiles,
each equipped with a 3-way VLIW, general-purpose and power-
efficient processor, and a 2-level cache hierarchy. The architecture
provides a 5-channel, bi-directional interconnect in the form of a
2D-mesh network. An autonomous DMA unit is facing the potential
problem of data-to-task dis-locality - it efficiently performs memory
block copies, including cache-to-memory, memory-to-cache, and
cache-to-cache copies [12]. Thus, due to low-power consumption
and high throughput, Tilera’s Tile-series architectures have been
widely deployed in servers — addressing both rapidly increasing
data volumes and increasing costs of hardware and power [13, 89].

Another example is Intel’s Single Chip Cloud Computer (SCC) -
a homogeneous many-core architecture with 48 cores [61]. This
architecture connects 24 tiles over a NoC without hardware cache
coherence. Each tile comprises two x86 cores and contains dedicated
hardware buffers for message-passing inter-tile communication.

Intel further developed the Xeon Phi processor, another promi-
nent example for a many-core architecture, which is widely used
in High-Performance Computing (HPC) [25]. Based on the Intel
Many Integrated Core (MIC) architecture [7], two product gen-
erations with different architectures, Knights Corner (KNC) and
Knights Landing (KNL), were presented: KNC incorporates 57 to
61 in-order cores connected via a system bus and serves as a co-
processor connected over PCle. In contrast, KNL has up to 72 out-
of-order multi-threaded cores, organized in tiles, and connected
via 2D cache-coherent mesh interconnect [95]. This architecture is
shipped in three different configurations - along with stand-alone

homogeneous cores, as co-processor connected over PCle, or in a
heterogeneous setup by extending it with an integrated fabric.

Furthermore, Kalray presented a Massively Parallel Processor
Array (MPPA) in 2013. Compared to the Tilera approach, this ar-
chitecture contains 16 compute and one system core in each of the
16 clusters, which corresponds to 256 compute cores and four I/O
subsystems in total. The clusters are interconnected by two bidirec-
tional 2D-torus networks for data and control signals, respectively.

Nevertheless, ever-growing and diverse application requirements
are pushing homogeneous architectures to their limits [83].

3.2.2 Heterogeneous Architectures. Besides the trend of scaling
homogeneous architectures, the past decade revealed that a heter-
ogeneous combination of diverse processing elements within one
system is beneficial. These architectures incorporate cores of dif-
ferent size, complexity (e.g., instruction set architecture, thread-
or instruction-level parallelism, and in-/out-of-order execution of
instructions) and performance as well as additional accelerators.
Concerning their structure, most heterogeneous architectures can
be classified into three types [23]: 1) multiple homogeneous cores
plus dedicated hardware accelerators, 2) asymmetry of process-
ing cores, which provide either performance or power efficiency
when necessary, and 3) a hybrid composition of the previous types,
comprising accelerators, asymmetric along with specialized cores.

The most prominent example of heterogeneous computer archi-
tectures combining several identical cores with hardware accelera-
tors is CPU-GPU systems. Mittal et al. stressed the benefit of these
architectures compared to stand-alone CPU or GPU solutions as
they combine different strengths in a flexible manner [97]. While
CPUs are designed for high frequencies and large caches and thus
are suited for latency-critical applications, GPUs run at a lower
frequency and outperform CPUs in throughput-critical operations.
Conventional CPU-GPU systems are designed initially as separate
discrete CPUs and GPUs interconnected by a PCle bus. Recently,
as personal devices with emphasis on energy efficiency became
popular, chips with a CPU and GPU fabricated on the same die
have been introduced, which is then also referred to as Accelerated
Processing Unit (APU). The first generation of APUs was introduced
by AMD in 2011 (AMD Llano) [18]. Intel has presented their inte-
grated graphic processors (IGPs) in Intel Sandy Bridge [144] and
Ivy Bridge APUs in 2012 [32].

Another extension to conventional CPU systems is Field Pro-
grammable Gate Arrays (FPGAs). Nowadays, they are widely de-
ployed in many domains such as bioinformatics [129], finance [101],
digital signal processing [54, 111], as well as machine learning [51]

X-Centric: A Survey on Compute-, Memory- and Application-Centric Computer Architectures

to accelerate computations. Similar to CPU-GPU systems, conven-
tional discrete CPU-FPGA systems have also been shifted towards
first on-package and later on-die integration. Intel’s Agilex System-
on-Chip (SoC) FPGAs provide multiple options of integration —
being part of a 3D system-in-package with a multi-core processor
or being attached to a system through a cache and memory coher-
ent interconnect [139]. Moreover, a combination of several DSPs
and an FPGA extension has been presented by Yan et al. [90].

Being introduced in 2005, the IBM Cell processor is an example
of the second type of heterogeneous architecture that combines dif-
ferent cores (i.e., strong and weak) in one system. The cell processor,
developed with a particular focus on video and image processing, is
known from the Sony PlayStation 3 [22]. It is composed of one big
IBM PowerPC processing element (PPE) and eight small synergistic
processing elements (SPEs) connected through a coherent bus.

The third type of heterogeneous architectures can be mostly
found in the mobile domain: besides a handful of specialized cores,
these architectures are typically harnessing Arm’s big. LITTLE CPU
design [55], which will be covered extensively in Section 5 in the
context of application-centric architectures.

3.3 Roofline Model for Tile-based Systems

The shift from traditional multi-cores to tile-based architectures
helped to alleviate interconnect scalability issues. Limited memory
bandwidth has been revealed to be a critical bottleneck of tradi-
tional systems. However, scalable tile-based architectures suffer
from increased data movement and data-to-task dis-localities. To
examine the influence of such architectural developments on the
system’s behavior, we extend the original Roofline model exem-
plary to tile-based systems. Similarly, an extended Roofline model
for heterogeneous architectures is presented in Section 5.3.

Figure 3 visualizes the impact of the shift from traditional multi-
cores to tile-based architectures on the nominal compute perfor-
mance and the effective memory bandwidth of the system. Tile-
based systems typically use a scalable NoC-interconnect, which
provides a higher effective memory bandwidth per tile compared
to a shared bus interconnect. Thus, the diagonal roof, which rep-
resents the maximum achievable memory bandwidth, is shifted to
the left (D. Note that we apply the Roofline model to each tile sepa-
rately. Assuming that the operational intensity (Ops/Byte) of the
application remains constant, a higher memory bandwidth (Byte/s)
also results in a higher effective compute performance (Ops/s). This
does not change the horizontal roof, but the operating point shifts
upwards (2) since the nominal compute performance can be used
more efficiently. Applications with a lower operational intensity (in
Ops/Byte) are rather memory-intensive and thus profit potentially
more from a higher memory bandwidth than compute-intensive
applications with high operational intensity.

Ops/s

X X
X 3

Ops/Byte

Figure 3: Roofline model for tile-based architectures.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

3.4 Compute-Centric Programming

Over decades, advances in compute-performance were achieved by
faster and more efficient single-core systems, which corresponded
directly to an improved performance in serial applications. How-
ever, this effect saturated with the focus shift to optimizing multi-
and many-core systems. Already in 2009, Feng et al. assumed that
“serial computing is now dead” and new, parallel programming meth-
ods are the only possibilities to exploit the capabilities of modern
architectures fully [50].

A programming model is an abstraction of a computer archi-
tecture [93]. It is closely tied to the system’s memory organization,
which can be classified into centralized shared memory (SM), dis-
tributed shared memory (DSM), and fully distributed memory (DM)
architectures. The latter have a private address space per compute
node. There exists a huge variety of programming models and lan-
guages: some very general-purpose, others tailored to a particular
type of architecture. Tightly coupled to the programming models
are also the maintenance of cache coherence and the provisioning
of memory consistency.

Prior to the advent of parallel programming models [14, 36],
autoparallelization has been the main workhorse of parallel com-
puting, making excessive use of parallel hardware without any mod-
ification of the programs. However, the rise of pointer-dependent
programming languages, as well as the continually growing level
of parallelism, have led to the advent of real parallel programming
models [14, 73].

3.4.1 Parallel Programming Models. This major rethinking of soft-
ware development, resulting in new parallel programming models,
is also referred to as concurrency revolution [36]. Besides the prob-
lem of dividing the algorithm into small and independent tasks,
the programming model also has to comply with the underlying
hardware architecture. Especially for inter-processor communica-
tion and synchronization, feasible solutions for different sorts of
applications had to be found. The authors of [81] analyzed both
shared memory and message passing concepts in the context of
different application scenarios.

Shared-Memory Model. In the shared-memory model, threads of
an application share a common address space and communicate on
load-store granularity via the shared memory (SM). Fine-grained
data-sharing and dynamic memory access behavior that cannot
be foreseen by the compiler can be handled well with a shared
memory model, as the programmer does not need to care about
data movement [81]. This flexibility requires, however, a careful
programming style to handle synchronization correctly and to avoid
race conditions [11]. Data consistency has to be provided explicitly,
e.g., by dedicated functions like mutual exclusion or semaphores of
POSIX threads [47]. Instead of managing cache coherence at low
levels, OpenMP, being an industry-standard API [30], can be used
to ease parallel programming of shared-memory architectures. Ease
of use, along with a high level of abstraction, has made OpenMP
widely used in shared-memory architectures. However, besides
difficult synchronization, shared memory programming is not an
optimal solution if an application shares larger chunks of data.

Message-Passing Model. In contrast to the shared-memory model,
distributed memory architectures (DM) do not provide a shared
address space. Thus, communication between threads needs to be

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

established by sending and receiving explicit messages. By combin-
ing synchronization with data transfer, they are also well-suited
for producer-consumer scenarios. The Message Passing Interface
(MPI) has become a standard library for the message-passing pro-
gramming model, which includes a full range of message-passing
primitives [104]. To be executed on message-passing architectures,
parallel programs, written in Fortran, C or C++, must only be linked
with the MPI library, while being compiled with ordinary compil-
ers. The message-passing model can be applied to both distributed
and shared memory architectures [11]. Nevertheless, Kranz et al.
argued for building multiprocessors, that comply with both com-
munication strategies, to handle different scenarios efficiently and
proposed a prototype of such an architecture [81]. What is still
tricky in the context of modern programming languages is the need
for serialization of complex and pointer-based data structures, as
they cannot be sent directly within a message buffer [100].

Partitioned Global Address Space. The partitioned global address
space (PGAS) model represents a mixture of the shared-memory
and message-passing model, combining the advantages of each
approach. The PGAS memory model is based on a DSM memory
organization, harnessing the global address space to improve pro-
ductivity, meanwhile exploiting data locality for better scalability
of large-scale architectures and thus increasing the system per-
formance [33]. The most prominent PGAS languages are Unified
Parallel C [27], Co-array Fortran [103], and Titanium [142], each
being an extension to a corresponding base language. More recent
representatives of PGAS languages are X10 [119] and Chapel [37].

Heterogeneous Programming Paradigms. Since general-purpose
computation on GPUs (GPGPUs) has appeared to exploit the poten-
tial of novel CPU-GPU systems also for non-graphics applications,
several heterogeneous parallel programming (HPP) models have
been presented by different industry companies [73]. They often re-
quire a different programming style as processing elements are usu-
ally in a hierarchical relationship, such as host and device. In 2006,
NVIDIA introduced CUDA (Compute Unified Device Architecture)
- a parallel programming model, which enables NVIDIA GPUs to be
programmed in C, C++, Fortran, and other languages [68]. Similarly,
OpenCL has become an open standard for parallel programming
of heterogeneous architectures, including other available process-
ing units like digital signal processors (DSP), field-programmable
gate arrays (FPGA), or hardware accelerators [56]. These predom-
inant HPP models (CUDA and OpenCL) have been classified by
Belikov et al. as low-level programming models [11]. Programmers
are burdened with detailed control of communication and different
memory accesses. Initially developed by Khronos Group, OpenCL
has been further adapted by leading industry companies (Apple,
Intel, AMD, and Arm) to be leveraged in their products [56]. Higher-
level programming models abstract the underlying GPU memory
to the programmer and thus ease software prototyping and debug-
ging [11]. An example of this would be OmpSs, which is a high-level
extension to OpenCL [39].

