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ABSTRACT
Modern high performance computing (HPC) systems pack hun-
dreds of CPU cores to enable extreme parallelism. However, with
increasing core counts, the effective per-core memory capacity is
reducing. Reducing performance bottlenecks require precise moni-
toring and budgeting of application memory capacity requirements
for attaining high performance, maximum resource efficiency, and
low performance variability. Unfortunately, current operating sys-
tems (OS) and their toolsets are inaccurate, lack the capability to
precisely measure the memory requirements of applications, forc-
ing system administrators to either underestimate or over-provision
memory, consequently compromising performance or resource effi-
ciency, respectively.

In this paper, we decipher the memory budgeting limitations in
current OSes and their impact on both homogeneous and hetero-
geneous memory systems (e.g., nonvolatile memory). The limita-
tions mainly stem from the mismatch between application-level
and global memory accounting in the OS memory manager, fix-
ing which can be prohibitively expensive at runtime. Our analysis
of popular HPC workloads using widely-used memory budgeting
strategies and deep instrumentation of the memory management
layer reveals that imprecise budgeting can reduce performance by
more than 1.65x and 2.05x in homogeneous and heterogeneous
memory systems respectively. The program’s memory requirement
increases by up to 25x without significant performance gains. We
also briefly describe our ongoing research approach to redesign the
budgeting mechanisms in the OS.
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• Software and its engineering→Memorymanagement;Vir-
tual memory.
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1 INTRODUCTION
We have entered an era of computing where three trends dominate
the modern high-performance computing systems. The first is an
application trend, where applications with lots of parallelism must
quickly access large amounts of data. Modern HPC applications that
run across hundreds and thousands of nodes require huge amounts
of memory resources. Memory is not only used by applications but
also used by other OS subsystems that include the storage stack
(e.g., file systems), the network stack (e.g., network subsystem),
accelerator drivers (e.g., GPU, FPGA), OS schedulers, and even the
virtual memory subsystem (e.g., page table management). However,
with increasing core count, the effective per-core memory capacity
is reducing, which can significantly impact performance [25, 42].

The second trend is the hardware trend, where adding new het-
erogeneous memory technologies with different capacity, band-
width, and latency characteristics provide performance and capacity
benefits but complicate software management. This includes re-
cently released Intel DC Optane memory [2], promising die-stacked
high bandwidth memory technologies with significantly lower ca-
pacity than DRAM [4, 5], and integrated CPU-GPU memory [16].

The third trend is the software trend, in which the complexity
of software memory management, such as memory virtualization
design, is ever increasing. Unfortunately, today’s OS memory man-
agers do not satisfy expected fundamental properties, such as re-
source efficiency, high-performance, and non-variable performance.
Designing a generic solution to satisfy these fundamental properties
for both homogeneous and heterogeneous memory is a complex
grand challenge.
Problem Focus: The first step towards solving this grand chal-
lenge requires an understanding of the memory resource require-
ments of applications in both homogeneous and heterogeneous
settings. Surprisingly, despite years of design, optimization, and
development, current operating systems (OSes), memory manage-
ment subsystems, and budgeting tools are ill-equipped and impre-
cise. Lack of precise memory resource estimation capabilities often
force administrators and application developers to over-provision
or under-provision memory, which could impact performance, re-
source efficiency, or performance predictability [1]. Our analysis of
several commonly used Linux tools, system call APIs, and our deep
OS instrumentation reveals that current memory accounting mech-
anisms are inaccurate. Underestimating memory usage leads to
undesired effects such as applications swapping to secondary stor-
age, or even application and system termination. Overprovisioning
memory potentially increases operational cost forcing administra-
tors to add memory hardware or spill application to additional
physical nodes, consequently increasing communication costs.
Factors for Imprecise Memory Budgeting. The inaccuracies
in current Linux tools and OSes stem from several factors. First,
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several widely used user-level tools and OS system calls that es-
timate the resident set size (i.e., maximum active pages) localize
accounting to application-level pages and do not precisely account
memory usage by other subsystems. This includes the file system,
network subsystem, device drivers, accelerator modules, OS data
structures, and swap managers that facilitate application access
to hardware and other services, resulting in resource contention
across applications and subsystems. Consequently, using these tools
to budget memory impacts application performance.

Second, in addition to application-level counters, OSes also main-
tain a global list and counters for system-wide tracking of active
and inactive memory and expose this information to users. These
counters are primarily updated by the OS page reclamation engines
to reclaim inactive memory when the free memory availability is
scarce. Updating these counters requires a global walk across the
active and inactive list and other bookkeeping operations. Due to
forbiddingly high overhead, OSes such as Linux reduce the fre-
quency at which pages are scanned, active, inactive lists and the
related global counters are updated. The global counters are impre-
cise and, as we show, can significantly overestimate the memory
requirements of applications, impacting resource efficiency.

Finally, OSes use rigid policies that always prioritize the allo-
cation of heap memory by forcing active pages mapped to files to
be cleaned and reused when memory is scarce. Consequently, this
impacts application performance due to reduced I/O performance.
This combined with a lack of precise and efficient monitoring of
application resident sets and global counters, impedes I/O perfor-
mance and the overall application performance.
Our Analysis. In this paper, we systematically evaluate and char-
acterize the inaccuracies of existing memory budgeting mecha-
nisms to understand the implications of the limitations mentioned
above. We study widely used user-space tools, OS-level counters,
and perform deep kernel instrumentation. For our analysis, we use
well-known HPC benchmarks and applications that are compute
and I/O intensive. To understand the impact, we conduct experi-
ments on a single and multi-node homogeneous memory system,
as well as a heterogeneous system equipped with Intel DC Optane
persistent memory. Our results show that imprecise estimation of
memory with current tools can increase memory consumption by
up to 25x, whereas the runtime increases by up to 1.65x and 2.05x
in homogeneous and heterogeneous memory systems, respectively.
The performance variability increases by 1.21x.

In this position paper, we mainly focus on the imprecise memory
budgeting in current OSes. Our on-going research is tackling solu-
tion to these issues by redesigning and unifying OS virtual memory
management budgeting mechanisms across different layers, and
also extending the LRU management [18].

2 BACKGROUND AND RELATEDWORK
We first provide a brief background on the working set and resident
set size estimation in current OSes such as Linux, different types
of memory usage, and how they integrate with Linux virtual mem-
ory management. We briefly describe the memory heterogeneity
trend to drive home the point that efficient and accurate memory
budgeting is critical for future systems.

2.1 Working Set
One of the first models to identify a program’s working set was
from the seminal work done by Peter Denning [13]. The working
set model has been adopted in different forms across most OSes to-
day [14, 23]. A more straightforward interpretation of the working
set model is the following. Applications are assigned memory in
units of pages. Not all pages can fit in memory, and those not avail-
able in memory are fetched from disk. Moving pages from memory
to disk incurs a cost and could potentially stall the program. To
minimize the stalls, Denning proposed the concept of the working
set, which encompasses a set of pages required by an application to
continue execution. More formally, Denning’s working set model
assumes that a page used in the past 𝑇 time units is expected to be
referenced again within 𝛼 time units (𝑇 >> 𝛼). An ideal working
set prediction model could predict all pages referenced in the next
𝛼 time units without requiring the program to stall for the disk.

2.2 Realization of Working Set in Linux
Practical realization of the working set model is difficult; specifically,
predicting pages required for future memory accesses requires an
extensive static analysis of a workload. Therefore, most OSes im-
plement a simpler working set model to realize Denning’s original
design. For example, Linux (and FreeBSD) implements a simplified
LRU 2Q design originally proposed by Theodore et al. [23]. The
goal of OS LRU 2Q mechanism, at a high level, is to separate a set
of active and inactive pages, such that the inactive pages can be
swapped or reclaimed. Linux maintains an active LRU list (pages
that cannot be swapped and are in active use), and an inactive LRU
list of pages.