3.4.2 Cache Coherence. With the presence of parallel program-
ming, we are facing the tough challenge of keeping the shared
caches of multiple cores coherent, also known as the cache coherence
problem. Necessary cache write-back and invalidation commands

Rheindt et al.

need to be enforced to avoid an inconsistent memory view. A hard-
ware coherence protocol generally performs better than a software
implementation and further relieves the programmer from this
duty [91]. However, Choi et al. doubt the existence of hardware on-
chip coherence implementations in future many-core systems. They
pointed out the lousy scaling behavior in terms of power consump-
tion, verification complexity, and storage overhead [24]. In contrast,
Martin etal. take it for granted that hardware coherence mecha-
nisms will also be present in future systems. They indicate that the
step from hardware coherence to a software implementation would
not reduce the complexity but solely shift it to the software domain.
A fundamental rethinking of operation systems and application
design, all written mainly for cache-coherent systems, would be the
consequence. Besides the performance superiority of hardware co-
herence protocols, they presented an approach of scalable hardware
implementations. An analysis showed moderate scaling overheads
in terms of interconnect traffic, storage costs, latencies, and power
consumption [91]. Further, Srivatsa et al. proposed a flexible and
dynamically re-configurable region-based cache coherence mecha-
nism, which comprises only a subset of compute nodes depending
on the current application scenario and coherence is only provided
for this subset [130].

Further, the choice of a consistency model has a considerable
impact on both the programming effort and the performance of the
system [16]. In comparison to strong consistency models, relaxed
consistency models (e.g., acquire-release) provide better perfor-
mance at the cost of programming effort.

3.5 Discussion of Compute-Centric Systems

In the conclusion of this section, we discuss several chances and
challenges of compute-centric systems and compare representa-
tive examples regarding the following essential design characteris-
tics in Figure 4. Compute Effectiveness describes how effective the
nominal compute performance is typically exploited. Limitations
like Amdahl’s law, synchronization overhead, or data-to-task dis-
localities significantly reduce the compute effectiveness of a system.
In contrast, Data Access Efficiency characterizes how efficiently the
processor or other processing units can access data. In particular,
latencies and bandwidth between core and memory are very cru-
cial for data access efficiency. High Programmability corresponds
to a low programming effort. For instance, software developers
immensely benefit from high-level, architecture-unaware program-
ming. An architecture with a high Flexibility can be deployed in
a wide range of use-cases. Power Efficiency is also an important
characteristic especially relevant for systems that are thermal- and
energy-constrained.

Regarding the architectures mentioned above, traditional ho-
mogeneous architectures can be programmed easiest, as legacy
and commodity parallel programming models can be applied with-
out further adjustments. In contrast, heterogeneous and tile-based
architectures require more complicated programming paradigms,
mapping compute kernels to various processing units and establish-
ing synchronization, respectively. Tile-based and heterogeneous
compute-centric architectures provide higher compute performance
than traditional multi-core designs, as the latter suffer from the
limited scalability and memory bandwidth. However, the compute

X-Centric: A Survey on Compute-, Memory- and Application-Centric Computer Architectures

Power Efficiency

Data Access Efficiency Compute Effectiveness

Programmability Flexibility

Figure 4: Comparison of different compute-centric architectures:
Homogeneous Architecture (red), Heterogeneous Architecture
(green), Tile-Based Architecture (blue)

effectiveness of tile-based systems diminishes as they suffer from
data-to-task dis-localities. Heterogeneous architectures provide less
flexibility than the other considered compute-centric architectures
due to the inherent structure and specialization of equipped pro-
cessing units. In terms of power efficiency, this specialization brings
advantages. Apart from that, a general statement is hard to make.
Data access efficiency is primarily dependent on the system’s struc-
ture and architecture. Potentially missing last-level shared cache,
distributed memory, and complicated coherence maintenance are
diminishing the data access efficiency of compute-centric architec-
tures. Nevertheless, the dedicated architectural design of numerous
heterogeneous and tile-based architectures, mostly deployed in
servers, elevates the data access efficiency of such systems.

In conclusion, compute-centric systems offer the following chan-
ces and challenges:

Chance CC+1: Compute-centric designs provide high nom-
inal compute performance. A rapid evolution towards multi- and
many-core architectures enabled the development of powerful sys-
tems. With the trend towards tile-based architectures, scalable solu-
tions were found to combine hundreds of cores on a chip. However,
to exploit this nominal compute performance, efficient solutions
for synchronization and coherency challenges are mandatory.

Chance CC+2: Compute-centric systems have established
programming paradigms. Commoditized programming models
with the support of legacy code ease the programmability of compute-
centric architectures. For both shared memory and message passing
paradigms, programming standards have been widely established.
The use of high-level programming languages facilitates the de-
velopment of applications without being tied to specific hardware
architectures.

Chance CC+3: The wide application area of compute-centric
architectures is unrivaled. Many compute-centric designs are
well-suited for general-purpose usage. High compute performance,
in conjunction with potential out-of-the-box usage and suitability
for most application scenarios, further emphasize compute-centric
architectures.

Challenge CC-1: Increased data movement limits the ben-
efits of high processor performance and restricts scalability.
The traditional compute-centric design approach is based on data
transfer between processor and memory. However, when scaling
compute-centric systems, a hierarchy of distributed memories and
distributed processing elements cannot be avoided. As data sets
grow faster than memory and interconnect bandwidth, the von
Neumann bottleneck limits the benefits of high nominal compute

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

performance. Due to the emergence of highly pointer-based and
cache-unfriendly data structures, caching is not able to recover the
lost off-chip memory bandwidth. Thus, data traffic and synchro-
nization are significant challenges and limit architecture scaling.
Challenge CC-2: Maintaining coherence and consistency is
challenging. Increasing processor counts in a system and advanced
interconnects worsen the synchronization and coherence traffic
and management, especially for highly scalable systems.
Challenge CC-3: User-friendly programming paradigms do
not fully exploit the architecture. More efficient programming
would require another "revolution” of programming paradigms.
In general, a trade-off is visible between an easy and thus widely
usable or an efficient and architecture-aware programming model.

4 MEMORY-CENTRIC SYSTEMS

“Surely there must be a less primitive way of making big changes in the
store than by pushing vast numbers of words back and forth through
the von Neumann bottleneck.” [10] This statement of John Backus
from 1977 had to hover for almost 40 years until a major rethinking
of computer architectural design occurred. Although the nominal
compute-performance of processors enabled by Moore’s law, the
scalability of advanced interconnects, the hidden memory access
latency through sophisticated cache hierarchies, and the avoidance
of hot-spots in physically distributed memory systems brought
computer engineering this far, there are still many challenges. Data
movement in general and traffic of inter-process communication,
in particular, are nowadays significant power consuming and per-
formance hindering effects [9, 31, 78, 118]. This is worsened by the
rapidly growing and immensely cache-unfriendly data sets of to-
day’s applications that far exceed the capacity of modern multi-level
cache hierarchies [78, 118]. The architectural developments in con-
junction with new application requirements lead to an ever growing
data-to-task dis-locality, the so called locality wall [14, 78, 79, 118]
(cf. Figure 2). As AMD stated in the Memory-Centric Architecture
session of the DAC 2018 conference, the management of data local-
ity and the understanding of data-to-task affinity are yet unsolved
problems (for HPC applications) [45, 69].

Nevertheless, primarily the last decade has led to a breakthrough
in mitigating this problem. Instead of building mainly compute-
centric systems around the processor cores and thus fetching and
caching data close to the processor, memory-centric architectures
follow the reverse approach [78, 118, 125]. Instead of moving data,
computations are performed close to or even in memory. Thus,
in- and near-memory computing helps to bridge the widening
gap between huge data sets and limited cache sizes, reduces data
movement and interconnect traffic and thus lowers the energy
footprint of applications.

This section elaborates on the evolution of in- and near-memory
computing and analyzes the chances and challenges of several
architectures and the corresponding programming paradigms.

4.1 Evolution of Memory Technology

The revival of in- and near-memory computing research has been
facilitated by the groundbreaking innovations of memory technol-
ogy in the past decade. Despite the continually increasing efficiency
of DRAM architectures due to improved process technologies and

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

higher bus frequencies, this progress could not bridge the widening
gap between rapidly scaling processor performance and moder-
ately scaling memory speed [125]. According to Burger etal. and
Patterson, this divergence and the limited bandwidth have been
hindering the efficiency of computer architectures [19, 107].

As a first step to overcome the bandwidth wall, 2.5D integra-
tion techniques arose to combine multiple processing and mem-
ory modules on one silicon interposer [42]. Similarly, 3D-stacking
techniques integrate several chips not only into one die but also
vertically on top of each other. This reduces memory access la-
tencies and, by decreasing costly off-chip accesses, increases the
memory bandwidth significantly. Besides the complex manufactur-
ing and testing processes of 3D-stacked devices, thermal issues of
3D integration are still major obstacles of this technology [74]. Nev-
ertheless, already in 2013, AMD research recognized the enormous
impact of new memory technologies, which can “fundamentally
change the landscape of the future computer architecture design” [141].
Both technologies enable manufacturing chips with sub-modules
in different process technologies [125].

Two prime examples of the latest 3D integration enabled mem-
ory architectures are the 2nd generation of High Bandwidth Memory
(HBM) [67, 86] and the Hybrid Memory Cube (HMC) [26, 110]. The
HBM2, being a JEDEC standard, is used as high bandwidth memory
with up to 256 GB/s in many recent devices, e.g., in the Nvidia
GA100 GPU [82] or the Intel Stratix 10 MX [35] and Agilex FP-
GAs [139]. In contrast, the HMC contains a 3D-stacked custom
logic layer allowing for either direct integration of dedicated in-
memory logic [110] that can be running standalone or a specific
interface to be coupled to a host processor like e.g., as MCDRAM
in Intel’s Xeon Phi Knights Landing architecture, which uses 2.5D
integration of the processor with several HMCs [127]. Also, the In-
tel Stratix 10 MX and Arria 10 FPGAs can be connected to external
HMCs [28, 29].

Besides improved DRAM systems, novel non-volatile memory
technologies like ferroelectric memory (FeERAM) [75] or magnetic
memories (MRAM) [92] became an uprising research domain. They
promise comparable access latencies, improved efficiency, and re-
duced power consumption compared to SRAM and DRAM sys-
tems [38]. However, as scaling and stacking these technologies is
more challenging than scaling DRAM structures, they are so far
used in systems that require only small storage capacities [38, 44].

4.2 In-/Near-Memory Computing

These memory technology innovations, especially the HBM and
HMC, are key-enablers and led to the breakthrough of in- and
near-memory computing.

4.2.1 Evolution. The idea of in-memory computing goes back to
the ’60s. Already with the invention of the DRAM cell by Dennard in
1966 [34], the first logic-in-memory (i.e., processing in-memory, PIM)
approaches were proposed. Stone et al. described special-purpose,
cellular logic-in-memory (CLIM) [94] and a general-purpose logic-
in-memory processor only a couple of years later [131]. The first
big hype happened in the *90s when Elliot et al. developed compu-
tational RAM [43], Kogge proposed EXECUBE [79] and discussed
the potential of PIM architectures [80]. At its first research peak in
1996, Patterson et al. presented intelligent RAM (IRAM) [106].

Rheindt et al.

HMC

[HMC

Figure 5: Memory-centric architecture variants employing the HMC
or HBM. (@ Host-CPU with logic-enhanced HMC. () HBM or HMC
used as stacked high bandwidth memory. (¢) Heterogeneous archi-
tecture incorporating CPUs and HMCs enhanced with logic or light-
weight cores (LWPs).

However, the advent of GPUs with high memory bandwidth [85],
combined with the technical limitations of 2D integrated PIM, hin-
dered the breakthrough of processing-in-memory. The main reasons
were that it is tough to embed performant logic into DRAM tech-
nology, which is optimized for memory density, and that a vision
for ease of programmability was missing at the time [106, 120].

The situation changed with seminal innovations in DRAM mem-
ory technology, as expounded in Section 4.1. The invention of
through-silicon vias (TSVs) in 2009 [102] enabled Micron to de-
velop the Hybrid Memory Cube (HMC) in 2011. It separates the
logic from several memory layers stacked vertically on top of each
other and connected by TSVs [110]. Although such an architec-
ture is commonly referred to as 3D-stacked processing-in-memory
(PIM), it is actually closer to near-memory processing since the logic
is not integrated into the memory arrays themselves [125], which
was the big burden for 2D integrated PIM in the ’90s.

4.2.2 Architectures. Several approaches and architectures have
been proposed, varying in their design, the intended purpose, and
the type of integrated processing nodes. 3D-stacked memories like
the HMC offer the opportunity to tightly couple processing ele-
ments and memory. Processing elements integrated into the logic
layer of the HMC encompass a range from fine-granular opera-
tions (e.g., atomic operations) to coarse-grain accelerators of bigger
functional blocks [66, 110, 125].

As thermal constraints are prevalent in 3D-stacked devices [74],
often more energy-efficient processor architectures or lightweight
processors (LWP) are employed [99, 114]. Despite the high flexibil-
ity of programmable cores, Asghari-Moghaddam et al. showed that
these solutions reduce the total energy consumption by 64-68% for
specific benchmark applications [99]. In 2016, Yitbarek et al. [143]
simulated different architectural solutions based on the HMC. Inte-
grating 16 Intel Atom cores into the logic layer facilitated a speedup
of around 3.8x compared to a state-of-the-art quad-core processor
connected to the HMC externally. However, a much higher speedup,
up to 13x, was possible with dedicated hardware accelerators.