In addition, the mechanism also accounts for pages that are po-
tentially reclaimable ie., they can be swapped to disk when freely
available memory capacity is low. When pages in the inactive list
are referenced, they are promoted to the active LRU list, whereas
those pages in the active list, which are infrequently accessed, are
demoted to the inactive-list. The pages in these lists are reclaimable,
which indicates that pages can be moved to disk when memory
pressure is high. Because these reclaimable pages are contained
in just two global lists, any page belonging to any process may
be reclaimed, rather than only those belonging to a process that
increased the overall system memory pressure. Further, OSes main-
tain a third list of non-reclaimable pages (non-LRU active list).
Non-reclaimable pages include pages currently being modified by
the application, the pages that are explicitly locked by applications,
or the pages used for maintaining OS data structures.
Policies. The policies surrounding the LRU mechanism, such as
what fraction of pages are marked as active or inactive and when
they must be reclaimed, are rather empirical and static. The policies
have shown to work well in practice, and adjustments have been
made based on user feedback and benchmarks [19]. While the over-
all LRU mechanism is generic, over the years, these mechanisms
have swayed towards swap management. The swap manager moves
inactive pages to slower memory when the memory is scarce or
overcommitted. For example, several real-world applications os-
cillate between periods of high allocation (before computation),
followed by periods of infrequent allocations. To satisfy allocation
requests quickly, OSes such as Linux maintain the number of pages
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in the active LRU list about two-thirds the size of the inactive LRU
list. During high page allocation intervals, the pages in the inactive
LRU list can be quickly reclaimed (by swapping the pages). While
this two-third policy has worked well for many applications, OSes
also provide flexibility for users (or administrators) to control active
to inactive page ratios and tune them to a specific application.

2.3 Memory Provisioning
The first step towards attaining high performance without compro-
mising resource efficiency and performance variability is under-
standing and precisely measuring the direct and indirect memory
costs of an application. Direct memory refers to memory directly
allocated by the application, whereas indirect memory needs re-
fer to memory allocated by different libraries and OS subsystems
required for application execution and performance. While there
have been prior work on containers and Linux cgroups [21] and
VMs [35], to the best of our knowledge, other research directions
have not explored the fallacies of the core OS accounting system
(which is assumed to be correct). Recent industrial efforts such as
as [1] have recently proposed indirect metrics such as memory
pressure. While definitely valuable, in this paper, we describe the
main issues with current budgeting and accounting mechanisms.

Capturing memory requirements is critical because most mod-
ern HPC applications are not only compute-intensive but also I/O
intensive (storage and network) [26, 27, 38, 39]. Applications are in-
creasingly becoming accelerator-intensive [37], requiring frequent
movement of huge amounts of data between host and accelerators.
Applications, not only consume memory from heap allocations
(commonly referred to as anonymous memory), but also across
userspace libraries, storage stack (e.g., page cache), network stack
(network buffers, RDMAbuffers), DMA buffers, andmemory buffers
for kernel data structures. Memory needs of applications can sub-
stantially change depending on the number of threads, input data,
and execution paths adopted by the application, and the intensity
with which storage, network, and accelerator devices are accessed.
These factors complicate precise memory budgeting.
User-level Tools. Several user-level tools such as Valgrind [30],
sacct in SLURM [41], memusage [29], and gnu time [17] are widely
used to intercept allocations of a program and capture memory
usage. While these tools have become sophisticated to capture the
memory allocation needs of supporting libraries (e.g., MPI libraries
for HPC applications), unfortunately, they lack the capability to
capture the memory allocations outside the application’s bounds,
which includes OS subsystems, drivers, and shared data across
applications.
Capturing Resident Set Size. To overcome the problem of the lack of
information about memory use, the Linux kernel community [3, 20]
and industry [1] has relentlessly aimed to develop tools to capture
the real memory usage of applications. Because the prediction of
a working set is hard, OSes such as Linux and FreeBSD moved
away from the working set size model to a process resident set size
(RSS) model. A process’s RSS is the number of physical memory
pages currently owned by that process. The process resident set
size provides a high-level estimate of pages referenced by a process
that includes heap , file-backed pages, and shared memory. While
seemingly simple, a significant difference exists between a process’s

RSS and the amount of memory actually in use. The reasons stem
from the fact that allocated pages are not immediately referenced
by an application or pages released by an application are not imme-
diately reclaimed by the OS. Consequently (as we will show), the
overall memory usage of applications can be significantly higher
compared to OS reported resident set sizes. To overcome these is-
sues, the OS community has been developing several fine-grained
system-level memory usage tools and process-level tools. For exam-
ple, recent kernels export process-level information on the pages
actually referenced by an application (via. smaps [3]).

2.4 Memory Hardware Trends
As systems continue to embrace memory heterogeneity, accurate
memory provisioning is critical given the substantial capacity and
performance differences across heterogeneous memory technolo-
gies. For example, technologies such as die-stacked 3D-DRAM,
Hybrid Memory Cube (HMC), High Bandwidth Memory (HBM),
and byte- addressable NVMs showing early promise in addressing
the big-data needs of modern applications [16, 32, 34, 36]. While
offering research promise, these devices pose a myriad of com-
plex performance and capacity tradeoffs. For example, technolo-
gies like 3D-DRAM, HMC, and HBM provide 10× higher band-
width and 1.5× lower latency than conventional DRAM, but suffer
8-16× [4, 6, 10, 31] lower capacity. Meanwhile, byte-addressable
NVMs offer 4-8× higher capacity than DRAM but suffer 2-3× higher
read latency, 5× higher write latency, and 3-5× reductions in access
bandwidth. For heterogeneous memory systems, underestimation
or over-provisioning of application memory can substantially hurt
application performance and lead to overall system inefficiency.

2.5 Working Set Detection in Heterogeneous
Memory Systems.

Working set size detection has been explored in other contexts. For
example, more recently, working set detection for page placement in
a heterogeneous memory system has been actively explored [5, 40].
The working set is used for placing hot pages to fast memory and
cold pages to slower memory. Working set detection involves forc-
ing TLB faults [15] on application (to force them to access the page
table), and scanning through the page table for many reference
pages. Unfortunately, inducing TLB faults and scanning the page ta-
ble (for large workloads) are even more expensive than LRU-based
tracking. To reduce overheads, prior research such as Thermo-
stat [5] uses a 30-second interval between scans. Other systems
such as Nimble [40] also depend on Linux LRU for page migration
in heterogeneous memory, thereby inheriting the budgeting issues.

3 MOTIVATION
Next, we discuss the limitations of current memory budgeting tools,
motivating the need for precise and efficient memory budgeting
mechanisms. We observe that there is a lack of research focus on
such practical issues, which is critical for achieving high perfor-
mance and resource efficiency.

3.1 Lack of Preciseness
Current system software tools and OSes lack the capability to pre-
cisely measure memory usage for a given workload. The lack of
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precise estimation of memory usage impacts performance, overall
system resource efficiency, and introduces performance variability.
Performance impact and variability are introduced due to under-
estimating the memory requirements, whereas resource efficiency
stems from overestimating memory requirements. For example,
the maximum resident set size (MaxRSS) reported by the OS for
an application is generally imprecise and often conservative. This
could lead to a contention between the program’s performance-
critical active heap and I/O memory pages. Under extreme memory
pressure, the application could be eventually terminated, at times,
freezing the entire system.

Similarly, when memory use is unbounded, applications could
run with the maximum performance, but amplify memory capacity
use. Memory capacity amplification can be defined as the ratio be-
tween the memory consumed by an application to actual memory
required to run the application to completion without swapping.
Generally, administrators and users resolve memory capacity is-
sues by provisioning additional memory hardware or spilling the
application to additional physical nodes [12]. Consequently, when
capacity amplification is high, resource efficiency is compromised.
To understand the reasons for the lack of precise memory require-
ment information, we briefly discuss how the program’s resident
set size is estimated, followed by the limitations in the current OSes.
Memory Estimation. Current OSes track memory pages and
their references using 2Q (queue) LRU design, which orders pages
based on their access frequency. The first LRU queue, called the
active-list, represents the most recently used pages, representing
the union of all program’s working sets. The second queue, called
the inactive-list, maintains pages that were used and allocated
at some point but have not been used for a long duration. Because
pages go through intervals of active and inactive use, promoting
recently referenced pages from inactive-list to the active-list

and vice-versa happens periodically. To conserve memory, during
cleanup operations, first, the clean file-backed pages are released.
Second, file-mapped pages in the active-list that are not referenced
recently are moved to the inactive-list. Finally, file-backed pages
that are dirty (with uncommitted data) are flushed to disk, marked
clean, but are not reclaimed immediately. While seemingly simple,
the active and inactive lists are globally maintained and shared
across the entire system. Maintaining a global list, walking through,
and identifying active and inactive pages is expensive and incurs
substantially higher CPU cycles. We measured the page walk cycles
using in-kernel instrumentation. Our analysis shows that the cost of
walking through the active and inactive lists in a 5-second interval
incurs 22% performance slowdown for a graph benchmark [7].