Also, GPUs are reasonable options for in- and near-memory com-
puting as they often perform highly data-intensive tasks. Zhang
etal. showed that viable in-memory GPU-solutions could have an
advantageous energy efficiency of 76% compared to mainstream
GPU systems [146]. Facing limitations of 3D-stacked combinations
of memory and GPUs, Pattnaik etal. [109] alternatively use 2.5D
integration techniques. This relaxes both the thermal constraint

X-Centric: A Survey on Compute-, Memory- and Application-Centric Computer Architectures

within 3D-stacked devices as well as the limited memory capacity
stacked in the processor’s area, by combining memory and GPU hor-
izontally on one silicon interposer. Nevertheless, they still achieved
4x lower memory latencies compared to ordinary GPUs.

Besides CPUs and GPUs, also reconfigurable logic like FPGA
systems can be stacked on memory dies, as simulated by Gao et al.
[52]. This approach can be seen as a compromise between perfor-
mance, efficiency, and flexibility. Farmahini-Farahani et al. com-
bined coarse-grained reconfigurable arrays with DRAM modules.
This implies only minimal changes to the architecture of the DRAM
[49]. Also, for prototyping purposes, FPGAs are a feasible solu-
tion to provide near-memory computing solutions. Jun etal. [71]
implemented both the memory controller and the near-memory
processor on an FPGA platform. As a cheaper alternative to mem-
ory clouds that combine tens or hundreds of accommodated DRAM
modules, they developed a 20-node flash-based system that handles
data sets of up to 20 TB efficiently.

4.3 Roofline Model for Near-Memory Units

The introduction of near-memory computing has significantly im-
pacted the system’s behavior in several aspects. In Figure 6, we ana-
lyze the implications of near-memory computing by extending the
standard Roofline model. We differentiate between programmable
cores and dedicated hardware accelerators. Both implementations
profit from higher memory bandwidth, thus shifting the diagonal
roof to the left in step (D). As we assume the operational intensity to
remain constant, higher memory bandwidth results in an increase
of effective compute performance, thus shifting the operating point
in step (2) vertically (cf. Section 3.3). Furthermore, near-memory
units more frequently access the memory as they typically have
smaller caches or scratchpads. Step (3) depicts the corresponding
decrease of operational intensity, resulting in a left shift of the
operating point. Compared to programmable cores, dedicated near-
memory hardware accelerators generally enhance both the nominal
and effective compute performance. Thus, the horizontal roof and

the operating point shift upwards, as indicated in step @.
Ops/s

B

Q l®

l®

Ops/Byte

Figure 6: Combined Roofline model for near-memory cores (red)
and accelerators (blue) with individual roofs.

4.4 Memory-Centric Programming

Despite plenty of architectural solutions for memory-centric com-
puting systems, the question remains how these architectures can
be efficiently programmed to exploit the nominal compute perfor-
mance and especially the available memory bandwidth.

4.4.1 Programming Paradigm. The wide range of architectures
employing the HMC is represented in Figure 5. Many solutions
leveraging the HMC are standalone custom-made designs (i.e., logic-
enhanced memories) that process application-specific workloads

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

(cf. Figure 5a). Often API calls are used to communicate with the
logic layer of the HMC [126]. This puts a tremendous burden on
the developer and programmer.

A second widespread approach is to use the HBM or HMC as
high bandwidth memory in a so-to-say compute-centric manner,
i.e., as better memory technology, what is conceptionally shown in
Figure 5b. The logic layer of the HMC is then used as a compatible
memory controller without custom near-memory processing logic,
e.g., as MCDRAM in the Intel Knights Landing architecture, or
connected to the Intel Stratix 10 MX FPGA [29, 127]. In these cases,
no changes to the programming model are required.

A third alternative is to integrate in- or near-memory process-
ing units as co-processors into existing programming models in
order to enable seamless cooperation with the host processor (cf.
Figure 5¢). This leads to heterogeneous architectures and requires
an appropriate programming paradigm to be able to exploit the
memory-centric architecture fully. Like CUDA and OpenGL are
used for GPUs, OpenCL, AMDs HSA, or even OpenMP are viable
candidates for near-memory computing. However, no dedicated
programming model for memory-centric architectures is present
to date [125].

One could envision a dynamic, system- and utilization-aware
solution to distribute tasks between suitable processing nodes that
burdens the programmers as little as possible. Hsieh et al. proposed
a transparent offloading and mapping mechanism for near-memory
GPU systems that identify candidates of near-memory offloading
at compile-time and decides then dynamically which of these code
blocks are actually offloaded [63]. Another attempt is to offload
library or operating system routines such as inter-process commu-
nication to near-memory units. This would profit a wide range of
applications, and the programmer is not burdened with scheduling
near-memory operations and code changes of the application are
avoided [116]. Faraboschi et al. went one step further and addressed
the necessity to rethink traditional operating systems entirely as
they do not target the characteristics of complex memory-centric ar-
chitectures. They proposed a vision of a memory-centric OS, which
relieves traditional compute nodes from typical OS routines, such
as memory allocation or synchronization, and shifts them closer to
the memory instead [48].

Thus, in- and near-memory approaches are utilized to accelerate
application-specific tasks and also operating system routines (e.g.,
for inter-process communication or synchronization). While the
former are very specific and lead to a wide variety of architectures,
the latter, since being more or less opaque to the programmer, are
prone to profit a wide range of applications and systems.

4.4.2 Cache Coherence. Besides the problems of architecture ex-
ploitation and task scheduling mentioned above, also cache coher-
ence and memory consistency between host processors and in- or
near-memory units have to be addressed. This is challenging as
the latter are typically positioned behind the last level cache. Thus,
all operations performed by near-memory processing units bypass
the cache hierarchy of the host processor. There exist several ap-
proaches with different implications on system performance and
ease of use.

In- or near-memory units can act like coherent processors and is-
sue all writeback, lookup, and invalidation commands automatically

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

with hardware support in a fine-grained manner. While program
code changes can be kept to a minimum, this would potentially
result in a considerable amount of coherence traffic in the system
before, during, and after the near-memory unit is operating. Be-
sides the energy perspective, this solution also requires a significant
amount of hardware development [66]. In case the system provides
no hardware coherence between processors and near-memory units,
this has to be even managed explicitly by the programmer. What
works fine for simple data sets, becomes complicated for irregular
data structures, e.g., highly pointer-based data structures. This can
result in a vast number of memory loads and cache evictions [66].

Other approaches restrict near-memory units to operate on non-
cacheable data, which is reasonable if near-memory units use data
almost exclusively [49, 146].

Furthermore, Boroumand et al. presented their coarse-grained
LazyPIM approach in 2016 [17]. This alternative to fine-grained co-
herency messages speculatively performs near-memory operations.
After the execution is finished, one batched coherence message
is sent to the corresponding processor. In case conflicts occurred
during the speculative execution, the near-memory unit rolls back
its execution, updates all conflicting cache lines, and starts its exe-
cution again from the beginning. This avoids coherence messages
during concurrent execution and reduces the overall amount of
coherence traffic significantly. This approach has similarities to the
idea of transactional memory.

4.5 Discussion of Memory-Centric Systems

Near-memory processing units, both accelerators or programmable
cores, have huge advantages in terms of processing efficiency and
power consumption. A major difference between various designs
is the way they are integrated into the system architecture — physi-
cally inside the memory or close to the memory. Figure 7 compares
in- and near-memory processing architectures with respect to the
key system characteristics defined in Section 3.5. The compute per-
formance, interconnect latencies and power consumption are an or-
der of magnitude better in case of in-memory solutions, due to much
lower access latencies between processing unit(s) and memory [79].
However, in-memory computing designs cannot be integrated as
easy as near-memory processing elements in various architectures,
which limits their flexibility. In terms of programmability, both do
not differ significantly - either implementation requires much pro-
gramming effort to offload memory-intensive kernels sufficiently,
to handle the cache coherence, and establish the communication
between the host CPU and in-/near-memory processing units.

In conclusion, memory-centric systems offer the following chan-
ces and challenges:

Chance MC+1: Memory-centric designs help to mitigate the
locality wall. In- and near-memory computing tackles the von Neu-
mann bottleneck as the overall data movement between memory
and processor is reduced. Performing computations close to mem-
ory leads to an increased data-to-task locality and better utilization
of the available memory bandwidth. Furthermore, the dependency
on evermore complex cache hierarchies diminishes.

Chance MC+2: Performance and power efficiency are greatly
improved. As data movement and off-chip accesses, being a sig-
nificant contributor to energy consumption and communication

Rheindt et al.

latency, are reduced, the system’s overall efficiency increases [106].
Additionally, the processors and the cache hierarchy are relieved
by more efficient accelerators.

Chance MC+3: The application field of NMC is steadily in-
creasing. The wide range of prototypes and commercial systems
leveraging this architectural approach reveals its potential [126].
Inventions like the HMC and HBM can be either used standalone as
logic-enhanced memory, as a heterogeneous system in conjunction
with a host processor or seamlessly integrated as standard memory,
i.e., as a high bandwidth memory technology.

Challenge MC-1: Not all technological limitations have been
overcome. Especially 3D-stacked memories suffer from thermal is-
sues and constraints as cooling capabilities are restricted inside the
stack. Furthermore, it is still challenging to fabricate complex in-
memory logic due to the conflicting technological optimizations of
logic and memory cells. Besides, the resulting complexity of stacked
memories implies further testing and yield challenges [70, 136].

Challenge MC-2: A programming paradigm specific to mem-
ory-centric systems is missing. The fact that the HBM is often
used in a compute-centric manner as a fast and high bandwidth
memory technology is a good indication that a real vision for
memory-centric designs is still lacking. Many present systems are
hand-crafted to reap the benefits of near-memory computing. Pro-
viding a standard and user-friendly programming model is still a
very challenging topic. However, this is required to make a memory-
centric system suitable for everyday use and to ease architecture
exploitation. Major obstacles are: 1) the more complicated memory
view of a heterogeneous system, 2) providing cache coherence and
memory consistency between the host processors and the near-
memory units, 3) integrating an MMU and virtual memory, and
4) the missing support of compilers, libraries, and programming
languages.

Challenge MC-3: Multiple memories diminish the “near-
memory” aspect. Compute-centric architectures avoid thermal and
access hot-spots by physically distributing processing and mem-
ory nodes. Similar approaches to address the tremendous pressure
on the main memory system have been successfully applied to
memory-centric systems, e.g., an inter-memory network of HMCs
with a 75.1% average memory access latency reduction and 22.1%
total memory energy saving [145]. However, as many benefits of
in- and near-memory computing depend on the locality inside a

Power Efficiency

Data Access Efficiency Compute Effectiveness

Programmability Flexibility

Figure 7: Comparison of near-memory computing (red) and in-
memory computing (green)

X-Centric: A Survey on Compute-, Memory- and Application-Centric Computer Architectures

memory, this may lead to an inter-memory bottleneck when sev-
eral memories have to be accessed. Handling multiple memories is
further impeded as most approaches do not use an MMU], virtual
memory, or advanced memory scrambling technologies to extract
the best off-chip bandwidth [125]. A vision for near-memory com-
puting on distributed (shared) memory architectures is necessary.

Challenge MC-4: No general base NMC architecture is de-
fined. The memory-centric community presents many custom and
specialized designs for a particular use-case. This makes the stan-
dardization and ease of use more difficult as compared to e.g., multi-
core architectures, GPU-systems, or mobile devices (cf. Section 5).
Already a clear vision on what kind of operations are feasible for in-
and near-memory computing [66] and how they will be integrated
into a programming paradigm (via the API, libraries, or OS routines)
would significantly improve the usability of the highly promising
memory-centric research.

5 APPLICATION-CENTRIC SYSTEMS

While compute- and memory-centric approaches try to mitigate
or altogether avoid the von Neumann bottleneck between data
and tasks, respectively, application-centric designs follow a dif-
ferent path. Often driven by strict thermal and power constraints
or high performance requirements, application-centric architec-
tures consist of or make use of application-specific co-processors or
accelerators. Prime examples of such heterogeneous systems are
CPU-GPU, CPU-FPGA, or big.LITTLE architectures, mobile devices
with integrated neural processors (NPU), or in general, the use of
application-specific integrated circuits (ASIC). They are used when
a general-purpose processor would not be performant and power-
efficient enough. Digital signal processing, neural processing, and
network processing are only a few examples.