To combat such high overheads, OSes reduce the frequency of
2Q walk cycles, consequently impacting the preciseness of active
(in-use) and inactive page usage information. This impreciseness
leads to two effects. First, the application-level MaxRSS calcula-
tion is restricted to an application’s heap, file-backed, and shared
memory pages, failing to account in the several OS-level pages allo-
cated between the active-inactive scan intervals and under-estimate
the memory requirements of the application. Second, system-wide
memory usage tools overestimate memory requirements by ac-
counting for infrequently referenced pages that are not identified
as inactive due to infrequent scans.

3.2 Heap and I/O Subsystem Contention
For I/O intensive applications, when the memory is scarce, there is a
constant contention for allocating free pages between application’s
heap and I/O (e.g., file-mapped) pages. In current memory man-
agers, when memory is scarce, the heap page allocation requests
are prioritized over allocation requests from the I/O subsystem [24]
such as I/O page-cache pages. Similarly, I/O pages are persisted
and evicted first before any heap pages are swapped irrespective
of their inactive status. Imprecise and infrequent identification of
active and inactive pages combined with prioritizing heap pages
over I/O pages leads to consistent victimization of I/O pages being
flushed or reclaimed. As a result, for I/O-intensive applications,
the time spent waiting for I/O to complete increases, reducing the
application perceived I/O bandwidth significantly.

4 ANALYSIS
For optimal application performance without compromising mem-
ory efficiency or introducing performance variability in traditional
homogeneous and heterogeneous memory systems, precise estima-
tion of memory usage is critical. We perform a detailed workload
characterization of widely used HPC benchmarks & applications
and decipher the limitations of current memory capacity budget-
ing techniques. Specifically, we evaluate their impact on memory
consumption, performance, and variability for homogeneous and
heterogeneous memory systems.

4.1 Goals
Our analysis aims to answer the following questions.

• How does memory consumption vary across different bud-
geting approaches?

• What is the performance impact of inaccurate capacity bud-
geting techniques across one or more physical machines?

• How imprecise capacity budgeting impacts performance in
heterogeneous memory systems, such as non-volatile mem-
ory (NVM)?

4.2 Experimental Setup
We use different system configurations for the single node, multi-
node, and heterogeneous memory analysis. For the single node
analysis, we use a 40-core Intel Xeon 2.67 GHz dual-socket system,
with 80GB memory per socket and a 512 GB Intel SSD. For the eval-
uation across multiple nodes, we use four instances of 16-core Intel
Xeon 2.0 GHz single-socket system with 64GB ECC memory and
256 GB NVMe flash drive. Our analysis also involves deep kernel-
level instrumentation via. custom system calls, limiting our current
scale of analysis. In both single and multi-node analysis, to vary the
memory capacity of the systems and restrict the available memory
to a process, we block the memory beyond the allocated budget
by mounting a RAM-based file system and hiding the additional
memory from the virtual memory’s view. We describe the method
of deriving memory budgets shortly.
Heterogeneous Memory Setup. To understand the impact of
memory capacity on heterogeneous memory systems, we use a
dual-socket, 64-core, 2.7GHz Intel(R) Xeon(R) Gold platform with
32GB DRAM, 512GB (4x128GB) DCOptane persistent memory with
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Figure 1:MemoryCapacityUsageAcross BudgetingMechanisms.MemoryConsumption and their breakdownswhen using different techniques
are shown in (Fig 1a) and (Fig 1b) respectively. Two types of settings, one node (#36 cores) and four nodes (#64 cores) are used. Unlimited is an unbounded run
where there is abundant memory for programs to expand as desired. For, App-MaxRSS, the memory budget represents application-level accounting. Sys-MaxRSS
represents the memory budget derived from global heap, file, and other process relevant pages through our deep kernel instrumentation.

8GB/sec read and 3.8GB/sec rand-write bandwidth [22], and 512GB
SSD.

4.3 Analysis Workloads
For our analysis, we use the following five widely-used workloads
known to be compute and I/O-intensive.
BTIO Benchmark. The NAS Parallel Benchmarks (NPB) [8] are
a small set of programs designed to help evaluate the performance
of parallel supercomputers. The benchmarks are derived from com-
putational fluid dynamics (CFD) applications. The problem sizes in
NPB are predefined and indicated as different classes. We specif-
ically use the BTIO benchmark, a Block Tri-diagonal solver that
stores data to storage and also tests different parallel I/O techniques.
The Block Tridiagonal (BT) benchmark solves block tridiagonal
equations with 5𝑥5 block size. We vary the workload sizes across
single, multi-node, and heterogeneous memory systems.
MADbench. MADbench [11], derived from a large-scale Cosmic
Microwave Background (CMB) data analysis package, represents a
comprehensive I/O analysis of modern parallel file systems. MAD-
bench examines a broad range of system architectures and I/O
configurations, including Lustre, GPFS on IBM Power5, and AMD
Opteron platforms; We mainly use MADbench with extensively
used synchronous I/O, and each thread updates to unique files us-
ing POSIX APIs. The workload generates close to 50GB of I/O data
across its run.
Gromacs. Gromacs [9] is a widely used open-source framework
used primarily for dynamic simulations of biomolecules like pro-
teins, lipids, and nucleic acids that have a lot of complicated bonded
interactions. Gromacs is extremely fast at calculating the non-
bonded interactions (that usually dominate simulations) many
groups are also using it for research on non-biological systems,
e.g., polymers. Gromacs persist a lot of data such as energy logs,
coordinates, velocity, and forcefields of the molecules in the system.
The application uses only a fraction of the heap but generates a
huge amount of I/O data constantly checkpointing the intermediate
state to the disk.

Approach Program Resource Performance
Performance Efficiency Variability

Unlimited High Low Low
App-MaxRSS Low High High
Sys-MaxRSS Medium Medium Low

Table 1: Memory Budgeting Techniques and Properties.
App-MaxRSS represent maximum resident set size at application level, re-
ported through the waitpid() system call. Sys-MaxRSS represents thememory
budget identified using our deep kernel instrumentation.

GTC. Gyrokinetic Toroidal Code (GTC) [28] is a 3-Dimensional
Particle-In-Cell code used to study microturbulence in magnetic
confinement fusion from the first principles of plasma theory. The
checkpoint data primarily have 2D arrays representing electrons
and ions. The application is highly scalable, and each core can out-
put two million particles roughly every 120 seconds resulting in
260GB of checkpoint data. To restrict the scale of the experimenta-
tion for single node analysis in homogeneous and heterogeneous
system, we limit the overall checkpoint data size to 60 GB.
Graph500. Graph500 [7] is a large scale data-intensive graph
benchmark which multiple kernels including Kronecker graph
generator, Breadth first search(BFS) and Single source shortest
path(SSSP). Due to extreme scalability and data intensity, this bench-
mark is used to rank the world’s supercomputers. In our experi-
ments, we keep the scale to be 25 and edge factor to be 20.

4.4 Memory Budget Estimation Approaches
We consider the following three memory budgeting approaches.
Unlimited represents a simple approach that estimates the mem-
ory use of an application for a given dataset and thread configu-
ration by running the application and measuring the system-wide
increase in memory consumption from the time the application was
run. Administrators commonly use these system-wide counters and
users [33, 42] exported by the OS. When measuring the Unlimited
approach, we do not impose any restrictions on the memory alloca-
tion to application. For example, Linux commands such as free -m

track and report the system-level use of heap pages, file pages,
and shared pages. Table 1 summarizes the the memory budgeting
approaches.
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App-MaxRSS. To calculate the RSS of a process, the OS maintains
task-level accounting counters for page ownership. These counters
track heap, file, and shared pages. Because applications or processes
can have one or more child processes, the OS also calculates the
maximum resident size (MaxRSS) across all threads and proces-
sors. The MaxRSS is estimated as the maximum sum of heap pages,
file pages, and shared pages across all its children. The average
and MaxRSS are exposed to applications using system calls such
as get_rusage() and waitpid and in other commonly used Linux
commands such as time -v. To reduce accounting overheads, OSes
update accounting counters infrequently or when pages or regions
of memory are unmapped or reclaimed from the application’s ad-
dress space.
Sys-MaxRSS. In this approach, we perform kernel-level instru-
mentation of the OS active and inactive lists, and the related LRU
functions that maintain the lists. In addition to process-level virtual
memory counters used in MaxRSS estimation, the Linux LRU 2Q
implementation [23] maintains global counters from the system-
wide active and inactive lists. The pages from these lists are pe-
riodically scanned, and based on the reference activity on pages,
frequently referenced pages in the inactive list are promoted to
the active-list, and infrequently referenced pages from the active
list are demoted to the inactive-list. As discussed earlier, high
scanning cost impedes frequent updates to global counters. In con-
trast to Sys-MaxRSS, Unlimited approach also accounts for locked
pages (e.g., pages locked by applications or driver to avoid being
reclaimed), kernel buffers (used for kernel-level data structures),
unevictable pages which are mapped to files and are dirty (yet to
be written to storage), and swap cache pages.