As application-centric architectures are tailored to a specific task
or application domain, many optimizations are possible that cannot
be performed for a general-purpose system. Nevertheless, some of
these specialized co-processors, like GPUs, have already become an
essential part of today’s compute-centric general-purpose systems.
They are a promising role model for formerly specialized hardware
that became mainstream.

In the following subsections, we provide and analyze the evo-
lution of several application-centric systems, including their ar-
chitecture and programming models. Due to the lack of research
in this area [115], as well as the rapid evolution of mobile AI, we
mainly focus on the mobile device architectures as prime examples
of application-centric systems. Finally, we carve out the advantages
and weaknesses of application-centric architectures.

5.1 Evolution of Application-Centric Systems

Throughout its history, the evolution of mobile devices has not
solely been driven by technological innovations and advancements,
but also by steadily growing user demands. The first portable
cell phone was, in the most profound sense of the word, a truly
application-specific architecture. It provided the means for com-
munication by receiving and sending signals over radiofrequency.
Since then, and especially in the past decade, the architecture of
mobile devices has undergone a tremendous evolution. With each

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

further generation, it is becoming more energy-efficient, compute-
performant, and is acquiring numerous new features and capabili-
ties. Mobile architectures have adopted the most crucial innovations
from compute-centric architectures and further optimize them for
operation under tight thermal, power, and energy constraints. Fur-
thermore, the pace at which the mobile processors evolve is much
higher than for other processors [8, 58].

In a study, Reddi et al. have identified two significant driving
forces behind the ubiquity of mobile devices - Arm processors
and the Android operating system (OS) [115]. From the hardware
perspective, Arm itself does not produce the processors. Instead,
they design and license CPU core’s and other IP’s designs. Thus, it
is possible for vendors to radically reduce the development effort
by merely customizing the existing designs for their purposes and
application domain.

This trend continues today as Texas Instruments and Intel have
ceased their mobile processor’s development for smartphone and
tablet markets in 2012 and 2016, respectively. The resurgence of
Intel’s Atom processors for mobile phones, however, has not been
crowned with success — only a few smartphone models are equipped
with new Atom processors. Similarly, Qualcomm and Samsung,
having the prevalent market share, have also partially canceled
their custom CPU development towards customization of stock
Arm processors, straightening the retrieved resources to special-
purpose cores. This tendency also applies to other processing units
like GPUs.

As a result, processor customization has enabled the mobile
system-on-chip designs to mitigate further the limitations coupled
with the end of Dennard scaling and Moore’s law [115]. Besides
the micro-architectural improvements of mobile CPUs, extensively
discussed in [58], the introduced Arm big.LITTLE design has pro-
vided the efficient means to deal with a set of power constraints and
high compute performance requirements simultaneously [15, 55].
Arm’s DynamlQ technology, the successor of big. LITTLE, extends
the existing concept — it combines available big, high-performance,
and little, power-efficient cores to build heterogeneous clusters of
a much wider range of possible configurations, thus enhancing
flexibility and performance scalability of a system [41].

Another application-centric domain - gaming consoles — un-
dergoes a similar development. For instance, the more complex
IBM Cell Broadband Engine [72] processor in the PlayStation 3 has
been replaced in its successor (PlayStation 4) by a semi-custom
AMD Accelerated Processing Unit (APU), representing an on-die
CPU-GPU application-specific heterogeneous system. The unveiled
technical specification of the next-generation PlayStation 5 even
further proves the trend towards customization of already existing
solutions, being built upon a discrete CPU-GPU system with an
emphasis on gaming and multimedia processing [128].

A further representative of application-centric architectures,
wearables, has followed an almost identical evolutionary path. To
meet ever-growing application requirements while improving the
end-user satisfaction at the same time, wearables have evolved from
solely collecting and preprocessing the sensor data to compute-
performant, energy-efficient, smartphone-independent devices by
customizing and optimizing processing units of mobile SoCs [134].
Nonetheless, the arising IoT application demands cannot be met
by the existing wearable architectures. However, increasing the

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

core count by utilizing traditional many-core architectures is re-
stricted by tight power constraints, and the development of ASIC
accelerators implies high nonrecurring engineering (NRE) costs.
Based on these facts, a shift towards many-core architectures as
the next evolutionary step of compute-centric architectures has
been adopted for the application-centric domain in some academic
projects, such as LOCUS and Stitch [133, 134].

All of these developments are enablers of another leading trend
in the past decade: machine learning. No type of processing unit
has been left untouched: general-purpose CPUs, GPUs, FPGAs, and
even custom-designed ASICs are all workhorses in the deep learning
era [65, 132]. However, the tremendous development of mobile Al
accelerators is matchless, especially when considering the tight
power and thermal constraints [65, 147]. With the development
having started roughly 20 years ago, the first rudimentary and
handmade models for smart data processing were run on single-
core mobile CPUs and very limited RAM. However, the advent of
smartphones and the introduction of mobile multi-core processors
and mobile GPUs required and enabled the rapid development of
mobile deep learning. The increased computational performance
and the improvements of deep learning techniques have further
changed the design of mobile devices. Nowadays, every high-end
smartphone is equipped with several neural processing units (NPU)
alongside multi-core CPUs, GPUs, and DSPs.

5.2 Contemporary Mobile Device Architectures

Today’s mobile SoCs are the result of previously discussed tech-
nological innovations, trends, and ever-growing amounts of data
to be processed. Figure 8 shows an abstract view of a typical mod-
ern smartphone’s architecture. It is based on the analysis of the
newest flagship SoCs of leading semiconductor companies, such as
Snapdragon 865 (Qualcomm) [98], Exynos 990 (Samsung) [1], Kirin
990 5G (HiSilicon, Huawei) [76, 122] and Dimensity 1000 (Medi-
aTek) [123] - all of them supporting 5G. Primary processing units
are illustrated at the top of the block diagram. They are connected
to memory, I/Os, and diverse hardware accelerators, which are es-
sential for the mobile domain, through an interconnect hierarchy
(separate interconnect fabrics are not shown in Figure 8).

Mobile CPUs. CPUs have always served the purpose of system
orchestrator and general-purpose computing. As previously men-
tioned, microprocessors exploit asymmetric processing in the vast

e
CPU Cluster
Modem
Big Middle Little
Cores Cores® Cores GPU NPU DSP
Sensing
[Shared Cache (LLC)] Hub
A
[Interconnect]
Memory Audio / Video Peripherals / /O
e
Memory Controller
Interface iFi
(oo) e o

Figure 8: Mobile SoC of a contemporary high-end smartphone. Com-
ponents are clustered by the type and application of a processing
unit. Figure is not drawn to scale.

Rheindt et al.

majority of modern mobile SoCs. Despite Arm’s big.LITTLE het-
erogeneous design being omnipresent, there also exist other CPU
design approaches.

For instance, after analyzing the energy consumption of differ-
ent scenarios, engineers of MediaTek have concluded that medium
load tasks are of particular importance across all scenarios: their
execution on big cores is energy-wasting, whereas little cores can-
not meet the performance requirements, thus harming the user
satisfaction. To address this, the “Tri-Gear” or “Tri-Cluster” concept
has been introduced, splitting available cores into three clusters,
each consisting of dedicated cores for tasks of a particular load [88].

Each flagship SoC discussed above incorporates CPUs built upon
either the DynamlQ or Tri-Gear-like technology. Irrespective of
configuration, the reviewed SoCs, except for the Exynos 990, inte-
grate customized premium Arm Cortex-A7 series cores running at
different frequencies to deliver maximum performance, whereas
Cortex-A55 cores provide energy-efficiency in each of the consid-
ered SoCs. Exynos 990 is the last mobile SoC of Samsung, which
still uses full-custom cores (Exynos M5) [5].

However, not only the technology scaling and increase of op-
erating frequency of CPUs contribute to an enhancement of the
general-purpose compute performance of the system. Also, the
cache hierarchy, DRAM technology, as well as GPU performance,
play a very crucial role. Nowadays, due to the emergence of novel
processing units (e.g., NPUs), CPU cores occupy less than 25% of
the entire die area, as it has been since 2015 [60, 124].

Mobile GPUs. The well-established CPU-GPU computing para-
digm has also been successfully applied to the mobile domain. It
is adapted and optimized for particular use-cases such as graphics,
gaming, and in most recent models for the acceleration of machine
learning. Considering the aforementioned mobile SoCs, most of
them integrate customized Arm Mali-G76/77 GPUs, thus continu-
ing and adopting the trend of mobile CPUs towards customization
of existing IPs. Only the Snapdragon SoC incorporates the own
product of Qualcomm - Adreno 650 GPU, which is moreover an
essential part of the Al Engine along with the Kryo 585 (CPU),
Hexagon 698 Processor (DSP) and Sensing Hub [98].

Mobile Al engines (NPUs). Also, Al processors have recently be-
come a substantial part of modern mid-range and high-end smart-
phones. In contrast to state-of-the-art CPUs and GPUs, the imple-
mentation of Al processing units in the chipsets of each vendor
is completely different. For instance, in the latest generation of
the HiSilicon Kirin 990 5G, the previous NPU of Cambricon has
been replaced by Huawei’s internally developed Da Vinci architec-
ture. According to Huawei, the Da Vinci NPU in the Kirin 990 5G
consists of two big and one tiny core providing both high compute-
performance and energy efficiency when necessary [87]. APU 3.0,
the Al processing unit of the Dimensity 1000, borrowed a Tri-Gear
configuration — consisting of two big, three small, and a single tiny
core to better match the smartphone’s Al needs.

Moreover, as previously mentioned, Al acceleration can also
be performed within multiple various processing units, involving
CPU, GPU, DSP on top of dedicated Al accelerators (illustrated
as NPU in Figure 8). The Snapdragon 865 and Exynos 990 are the
prime examples of this approach, utilizing the modified-for-AI-
acceleration DSP. It is worth mentioning that the performance of
Al processing units in mobile SoCs of a previous generation was

X-Centric: A Survey on Compute-, Memory- and Application-Centric Computer Architectures

comparable with those of desktop CUDA-enabled Nvidia GPUs
introduced in the past years [65].

Memory/Cache/Interconnect/Peripherals. Other contributors, such
as an increase of the size of LLC in conjunction with the integration
of new low-power DDR5 (LPDDRS5) into the newest mobile SoCs,
further improve the performance and power efficiency by providing
better bandwidth and reducing costly DRAM accesses [2]. Cache-
coherent interconnects, mostly vendor-specific, provide full cache
coherence not only between processor clusters but also for other
processing engines and I/O devices.

Today’s mobile SoCs feature extremely high heterogeneity. Be-
sides the processing units described earlier, a typical SoC of modern
smartphones also contains a sophisticated modem with multimode
support and WiFi/Bluetooth connectivity, an advanced image signal
processor (ISP) providing excellent capture and editing capabilities,
audio and video encoders and decoders. At the same time, data
collected by sensors and external I/O devices have to be handled,
and security has to be provided as well, complementing a typical
mobile SoC, as depicted in Figure 8.

5.3 Roofline Model for Hardware Accelerators

To comply with tight constraints, application-centric designs em-
ploy specialized execution units for different processing tasks. When
offloading subroutines to specific fixed-function units, the appli-
cation code is divided into two parts. One fraction is executed on
the accelerator, whereas the other remains on the host processor.
Concerning the specific algorithms that can be executed on the
accelerator, the compute performance of the host processor is typi-
cally significantly lower compared to a fixed-function accelerator.
Also, the memory bandwidth of the accelerator can potentially vary
compared to the processor, i.e., in case of near-memory units. Thus,
similarly to Hill etal. [60], we compare different components in
one diagram using individual roofs.

Considering near-memory accelerators as a specific example,
memory-intensive tasks are performed by the accelerator, and com-
pute-intensive tasks remain on the host processor. Evidently, the
partitioning of compute kernels can vary for different scenarios, e.g.,
other heterogeneous architectures than near-memory accelerators.
Figure 9 shows a combined Roofline model for both the host proces-
sor and near-memory accelerator. Individual roofs for both units
are depicted. The processor is bound by the blue roofs, whereas
the red roofs illustrate the boundaries for the fixed-function accel-
erators. As it has to share the bandwidth with the accelerator, the

host processor has a slightly decreased memory bandwidth. Step (D
Ops/s

/]

Ops/Byte

Figure 9: Roofline Model for heterogeneous architectures. Different
threads are executed on the host processor and the near-memory
accelerator as a particular example.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

illustrates the resulting shift of the diagonal roof. Furthermore, as
the host processor performs significantly less memory accesses, its
operational intensity in Ops/Byte increases (IcT > Iy, step 2). In
contrast, the accelerator benefits highly from increased memory
bandwidth, and a higher nominal (but task-specific) compute per-
formance. Thus, both the horizontal and the diagonal roofs shift
upwards, which is shown in steps 3) and (@. Compared to the
processor, the accelerator performs primarily memory-intensive
operations (i.e., lower Ops/Byte), thus resulting in a low opera-
tional intensity (Iy1 < Ip). Step 5 illustrates the operating point of
the accelerator.