4.5 Memory Capacity Use
We first start the analysis by measuring the memory consump-
tion of Unlimited, App-MaxRSS, and the Sys-MaxRSS budgeting
strategies.

Figure 1a shows the memory used for each of the budgeting
approaches for the four workloads for both single-node and multi-
node (4 nodes) experiments. The y-axis represents the memory
consumption in GBs. Figure 1b shows the breakdown of memory
page types for each of the budget strategy. In this figure, the heap
pages ("HeapMem") are pages explicitly allocated by an application,
whereas the kernel allocates file pages ("FileMem") in order to buffer
and reduce synchronous block writes to disk in the application’s
critical path. The "OtherMem" pages represent kernel-level buffers
that are comparatively smaller in size.

First, we observe a substantial difference in memory consump-
tion across the three memory budgeting strategies. The Unlimited
approach increases memory usage compared to App-MaxRSS for
all workloads in a single node and multi-node configuration. For
Gromacs, the Unlimited approach increases memory consumption
by 25x over App-MaxRSS. The increase in memory use is attrib-
uted to the following reasons. First, OSes such as Linux maintain
a fast path and slow path for memory allocation. The fast path is
designed to optimize memory allocation when the memory avail-
ability is not scarce. Consequently, allocation only entails a quick
allocation of one or more pages from the virtual memory free list.
In contrast, the slow path is designed to be used when memory

Program Unlimited (%) AppRSSMax (%) SysRSSMax (%)
BTIO 0.1 14.34 1.20
MADBench 0.31 3.91 3.75
Gromacs 3.20 1.24 1.49
GTC 41.39 42.95 51.67

Table 2: I/O Time Percentage.

resources are scarce. In the slow path, the OS must also attempt to
reclaim unused or inactive pages, and when reclamation fails, I/O
file-backed pages in the dirty state (with uncommitted updates to
disk) are flushed before releasing them for subsequent use in other
I/O requests. Similarly, even after an application releases memory,
the OSes do not immediately release the pages to free list unless the
memory resource are scarce. Consequently, most allocations in the
Unlimited approach use the fast path. As expected, memory alloca-
tion, garbage collection, and other management costs reduce, but
the memory usage increases. Therefore, using Unlimited approach
for memory budgeting might not provide the best space efficiency.
As our results show, the memory use trend is not restricted to an
application deployed in a single node, but even across multiple
nodes.

As shown in Fig 1b, a significant fraction of allocated memory is
used for file-backed pages in all applications except GTC, which
has a large application memory (heap) footprint. Reducing the file
pages forces the program to persist its file data in the critical path
and wait for disk reads. Additionally, the performance predictability
reduces due to contention between heap and file pages.

Next, the App-MaxRSS only accounts for the application-level
heap, file, and shared memory pages, which are only updated when
pages are allocated or released by the application. We observe that
App-MaxRSS mostly underestimates the memory requirement of
a process, resulting in a substantially lower memory budget com-
pared to Unlimited and Sys-MaxRSS for BTIO and Gromacs. The
underestimation stems from two primary factors: the App-MaxRSS
accounting in the OS virtual memory layer is independent of the
system-wide accounting use [18]. A memory page that is marked
for deletion when application releases a page is accounted (sub-
tracted) from application-level counters, but the page continues to
be accounted as an active page in the global active-list until the
next LRU scan, which are run when the free memory availability
reduces beyond a threshold. Note that OSes such as Linux employ
a lazy garbage collection of pages released by the application.

4.6 Impact of Memory Capacity on
Performance

Next, we analyze the performance of applications and the "perfor-
mance to capacity" ratio for the three memory budgeting strategies.
Figure 2a shows the performance of each workload as a virtue of
the memory budgets. Figure 2b shows performance per gigabyte of
memory capacity ratio, and Figure 2 shows the average percentage
of time spent waiting for I/O to complete.