5.4 Application-Centric Programming Models

As previously discussed, the key advantage of application-centric ar-
chitectures arises from their heterogeneity. Nonetheless, to achieve
the improvements of potential orders of magnitude in performance
and power efficiency, different types of applications (or different
phases) have to be addressed to the best-suited processing units [84].
Moreover, strict task mapping to specific processing units and the
resulting resource contention during simultaneous execution of
parallel threads lead to another challenge - underutilization of idle
resources [62].

In contrast to memory-centric architectures, there already exist
well-established programming models and languages for each type
of computation and processing unit. For instance, mobile GPUs can
be utilized both for compute and graphics workloads. For the pri-
mary purpose of GPUs, graphics rendering applications, the indus-
try’s leading standard is OpenGL ES supporting 2D and 3D graph-
ics [53]. In the case of computing workloads, OpenCL is widely
used to enable general-purpose computing on GPUs [56].

The latest release of Vulkan, introduced by Khronos Group, is
pursuing the idea of combining these two compute paradigms,
providing a unified cross-platform API for graphics and compute
acceleration [57]. The unveiled specifications of the upcoming game
consoles, PlayStation 5 and Xbox Series X, point out to a custom
AMD GPU built on the next generation of RDNA architecture.
Besides the support of traditional graphic rendering languages,
e.g., OpenGL, DirectX, or Vulkan, the new gaming consoles will be
provided with the Unreal Engine, a software framework to ease the
programmers’ effort in creating games [3].

Furthermore, prior to the introduction of Android Neural Net-
work API (NNAPI), GPUs have performed Al acceleration by using
vendor-specific development tools. To cope with the programmer’s
effort and insufficient performance, NNAPI has been developed
— it enables the hardware resources capable of accelerating deep
learning models to be directly accessed through the Android OS [6].
Since then, each vendor has provided software development kits
(SDKSs), suitable for a particular SoC, to further improve and op-
timize the performance of trained neural networks by bridging
different frameworks of corresponding processing units.

5.5 Discussion of Application-Centric Systems

In summary, a wide range of products, such as mobile communi-
cation devices or wearables, but also gaming consoles, meanwhile
employ application-centric systems. Due to their high specializa-
tion on the intended purpose, these architectures significantly differ

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Power Efficiency

Data Access Efficiency Compute Effectiveness

Programmability Flexibility

Figure 10: Comparison of different application-centric architec-
tures: contemporary high-end mobile SoCs (red), wearables (green)
and gaming consoles (blue).

in various aspects. Figure 10 provides a comparison of three repre-
sentative application-centric architectures, discussed in previous
subsections, to examine the influence of application constraints and
requirements on the key system characteristics.

In comparison to gaming consoles and wearables, modern mobile
devices exhibit higher flexibility by covering a wider spectrum of
applications and use-cases. At the same time, modern mobile SoCs
are significantly more power-efficient — building heterogeneous
CPU clusters for particular workloads and utilizing a wide range
of power-efficient application-specific accelerators. Based on the
previous fact and the tight coupling between SoCs components,
mobile devices exhibit high compute effectiveness as well - despite
delivering an order of magnitude lower compute performance than
gaming consoles [4, 128]. The synergy of an integrated non-volatile
memory (SSD) and the latest generation of GDDR for RAM dramat-
ically increase the data access efficiency in contemporary gaming
consoles, which cannot be achieved in mobile SoCs due to the
strict area and power limitations [128]. Finally, architecture-aware
vendor-specific SDKs for all of the discussed application-centric
architectures notably reduce the programming effort.

In conclusion, several chances and challenges of application-
centric systems will be discussed.

Chance AC+1: Customization enables optimization. Unlike
compute-centric systems, application-centric systems are primarily
designed and customized to meet the requirements of a particular
application domain. Mobile devices, gaming consoles and many
other application-centric architectures are prime examples of a
successful architecture customization, enabling optimizations that
are unattainable for a general-purpose system [58, 65].

Chance AC+2: Heterogeneity is key. The availability of numer-
ous processing units and dedicated hardware accelerators enables
the application-specific architectures to operate under the tight
power and area constraints efficiently. The introduced and well-
established big. LITTLE design approach of CPUs in mobile SoCs
can balance between performance and power efficiency, both being
substantial for this domain. The appearance of novel processing
elements like Al accelerators furthermore contributes to end-user
satisfaction by improving the compute performance and providing
additional capabilities.

Chance AC+3: An established ecosystem is present. The pres-
ence of an established ecosystem (e.g., for mobile devices) has mul-
tiple benefits for engineers as well: from the hardware perspective,
the development effort can be drastically reduced by utilizing the
Arm IPs for the primary processing elements, such as CPUs, GPUs,

Rheindt et al.

and even NPUs. From the software perspective, the existing open-
source Android OS with comprehensive capabilities (e.g., NNAPI for
the acceleration of neural networks) in conjunction with emerging
programming models further ease the programmer’s effort.

Chance AC+4: High architecture-awareness is provided. Be-
yond the existing ecosystem, each vendor provides architecture-
aware SDKs for better exploitation of the system’s capabilities while
maintaining a user-friendly programming interface.

Challenge AC-1: An holistic SoC-level approach is needed.
However, the characterization of the entire system performance of
application-centric architectures is highly required yet still a very
challenging task [147]. The performance of an application-centric
architecture cannot be characterized by exclusively investigating
processing units or applications executed on the system — it is
highly affected by multiple IPs running in parallel [60].

Challenge AC-2: Tight performance and power constraints
complicate the architectural design. Designers of application-
centric architectures face a two-sided challenge - to deliver high
performance while operating within strict thermal and energy con-
straints. The end of Dennard scaling has further severely impacted
the existing power density issue [115]. Moreover, the battery den-
sity improvements cannot stand the pace of Moore’s law implica-
tions [121].

Challenge AC-3: Underutilization of processing units is in-
creasing with growing heterogeneity. Despite the heterogeneity
of application-centric systems, a strict mapping policy might be-
come a bottleneck. Mapping particular tasks to specific processing
units can lead to resource contention, or, in contrast, their underuti-
lization [62]. Thus, implementing a proper task partitioning policy
poses a new challenge.

Challenge AC-4: Diversity of processing elements negatively
impacts system programmability. Programmers of heterogene-
ous application-specific systems often have to deal with programma-
bility issues. For instance, a cache coherence and memory con-
sistency have to be explicitly handled in a system with multiple
processing units of different types and programming standards.
Moreover, the lack of programming standards for custom system
configurations exacerbates the issue.

6 CONCLUSION AND INSIGHTS

So far, we have surveyed three different architectural design para-
digms, including their strengths and weaknesses. However, the
prime question of whether an architectural convergence of the
presented domains or a further co-existence of distinct architectural
design approaches will be presumed in the near future, needs to be
answered.

Figure 11 illustrates and compares the key system character-
istics of the individual domains. State-of-the-art compute-centric
architectures satisfy user demands in many use-cases. As legacy
and commoditized programming models can be applied without
significant modifications to nearly all architectures, they provide a
good user/programmer friendliness and flexibility. However, further
performance advances by solely increasing the number of process-
ing cores are hindered by scalability issues. Physically distributing
memory and incorporating scalable interconnects meanwhile lead

X-Centric: A Survey on Compute-, Memory- and Application-Centric Computer Architectures

Power Efficiency

Data Access Efficiency Compute Effectiveness

Programmability Flexibility

Figure 11: Comparison of different design techniques: Compute-
Centric Architecture (red), Memory-Centric Architecture (green),
Application-Centric Architecture (blue)

to new challenges such as data-to-task dis-localities and increased
data movement. Due to the arising distributed memory hierarchies
and the resulting spread of data structures, applying near-memory
computing to the compute-centric domains is challenging.

Nevertheless, the problem of increasing amounts of data traffic
between processor and memory is addressed by memory-centric
designs. Instantiating of in- and near-memory processing units
implies both the reduction of data traffic and utilization of higher
memory bandwidth, thus contributing to a better power-efficiency
and increased compute performance, respectively. Despite the high
heterogeneity, application-centric designs are bound by tight ther-
mal, power, and area constraints. Thus, they would highly benefit
from 3D-stacking technology and near-memory computing, com-
bined with the benefits of heterogeneity in a synergistic manner.

In addition to the ultimate diversity of specialized cores and hard-
ware accelerators, some application-centric architectures feature
an established ecosystem, like the presented mobile domain. In con-
junction with the customization of existing IPs, this significantly
reduces the effort of both hardware and software development.
Moreover, the provided architecture-aware programming models
enable the efficient exploitation of system resources, which is still
missing in legacy programming models of compute-centric archi-
tectures. We believe that also the memory-centric domain would
benefit from such an ecosystem, including a standardized base
architecture as well as a unified powerful programming model.

Given the wide diversity in domain-specific requirements and
constraints, this survey yields the insight that a one-size-fits-all
architecture approach seems not in sight. However, we conclude
that performant, programmable, and future-proof computer ar-
chitectures would highly profit from established ecosystems, 3D-
stacked logic-enhanced memory devices, as well as commoditized
architecture-aware programming models.

ACKNOWLEDGEMENTS

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) — project number 146371743 — TRR 89: Invasive Computing. We
thank Lars Nolte and Tim Twardzik from TUM for their valuable comments.

REFERENCES

[1

Samsung Exynos 990. 2019. https://www.samsung. i emi.static/minisi nos/fil
solution/MobileProcessor-990.pdf

Shweta Aladakatti et al. 2019. Battery life optimization techniques for ultra-low power SOCs. EAI Endorsed
Transactions on Cloud Systems 5,16 (11 2019). https://doi.org/10.4108/eai.5-11-2019.162591

AMD. 2019. Introducing RDNA architecture. ~https://www.amd.com/system/files/documents/rdna- whitepaper.
pdf

AnandTech. 2019. The Snapdragon 865 Performance Preview: Settmg Lhe Stage for Flagship Android
2020. https://www. d X he 15178, 1 - 865-and-765- 5g-for-all-
in-2020-all- the- details/2

AnandTech. 2020. The Exynos 990 SoC: Last of Custom CPUs. https://www.anandtech.com/show/15603/the-
samsung- galaxy-20- s20- ultra- exynos- snapdragon- review- megalomania- devices/4

[2

[3

4

[5

&8

™~
S

~

N
&8

~
&

o
S

o

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Android Neural Networks APL 2017. https://developer.android.com/ndk/guides/neuralnetworks

Intel Many Integrated Core Architecture. 2012. _httpsy//wwwintel.comy/content/www/us/en/architecture-and-

‘many- intel- many- integr
Arm. 2018. Accelerating mobile and laptop performance: Arm announces Client CPU roadmap. https://www.
arm.com/company/news/2018/08 lerating-mobile-and-laptop- performance
Oliver Arnold et al. 2010. Power aware heterogeneous MPSoC with dynamic task scheduling and increased
data locality for multiple applications. In F lings of the 2010 I ional Conf on Embedded Computer
Systems: Archi , Modeling and Simulation (IC-SAMOS 2010), Samos, Greece, July 19-22, 2010, Fadi J. Kurdahi
and Jarmo Takala (Eds.). IEEE, 110-117. https://doi.org/10.1109/ICSAMOS.2010.5642075
John Backus. 1978. Can programming be liberated from the von Neumann style? A functional style and its
algebra of programs. Commun. ACM 21, 8 (1978), 613-641.
Evgenij Belikov et al. 2013. A Survey of High-Level Parallel Programming Models.
Shane Bell et al. 2008. TILE64 - Processor: A 64-Core SoC with Mesh Interconnect. In 2008 IEEE International
Solid-State Circuits Conference, ISSCC 2008, Digest of Technical Papers, San Francisco, CA, USA, February 3-7, 2003.
IEEE, San Francisco, CA, USA, 88-89. https://doi.org/10.1109/ISSCC.2008.4523070
M. Berezecki et al. 2011. Many-Core Key-Value Store. In Proceedings of the 2011 I I Green C
Conference and Workshops (IGCC '11). IEEE Computer Society, USA, 1-8. _https://doi.org/10.1109/IGCC.2011.
6008565
Keren Bergman et al. 2008. Exascale computing study: Technology challenges in achieving exascale systems.
(2008).
Arm big LITTLE. 2011. https://www.arm.com/why-arm/technologies/big-little
G. Blake et al. 2009. A survey of multicore y . IEEE Signal Processing M 26, 6 (2009), 26-37.
Amirali Boroumand et al. 2017. LazyPIM: An Efficient Cache Cot hanism for P ing-in-M Y.
IEEE Comput. Archit. Lett. 16, 1 (2017), 46-50. https://doi.org/10.1109/LCA.2016.2577557
A. Branover et al. 2012. AMD Fusion APU: Llano. IEEE Micro 32, 2 (Mar 2012), 28-37. https://doi.org/10.1109/
MM.2012.2
Doug Burger et al. 1996. Memory Bandwidih Limitations of Future Microprocessors. In Proceedings of the 23rd
Annual I ium on Computer Archi Philadelphia, PA, USA, May 22-24, 1996, Jean-Loup
Baer (Ed.). ACM, 78-89. hltps //doi.org/10.1145/232973.. 232983
Thomas Burger. 2005. Intel Multi-Core Processors: Quick Reference Guide.
us/articles/intel-multi- core- processors-quick- reference- guide
Lei Chai et al. 2007. Understanding the Impact of Multi-Core Architecture in Cluster Computing: A Case Study
with Intel Dual-Core System. In Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid
2007), 14-17 May 2007, Rio de Janeiro, Brazil. IEEE Computer Society, 471-478. https://doi.org/10.1109/CCGRID.
2007.119
T. Chen et al. 2007. Cell Broadband Engine Architecture and its first implementation—A performance view. IBM
Journal of Research and Development 51, 5 (Sep 2007), 559-572. https://doi.org/10.1147/rd.515.0559
Nagabhushan Chitlur et al. 2012. QuickIA: Exploring heterogeneous architectures on real prototypes. In 18th
IEEE International Symposium on High Performance Computer Architecture, HPCA 2012, New Orleans, LA, USA,
25-29 February, 2012. JEEE Computer Society, 433-440. https://doi.org/10.1109/HPCA.2012.6169046
Byn Choi et al. 2011. DeNovo: Rethinking the Memory Hierarchy for Disciplined Parallelism. In 2011 International
Confe on Parallel hi and C lati h PACT 2011, Galveston, TX, USA, October 10-14,
2011, Lawrence Rauchwerger and Vivek Sarkar (Eds.). [EEE Computer Society, 155-166. https://doi.org/10.1109/
PACT.2011.21
George Chrysos. 2014. Intel® Xeon Phi™ Coprocessor — the Architecture. Technical Report.
Hybrid Memory Cube Consortium. 2014. Hybrid Memory Cube Specification 2.1. Technical Report.
UPC Consortium. 2005. UPC Language Specifications V1.2. (5 2005). https://doi.org/10.2172/862127
Intel Corporation. 2018. Intel Arria 10 Device Overview. Technical Report.
Intel Corporation. 2020. Intel Stratix 10 MX (DRAM System-in-Package) Device Overview. Technical Report.
L. Dagum et al. 1998. OpenMP: an industry standard API for shared y pre ing. IEEE C
Science and Engineering 5, 1 (Jan 1998), 46-55. https://doi.org/10.1109/99.660313
William J. Dally. 2006. Computer Architecture in the Many-Core Era. In 24th International Conference on Com-
puter Design (ICCD 2006), 1-4 October 2006, San Jose, CA, USA. IEEE, 1. https://doi.org/10.1109/ICCD.2006.4380784
Satish Damaraju et al. 2012. A 22nm IA multi-CPU and GPU System-on-Chip. In 2012 IEEE International Solid-
State Circuits Conference, ISSCC 2012, San Francisco, CA, USA, February 19-23, 2012. IEEE, 56-57. https://doi.org/
10.1109/ISSCC.2012.6176876
Mattias De Wael et al. 2015. Partitioned Global Address Space Languages. ACM Comput. Surv. 47, 4, Article 62
(May 2015), 27 pages. https://doi.org/10.1145/2716320
Robert H Dennard. 1968. Field-effect transistor memory. US Patent 3,387,286.
M. Deo et al. 2016. Intel Stratix 10 mx devices with Samsung HBM2 solve the memory bandwidth challenge. Tech-
nical Report.
J. Diaz et al. 2012. A Survey of Parallel Programming Models and Tools in the Multi and Many-Core Era. IEEE
Transactions on Parallel and Distributed Systems 23, 8 (2012), 1369-1386.
Chapel Documentation. 2020. https:/chapel-lang.org/docs/index html
Xiangyu Dong et al. 2008. Circuit and microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as
a universal memory replacement. In Proceedings of the 45th Design Automation Conference, DAC 2008, Anaheim,
CA, USA, June 8-13, 2008, Limor Fix (Ed.). ACM, 554-559. https://doi.org/10.1145/1391469.1391610
Alejandro Duran et al. 2011. Ompss: a Proposal for Programming Heterogeneous Multi-Core Architectures.
Parallel Process. Lett. 21, 2 (2011), 173-193. https://doi.org/10.1142/S0129626411000151
Yves Durand et al. 2014. EUROSERVER: Energy Efficient Node for European Micro-Servers. In 17th Euromicro
Conference on Digital System Design, DSD 2014, Verona, Italy, August 27-29, 2014. IEEE Computer Society, 206-213.
https://doi.org/10.1109/DSD.2014.15
Arm DynamlQ. 2017. https://www.arm.com/why-arm/technologies/dynamiq
Ryusuke Egawa et al. 2013. Vertically integrated processor and memory module design for vector supercomput-
ers. In 2013 IEEE International 3D Systems Conf (3DIC). 1-6.
Duncan G Elliott et al. 1992. Computational RAM: A memory-SIMD hybrid and its application to DSP. In Custom
Integrated Circuits Conference, Vol. 30. 1-30.
Tetsuo Endoh et al. 2016. An Overview of Nonvolatile Emerging Memories - Spintronics for Working Memories.
IEEE J. Emerg. Sel. Topics Circuits Syst. 6, 2 (2016), 109-119. https://doi.org/10.1109/JETCAS.2016.2547704
Babak Falsafi et al. 2016. Near-Memory Data Services. IEEE Micro 36, 1 (2016), 6-13. https://doi.org/10.1109/
MM.2016.9
Intel Core Processor Family. 2020. https://www.intel.com/content/www/us/en/products/processors/core/
POSIX 1003.1 FAQ. 2011. http://ww org/austin/papers/posix_faq-html
Paolo Faraboschi et al. 2015. Beyond Processor-centric Operating Systems. In 15th Workshop on Hot Topics in
Operating Systems, HotOS XV, Kartause Ittingen, Switzerland, May 18-20, 2015, George Candea (Ed.). USENIX
Association. https://www.usenix. hotos15/workshop- progra ion/faraboschi
Amin Farmahini Farahani et al. 2015. NDA: Near-DRAM acceleration architecture leveraging commodity DRAM
devices and standard memory modules. In 21st IEEE International Symposium on High Performance Computer
Architecture, HPCA 2015, Burlingame, CA, USA, February 7-11, 2015. IEEE Computer Society, 283-295. https:
//doi.org/10.1109/HPCA.2015.7056040
Wu-chun Feng et al. 2009. Tools and Environments for Multicore and Many-Core Architectures. IEEE Computer
42, 11 (2009), 26-27. https://doi.org/10.1109/MC.2009.412
Intel FPGAs for Deep Learning. 2019. https://press3.mcs.anl.gov//atpesc/files/2019/08/ ATPESC_2019_Track-
1_8_7-29_330pm_Moawad_Nash-FPGAs.pdf
Mingyu Gao et al. 2016. HRL: Efficient and flexible reconfigurable logic for near-data processing, In 2016 IEEE
International Symposium on High Performance Computer Architecture, HPCA 2016, Barcelona, Spain, March 12-16,
2016. IEEE Computer Society, 126-137. https://doi.org/10.1109/HPCA.2016. 7446059
Dan Ginsburg et al. 2014. OpenGL ES 3. ing guide. Addison-Wesley Pr
Gregory Ray Goslin. 1996. Guide to using field programmable gate arrays (FPGAS) for application-specific digital
signal processing performance. In High-Speed Computing, Digital Signal Processing, and Filtering Using Reconfig-
urable Logic, John Schewel, Peter M. Athanas, V. Michael Bove Jr., and John Watson (Eds.), Vol. 2914. International
Society for Optics and Photonics, SPIE, 321 - 331. https:/doi.org/10.1117/12.255830
Peter Greenhalgh. 2011. Big LITTLE Processing with ARM CortexTM-A15 & Cortex-A7. Technical Report.

https://software.intel.com/en-

https://www.samsung.com/semiconductor/global.semi.static/minisite/exynos/file/solution/MobileProcessor-990.pdf
https://www.samsung.com/semiconductor/global.semi.static/minisite/exynos/file/solution/MobileProcessor-990.pdf
https://doi.org/10.4108/eai.5-11-2019.162591
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.anandtech.com/show/15178/qualcomm-announces-snapdragon-865-and-765-5g-for-all-in-2020-all-the-details/2
https://www.anandtech.com/show/15178/qualcomm-announces-snapdragon-865-and-765-5g-for-all-in-2020-all-the-details/2
https://www.anandtech.com/show/15603/the-samsung-galaxy-s20-s20-ultra-exynos-snapdragon-review-megalomania-devices/4
https://www.anandtech.com/show/15603/the-samsung-galaxy-s20-s20-ultra-exynos-snapdragon-review-megalomania-devices/4
https://developer.android.com/ndk/guides/neuralnetworks
https://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture/
https://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture/
https://www.arm.com/company/news/2018/08/accelerating-mobile-and-laptop-performance
https://www.arm.com/company/news/2018/08/accelerating-mobile-and-laptop-performance
https://doi.org/10.1109/ICSAMOS.2010.5642075
https://doi.org/10.1109/ISSCC.2008.4523070
https://doi.org/10.1109/IGCC.2011.6008565
https://doi.org/10.1109/IGCC.2011.6008565
https://www.arm.com/why-arm/technologies/big-little
https://doi.org/10.1109/LCA.2016.2577557
https://doi.org/10.1109/MM.2012.2
https://doi.org/10.1109/MM.2012.2
https://doi.org/10.1145/232973.232983
https://software.intel.com/en-us/articles/intel-multi-core-processors-quick-reference-guide
https://software.intel.com/en-us/articles/intel-multi-core-processors-quick-reference-guide
https://doi.org/10.1109/CCGRID.2007.119
https://doi.org/10.1109/CCGRID.2007.119
https://doi.org/10.1147/rd.515.0559
https://doi.org/10.1109/HPCA.2012.6169046
https://doi.org/10.1109/PACT.2011.21
https://doi.org/10.1109/PACT.2011.21
https://doi.org/10.2172/862127
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/ICCD.2006.4380784
https://doi.org/10.1109/ISSCC.2012.6176876
https://doi.org/10.1109/ISSCC.2012.6176876
https://doi.org/10.1145/2716320
https://chapel-lang.org/docs/index.html
https://doi.org/10.1145/1391469.1391610
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1109/DSD.2014.15
https://www.arm.com/why-arm/technologies/dynamiq
https://doi.org/10.1109/JETCAS.2016.2547704
https://doi.org/10.1109/MM.2016.9
https://doi.org/10.1109/MM.2016.9
https://www.intel.com/content/www/us/en/products/processors/core/
http://www.opengroup.org/austin/papers/posix_faq.html
https://www.usenix.org/conference/hotos15/workshop-program/presentation/faraboschi
https://doi.org/10.1109/HPCA.2015.7056040
https://doi.org/10.1109/HPCA.2015.7056040
https://doi.org/10.1109/MC.2009.412
https://press3.mcs.anl.gov//atpesc/files/2019/08/ATPESC_2019_Track-1_8_7-29_330pm_Moawad_Nash-FPGAs.pdf
https://press3.mcs.anl.gov//atpesc/files/2019/08/ATPESC_2019_Track-1_8_7-29_330pm_Moawad_Nash-FPGAs.pdf
https://doi.org/10.1109/HPCA.2016.7446059
https://doi.org/10.1117/12.255830

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

[56]
[57)
[58]
[59]

[60]

[61]
[62]

[63]

[64]

[65]
[66]
[67]
[68]

[69]

[70]

[71]

[72]
[73]

[74]

[75)

[76]
[77]

[78]
[79]
[80]

[81]

[82]
[83]

[84]

[85])

[86]

[87]

(88]

[89]
[90]
[91]
[92]

(93]
[94]

[95)
[96]

[97]
[98]
[99]

[100]

[101]

Khronos Group. 2009. OpenCL Overview. https://www.khronos.org/opencl

Khronos Group. 2020. Vulkan Overview. https://www.khronos.org/vulkan/

M. Halpern et al. 2016. Mobile CPU’s rise to power: Quantifying the impact of generational mobile CPU design
trends on performance, energy, and user satisfaction. In 2016 IEEE i \posium on High Performance
Computer Architecture (HPCA). 64-76.

J. Henkel et al. 2012. Invasive manycore architectures. In 17th Asia and South Pacific Design Automation Confer-
ence. 193-200.

Mark D. Hill et al. 2019. Gables: A Roofline Model for Mobile SoCs. In 25th IEEE International Symposium on
High Performance Computer Archil , HPCA 2019, Washil DC, USA, February 16-20, 2019. IEEE, 317-330.
https://doi.org/10.1109/HPCA.2019.00047

J. HOWard et al. 2010. A 48-Core IA-32 message-passing processor with DVFS in 45nm CMOS. In 2010 IEEE
I 1 Solid-Si Circuits Conf - (ISSCC). 108-109. https://doi.org/10.1109/ISSCC.2010.5434077

C. Hsieh et al. 2019. The Case for Exploiting Underutilized Resources in Heterogeneous Mobile Architectures.
In 2019 Design, Automation Test in Europe Conference Exhibition (DATE). 1265-1268.

Kevin Hsieh et al. 2016. Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-
Data Processing in GPU Systems. In 43rd ACM/IEEE Annual International Symposium on Computer Architecture,
ISCA 2016, Seoul, South Korea, June 18-22, 2016. IEEE Computer Society, 204-216. https:/doi.org/10.1109/ISCA.
2016.27

IBM IDC. 2017. The transformation of High Performance Computing: Simulation and Cognitive Methods in the
Era of Big Data. https://www.slideshare.net/insideHPC/the- transformation- of-hpc- simulation-and- cognitive-
methods-in- the- era- of-big- data

Andrey Ignatov et al. 2019. AI Benchmark: All About Deep Learning on Smartphones in 2019. CoRR
abs/1910.06663 (2019). arXiv:1910.06663 http:/arxiv.org/abs/1910.06663
Gabriel H. Loh Nuwan Jayasena Mark H. Oskin Mark Nutter Da ki, 2013. AP ing-in-Memory

Taxonomy and a Case for Studying Fixed-function PIM.

Advanced Micro Devices Inc. 2015. High-Bandwidth Memory (HBM) Reinventing Memory Technology. Technical
Report.

Intel. [n.d.]. NVIDIA’s Next Generation CUDA Compute Architecture. Technical Report. https:/www.nvidia.de/
content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Nuwan Jayasena. 2018. Memory-centric Accelerators in High-performance Systems. In 55th Design Automation
Conference (DAC 2018), 24-28 June 2018, San Francisco, CA USA, Special Session on “Memory-centric Architectures:
Industry Perspective from Embedded Systems to High Performance Computing”.

L. Jiang et al. 2010, Yield enhancement for 3D-stacked memory by redundancy sharing across dies. In 2010
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 230-234.

Sang Woo Jun et al. 2015. BlueDBM: an appliance for big data analytics. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture, Portland, OR, USA, June 13-17, 2015, Deborah T. Marr and
David H. Albonesi (Eds.). ACM, 1-13. https://doi.org/10.1145/2749469.2750412

J. A. Kahle et al. 2005. Introduction to the Cell multiprocessor. IBM Journal of Research and Development 49, 4.5
(2005), 589-604.

Henry Kasim et al. 2008. Survey on Parallel Programming Model. In Network and Parallel Computing, Jian Cao,
Minglu Li, Min-You Wu, and Jinjun Chen (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 266-275.
Mushfique Junayed Khurshid et al. 2013. Data compression for thermal mitigation in the Hybrid Memory Cube.
In 2013 IEEE 31st International Conference on Computer Design, ICCD 2013, Asheville, NC, USA, October 6-9, 2013.
IEEE Computer Society, 185-192. https://doi.org/10.1109/ICCD.2013.6657041

W.1 Kinney et al. 1987. A non-volatile memory cell based on ferroelectric storage capacitors. In 1987 International
Electron Devices Meeting. 850-851.

HiSilicon Kirin. 2019. http://www.hisilicon.com/en/Products/ProductList/Kirin

D. Kirk et al. 2013. Programming Massively Parallel Processors: A Hands-on Approach (Second Edition). Morgan
Kaufmann.

Peter Kogge. 2017. Memory Intensive Computing, the 3rdWall, and the Need for Innovation in Architecture.
https://memsys.io/wp-content/uploads/2017/12/The_Wall.pdf

Peter M Kogge. 1994. EXECUBE-a new architecture for scaleable MPPs. In 1994 International Conference on
Parallel Processing Vol. 1, Vol. 1. IEEE, 77-84.

Peter M Kogge et al. 1997. Processing in memory: Chips to petaflops. In Workshop on Mixing Logic and DRAM:
Chips that Compute and Remember at ISCA, Vol. 97. Citeseer.

David A. Kranz et al. 1993. Integrating Message-Passing and Shared-Memory: Early Experience. In Proceedings
of the Fourth ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming (PPOPP), San Diego,
California, USA, May 19-22, 1993, Marina C. Chen and Robert Halstead (Eds.). ACM, 54-63. https://doi.org/10.
1145/155332.155338

Ronny Krashinsky et al. 2020. NVIDIA Ampere Architecture In-Depth. Technical Report.

Rakesh Kumar et al. 2005. Heterogeneous Chip Multiprocessors. Computer 38, 11 (Nov. 2005), 32-38. https:
//doi.org/10.1109/MC.2005.379

R. Kumar et al. 2004. Single-ISA heterogeneous multi-core architectures for multithreaded workload perfor-
mance. In Proceedings. 31st Annual International Symposium on Computer Architecture, 2004. 64-75. https:
//doi.org/10.1109/ISCA.2004.1310764

E Scott Larsen et al. 2001. Fast matrix multiplies using graphics hardware. In Proceedings of the 2001 ACM/IEEE
conference on Supercomputing. 55-55.

Dong Uk Lee et al. 2014. 25.2 A 1.2 V 8Gb 8-channel 128GB/s high-bandwidth memory (HBM) stacked DRAM
with effective microbump /O test methods using 29nm process and TSV. In 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC). IEEE, 432-433.

Heng Liao et al. 2019. DaVinci: A Scalable Architecture for Neural Network Computing. In 2019 IEEE Hot Chips
31 Symposium (HCS), Cupertino, CA, USA, August18-20, 2019. IEEE, 1-44. https://doi.org/10.1109/HOTCHIPS.
2019.8875654

Tsung-Yao Lin et al. 2016. Helio X20: The first tri-gear mobile SoC with CorePilot™ 3.0 technology. In 2016 IEEE
Hot Chips 28 Symposium (HCS), Cupertino, CA, USA, August 21-23, 2016. IEEE, 1-24. https://doi.org/10.1109/
HOTCHIPS.2016.7936204

Pejman Lotfi-Kamran et al. 2012. Scale-out Processors. In Proceedings of the 39th Annual International Symposium
on Computer Architecture (Portland, Oregon) (ISCA "12). IEEE Computer Society, USA, 500-511.

Luxin Yan et al. 2006. A DSP/FPGA - Based Parallel Architecture for Real-time Image Processing. In 2006 6th
World Congress on Intelligent Control and Automation, Vol. 2. 10022-10025.

Milo M. K. Martin et al. 2012. Why on-chip cache coherence is here to stay. Commun. ACM 55, 7 (2012), 78-89.
https://doi.org/10.1145/2209249.2209269

K. Matsuyama et al. 1997. Low current magnetic-RAM memory operation with a high sensitive spin valve
material. IEEE Transactions on Magnetics 33, 5 (1997), 3283-3285.

T.G. Mattson et al. 2014. Patterns for Parallel F ing. Addison-Wesley P ional

RC Minnick et al. 1966. CELLULAR ARRAYS FOR LOGIC AND STORAGE. Technical Report. STANFORD RE-
SEARCH INST MENLO PARK CALIF.

Sparsh Mittal et al. 2019. A Survey on Evaluating and Optlmlzmg Performance of Intel Xeon Phi. (May 2019).

Sparsh Mittal et al. 2015. A Survey of CPU-GPU I puting Tect ACM Comput. Surv. 47,
4, Article 69 (July 2015), 35 pages. https: //dol.org/lo.l145/2788396
Sparsh Mittal et al. 2015. A Survey of CPU-GPU H Computing Tect ACM Comput. Surv. 47,

4(2015), 69:1-69:35. https://doi.org/10.1145/2788396
Qualcomm Snapdragon 865 5G mobile platform. 2019.
qualcomm- snapdragon- 865- 5g- mobile- platform- product-brief. pdf

Hadi Asghari Moghaddam et al. 2016. Near-DRAM Acceleration with Single-ISA Heterogeneous Processing in
Standard Memory Modules. IEEE Micro 36, 1 (2016), 24-34. https://doi.org/10.1109/MM.2016.8

Manuel Mohr et al. 2017. Pegasus: Efficient data transfers for PGAS languages on non-cache-coherent many-
cores. In Design, Automation & Test in Europe Conference & Exhibition, DATE 2017, Lausanne, Switzerland, March
27-31, 2017, David Atienza and Giorgio Di Natale (Eds.). IEEE, 1781-1786. https://doi.org/10.23919/DATE.2017.
7927281

Valentin Mena Morales et al. 2014. Energy-efficient FPGA implementation for binomial option pricing using
OpenCL. In Design, Automation & Test in Europe Conference & Exhibition, DATE 2014, Dresden, Germany, March
24-28, 2014, Gerhard P. Fettweis and Wolfgang Nebel (Eds.). European Design and Automation Association, 1-6.

https://www.qual com/medi file:

[102
[103

[104
[105]

[106

[107

[108

[109

[110]
[111

[112

[113
[114

[115]
[116

[117
[118

[119

[120

[121

[122
[123

[124

[125

[126

[127)

[128

[129

[130

[131
[132

[133

[134

[135

[136

[137

[138

[139

[140

[141

[142

[143

[144

[145

[146

[147

Rheindt et al.

https://doi.org/10.7873/DATE.2014.221

M. Motoyoshi. 2009. Through-Silicon Via (TSV). Proc. IEEE 97, 1 (2009), 43-48.

Robert W. Numrich et al. 1998. Co-Array Fortran for Parallel Programming. SIGPLAN Fortran Forum 17, 2 (Aug.
1998), 1-31. https://doi.org/10.1145/289918.289920

P. Pacheco. 1996. Parallel Programming with MPL Morgan Kaufman Publishers.

J. Parkhurst et al. 2006. From Single Core to Multi-Core: Preparing for a new exponential. In 2006 [EEE/ACM
International Conference on Computer Aided Design. 67-72. https://doi.org/10.1109/ICCAD.2006.320067

David Patterson et al. 1997. Intelligent RAM (IRAM): Chips that remember and compute. In 1997 IEEE Interna-
tional Solids-State Circuits Conference. Digest of Technical Papers. IEEE, 224-225.

David A. Patterson. 2004. Latency Lags Bandwidth. Commun. ACM 47, 10 (Oct. 2004), 71-75.
10.1145/1022594.1022596

David A. Patterson et al. 1997. A case for intelligent RAM. IEEE Micro 17, 2 (1997), 34-44. https://doi.org/10.
1109/40.592312

Ashutosh Pattnaik et al. 2016. Scheduling Techniques for GPU Architectures with Processing-In-Memory Capa-
bilities. In Proceedings of the 2016 I on Parallel Archi and Compilation, PACT 2016,
Haifa, Israel, September 11-15, 2016, Ayal Zaks andBllha Mendel and Wen-mei W.
Hwu (Eds.). ACM, 31-44. https://doi.org/10.1145/2967938.2967940

J. T. Pawlowski. 2011. Hybrid memory cube (HMC). In 2011 IEEE Hot Chips 23 Symposium (HCS). 1-24.

Russell J. Petersen et al. 1995. An assessment of the suitability of FPGA-based systems for use in digital signal
processing. In Field-P ble Logic and Appli Will Moore and Wayne Luk (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 293-302.

AMD Ryzen Threadripper 3990X Processor. 2020.
threadripper-3990x/

AMD Ryzen Desktop Processors. 2020. https://www.amd.com/en/ryzen

Seth H. Pugsley et al. 2014. NDC: Analyzing the impact of 3D-stacked memory-+logic devices on MapReduce
workloads. In 2014 IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS 2014,
Monterey, CA, USA, March 23-25, 2014. IEEE Computer Society, 190-200. https:/doi.org/10.1109/ISPASS.2014.
6844483

V.]. Reddi et al. 2018. Two Billion Devices and Counting. IEEE Micro 38, 1 (2018), 6-21.

Sven Rheindt et al. 2019. NEMESYS: near-memory graph copy enhanced syst ftware. In P lings of the
International Symposium on Memory Systems, MEMSYS 2019, Washington, DC, USA, September 30 - October 03,
2019. ACM, 3-18. https://doi.org/10.1145/3357526.3357545

NVIDIA Titan RTX. 2018. https://www.nvidia.com/en-us/deep-learning-ai/products/titan-rtx/

M. M. Sabry Aly et al. 2015. Energy-Efficient Abundant-Data Computing: The N3XT 1,000x. Computer 48, 12
(2015), 24-33.

Vijay Saraswat et al. 2019.
languagespec/x10-latest.pdf
Ashley Saulsbury et al. 1996. Missing the Memory Wall: The Case for Processor/Memory Integration. SIGARCH
Comput. Archit. News 24, 2 (May 1996), 90-101. https://doi.org/10.1145/232974.232984

Fred Schlachter. 2013. No Moore’s Law for batteries. Proceedings of the National Academy of Sciences 110, 14 (2013),
5273-5273. https://doi.org/10.1073/pnas.1302988110 arXiv:https://www.pnas.org/content/110/14/5273.full. pdf
Huawei Kirin 990 Series. 2019. https:// huawei.c ign/kirin-990-series/
MediaTek Dimensity 1000 Series. 2019. https://www.mediatel product: 1 di
series

Yakun Sophia Shao et al. 2015. The Aladdin Approach to Accel
(2015), 58-70. https://doi.org/10.1109/MM.2015.50

Patrick Siegl et al. 2016. Data-Centric Computing Frontiers: A Survey On Processing-In-Memory. In P
of the Second International Symposium on Memory Systems, MEMSYS 2016, Alexandria, VA, USA, October 3-6, 2016,
Bruce Jacob (Ed.). ACM, 295-308. https://doi.org/10.1145/2989081.2989087

Gagandeep Singh et al. 2019. Near-memory computing: Past, present, and future. Microprocessors and Microsys-
tems 71 (2019), 102868.

Avinash Sodani et al. 2016. Knights landing: Second-generation intel xeon phi product. Teee micro 36, 2 (2016),
34-46.

Sony. 2020. Unveiling New Details of PlayStation 5: Hardware Technical Specs. - hitps://blog playstation.com/
2020/03/18, ili details d hnical- specs/?ref-cat=254013

Euripides Sotiriades et al. 2007. A General Reconfigurable Architecture for the BLAST Algorithm. The Journal
of VLSI Signal Processing Systems for Signal, Image, and Video Technology 48, 3 (01 Sep 2007), 189-208. https:
//doi.org/10.1007/s11265-007-0069-2

Akshay Srivatsa et al. 2017. Region based cache coherence for tiled MPSoCs. In 30th IEEE International System-on-
Chip Conference, SOCC 2017, Munich, Germany, September 5-8, 2017, Massimo Alioto, Hai Helen Li, Jiirgen Becker,
Ulf Schlichtmann, and Ramalingam Sridhar (Eds.). [EEE, 286-291. https://doi.org/10.1109/SOCC.2017.8226059
Harold S Stone. 1970. A logic-in-memory computer. IEEE Trans. Comput. 100, 1 (1970), 73-78.

Vivienne Sze et al. 2017. Hardware for machine learning: Challenges and opportunities. In 2017 IEEE Custom
Integrated Circuits Conference, CICC 2017, Austin, TX, USA, April 30 - May 3, 2017. IEEE, 1-8. https://doi.org/10.
1109/CICC.2017.7993626

C. Tan et al. 2018. Stitch: Fusible Helemgeneous Accelerators Enmeshed with Many-Core Architecture for
Wearables. In 2018 ACM/IEEE 45th Annual 1 on Computer hi (ISCA). 575-587.
Cheng Tan et al. 2017. LOCUS: Low-Power Customizable Mzmy -Core Architecture for Wearables. ACM Trans.
Embed. Comput. Syst. 17, 1, Article 16 (Nov. 2017), 26 pages. https://doi.org/10.1145/3122786

The Economist. 2017. The world’s most valuable resource is no longer oil, but data. https://www.economist.
com/leaders/2017/05/06/the- worlds-most-valuable-resource-is-no-1 il-but- dat:

E. 1 Vatajelu et al. 2019. Challenges and Solutions in Emerging Memory Testmg. IEEE Transactions on Emerging
Topics in Computing 7, 3 (2019), 493-506.

David Wentzlaff et al. 2007. On-Chip Interconnection Architecture of the Tile Processor. IEEE Micro 27, 5 (2007),
15-31. https://doi.org/10.1109/MM.2007.89

Samuel Williams et al. 2009. Roofline: an insightful visual performance model for multicore architectures. Com-
mun. ACM 52, 4 (2009), 65-76. https://doi.org/10.1145/1498765.1498785

Martin S. Won. 2019. Intel Agilex FPGAs Deliver a Game-Changing Combination of Flexibility and Agility for the
Data-Centric World. Technical Report.

William A. Wulf et al. 1995. Hitting the memory wall: implications of the obvious. SIGARCH Computer Architec-
ture News 23, 1 (1995), 20-24. https://doi.org/10.1145/216585.216588
‘Yuan Xie. 2013. Future memory and i hnologies. In Design, A and Test in Europe, DATE 13,
Grenoble, France, March 18-22, 2013, Enrico Macii (Ed.). EDA Consortium San Jose, CA, USA / ACM DL, 964-969.
https://doi.org/10.7873/DATE.2013.202

Katherine A. Yelick et al. 1998, Titanium: A High-performance Java Dialect. Concurrency - Practice and Experience
10 (1998), 825-836.

Salessawi Ferede Yitbarek et al. 2016. Exploring specialized near-memory processing for data intensive op-
erations. In 2016 Design, Automation & Test in Europe Conference & Exhibition, DATE 2016, Dresden, Germany,
March 14-18, 2016, Luca Fanucci and Jiirgen Teich (Eds.). IEEE, 1449-1452. http://ieeexplore.ieee.org/document/
7459537/

Marcelo Yuffe et al. 2011. A fully integrated multi-CPU, GPU and memory controller 32nm processor. In IEEE
International Solid-State Circuits Conference, ISSCC 2011, Digest of Technical Papers, San Francisco, CA, USA, 20-24
February, 2011. IEEE, 264-266. https://doi.org/10.1109/ISSCC.2011.5746311

Jia Zhan et al. 2016. A unified mcmory network architecture for in-memory computing in commodity servers. In
49th Annual IEEE/ACM i S ium on Mic hi , MICRO 2016, Taipei, Taiwan, October 15-19,
2016. IEEE Computer Society, 29:1-29: 14 https: //dol 0rg/10.1109/MICRO.. 2016 7783732

Dong Ping Zhang et al. 2014. TOP-PIM: throughput-oriented ing in memory. In The
23rd International Symposium on High-Performance Parallel and Distributed C HPDC'14, ; BC,
Canada - June 23 - 27, 2014, Beth Plale, Matei Ripeanu, Franck Cappello, and Dongyan Xu (Eds.). ACM, 85-98.
https://doi.org/10.1145/2600212.2600213

Yuhao Zhu et al. 2018. Mobile Machine Learning Hardware at ARM: A Systems-on-Chip (SoC) Perspective. CoRR
abs/1801.06274 (2018). arXiv:1801.06274 http://arxiv.org/abs/1801.06274

https://doi.org/

Lawrence R;

ger,

https://www.amd.com/en/products/cpu/amd-ryzen-

X10 Language Specification. http://x10.sourceforge.net/documentation/

ity-1000-

Design and deling. IEEE Micro 35, 3

.

ion-5-F

https://www.khronos.org/opencl
https://www.khronos.org/vulkan/
https://doi.org/10.1109/HPCA.2019.00047
https://doi.org/10.1109/ISSCC.2010.5434077
https://doi.org/10.1109/ISCA.2016.27
https://doi.org/10.1109/ISCA.2016.27
https://www.slideshare.net/insideHPC/the-transformation-of-hpc-simulation-and-cognitive-methods-in-the-era-of-big-data
https://www.slideshare.net/insideHPC/the-transformation-of-hpc-simulation-and-cognitive-methods-in-the-era-of-big-data
https://arxiv.org/abs/1910.06663
http://arxiv.org/abs/1910.06663
https://www.nvidia.de/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.de/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://doi.org/10.1145/2749469.2750412
https://doi.org/10.1109/ICCD.2013.6657041
http://www.hisilicon.com/en/Products/ProductList/Kirin
https://memsys.io/wp-content/uploads/2017/12/The_Wall.pdf
https://doi.org/10.1145/155332.155338
https://doi.org/10.1145/155332.155338
https://doi.org/10.1109/MC.2005.379
https://doi.org/10.1109/MC.2005.379
https://doi.org/10.1109/ISCA.2004.1310764
https://doi.org/10.1109/ISCA.2004.1310764
https://doi.org/10.1109/HOTCHIPS.2019.8875654
https://doi.org/10.1109/HOTCHIPS.2019.8875654
https://doi.org/10.1109/HOTCHIPS.2016.7936204
https://doi.org/10.1109/HOTCHIPS.2016.7936204
https://doi.org/10.1145/2209249.2209269
https://doi.org/10.1145/2788396
https://doi.org/10.1145/2788396
https://www.qualcomm.com/media/documents/files/qualcomm-snapdragon-865-5g-mobile-platform-product-brief.pdf
https://www.qualcomm.com/media/documents/files/qualcomm-snapdragon-865-5g-mobile-platform-product-brief.pdf
https://doi.org/10.1109/MM.2016.8
https://doi.org/10.23919/DATE.2017.7927281
https://doi.org/10.23919/DATE.2017.7927281
https://doi.org/10.7873/DATE.2014.221
https://doi.org/10.1145/289918.289920
https://doi.org/10.1109/ICCAD.2006.320067
https://doi.org/10.1145/1022594.1022596
https://doi.org/10.1145/1022594.1022596
https://doi.org/10.1109/40.592312
https://doi.org/10.1109/40.592312
https://doi.org/10.1145/2967938.2967940
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x/
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x/
https://www.amd.com/en/ryzen
https://doi.org/10.1109/ISPASS.2014.6844483
https://doi.org/10.1109/ISPASS.2014.6844483
https://doi.org/10.1145/3357526.3357545
https://www.nvidia.com/en-us/deep-learning-ai/products/titan-rtx/
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
https://doi.org/10.1145/232974.232984
https://doi.org/10.1073/pnas.1302988110
https://arxiv.org/abs/https://www.pnas.org/content/110/14/5273.full.pdf
https://consumer.huawei.com/en/campaign/kirin-990-series/
https://www.mediatek.com/products/smartphones/dimensity-1000-series
https://www.mediatek.com/products/smartphones/dimensity-1000-series
https://doi.org/10.1109/MM.2015.50
https://doi.org/10.1145/2989081.2989087
https://blog.playstation.com/2020/03/18/unveiling-new-details-of-playstation-5-hardware-technical-specs/?ref-cat=254013
https://blog.playstation.com/2020/03/18/unveiling-new-details-of-playstation-5-hardware-technical-specs/?ref-cat=254013
https://doi.org/10.1007/s11265-007-0069-2
https://doi.org/10.1007/s11265-007-0069-2
https://doi.org/10.1109/SOCC.2017.8226059
https://doi.org/10.1109/CICC.2017.7993626
https://doi.org/10.1109/CICC.2017.7993626
https://doi.org/10.1145/3122786
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://doi.org/10.1109/MM.2007.89
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/216585.216588
https://doi.org/10.7873/DATE.2013.202
http://ieeexplore.ieee.org/document/7459537/
http://ieeexplore.ieee.org/document/7459537/
https://doi.org/10.1109/ISSCC.2011.5746311
https://doi.org/10.1109/MICRO.2016.7783732
https://doi.org/10.1145/2600212.2600213
https://arxiv.org/abs/1801.06274
http://arxiv.org/abs/1801.06274

	Abstract
	1 Introduction
	2 Insights from the Roofline Model
	3 Compute-Centric Systems
	3.1 Evolution of Compute-Centric Systems
	3.2 Compute-Centric Architectures
	3.3 Roofline Model for Tile-based Systems
	3.4 Compute-Centric Programming
	3.5 Discussion of Compute-Centric Systems

	4 Memory-Centric Systems
	4.1 Evolution of Memory Technology
	4.2 In-/Near-Memory Computing
	4.3 Roofline Model for Near-Memory Units
	4.4 Memory-Centric Programming
	4.5 Discussion of Memory-Centric Systems

	5 Application-Centric Systems
	5.1 Evolution of Application-Centric Systems
	5.2 Contemporary Mobile Device Architectures
	5.3 Roofline Model for Hardware Accelerators
	5.4 Application-Centric Programming Models
	5.5 Discussion of Application-Centric Systems

	6 Conclusion and Insights
	References