First, with the Unlimited approach, applications can quickly
allocate memory from the fast path, reduce garbage collection
frequency, and there is no contention between applications, li-
braries, and OS subsystems. Consequently, the Unlimited approach
provides maximum performance across all workloads. Next, with
App-MaxRSS, applications are allocated with a memory budget as
reported by the OS’ MaxRSS calculation, which takes into account
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Figure 2: Performance Impact of Budgeting Strategies. Performance and its variability(Fig 2a), and Performance per unit memory(Fig 2b), using
Eq. 3 with different memory budgets.

the heap, file, and shared memory pages attributed towards an appli-
cation. However, the underestimated App-MaxRSS memory budget
leads to high contention between application and file-backed paged
for 3 out of 4 workloads. Further, OSes mainly prioritize heap allo-
cation and increase the reclamation of I/O pages. Consequently, this
leads to an increase in the I/Owait time and application runtime. For
example, in case of BTIO, the I/O wait percentage for App-MaxRSS
is more that 14% unlike other approaches with substantially lower
I/O wait percentage. We observe close to 1.65x slowdown (for GTC
application) for the App-MaxRSS approach compared to Unlimited.

Next, when using the Sys-MaxRSS approach, the runtime re-
duces by consuming more memory using the global-level 2Q LRU
stats. However, in spite of the memory increase, the performance
gains are limited. For example, for both BTIO andGTC, Sys-MaxRSS
reduces runtime by 1.08x and 1.3x, respectively over App-MaxRSS
approach. However, the gains for MADBench and Gromacs are
limited over App-MaxRSS. The result trends are quite identical
when scaling the applications across four nodes. When compar-
ing Sys-MaxRSS and Unlimited, even with higher memory budget,
Sys-MaxRSS performance does not improve. For example, for GTC,
Sys-MaxRSS’s slowdown is up to 1.12x over Unlimited.

𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑀𝑖𝑛𝑅𝑢𝑛𝑡𝑖𝑚𝑒

𝑅𝑢𝑛𝑡𝑖𝑚𝑒
(1)

𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑃𝑒𝑟𝐺𝐵 =
(𝑀𝑖𝑛𝑀𝑒𝑚𝑜𝑟𝑦𝑈𝑠𝑒𝑑 × 𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒)
(𝑀𝑒𝑚𝑜𝑟𝑦𝑈𝑠𝑒𝑑 ×𝑀𝑎𝑥𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒) (2)

𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑃𝑒𝑟𝐺𝐵 =
(𝑀𝑖𝑛𝑀𝑒𝑚𝑜𝑟𝑦𝑈𝑠𝑒𝑑 ×𝑀𝑖𝑛𝑅𝑢𝑛𝑡𝑖𝑚𝑒)

(𝑀𝑒𝑚𝑜𝑟𝑦𝑈𝑠𝑒𝑑 × 𝑅𝑢𝑛𝑡𝑖𝑚𝑒) (3)

Finally, in Figure 2b, we show the performance to memory ra-
tio (i.e., performance per gigabyte of memory) to consider both
performance and memory usage. We calculate the performance to
memory ratio using equations 1, 2, and 3. The minimum memory
use represents the App-MaxRSS values, and the maximum per-
formance indicates the performance with Unlimited budgeting. As
observed, none of the above approaches show uniform performance
to memory gains summarizing the fallacies of all approaches.
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Figure 3: Performance Impact on Heterogeneous (DC Op-
tane) Memory. Using higher core counts and faster NVMe based storage,
we run applications with 64-cores and scale the workloads.

4.7 Performance on Systems with Memory
Heterogenity

To understand the memory capacity budgeting impact for hetero-
geneous memory systems such as the recently released Intel DC
Optane memory system, we use the three budgeting techniques
on an Intel 3D Optane memory system with 512 GB NVM (slow
memory) and 32 GB DRAM. We use the memory mode of DC Op-
tane memory that converts the DRAM to the L4 cache and using
DC Optane memory as the main memory. Figure 3 shows the per-
formance impact. NVMs have at least 2x higher read latency and
up to 5x higher write latency. Consequently, incorrect memory
(NVM) provisioning shows a higher performance impact on the
NVM based platform. For example, in GTC, the App-MaxRSS and
Sys-MaxRSS based budgeting increases runtime by up to 1.21x and
1.92x over Unlimited, respectively. For BTIO, App-MaxRSS suffers
around 2.05x overhead due to incorrect application-level memory
budgeting.

4.8 Discussion and Prospective Solutions
While in this paper, we mainly focus on the fallacies of current ap-
proaches, precisely finding the memory usage of applications with-
out compromising performance, space efficiency, or introducing
performance variability requires redesigning OS memory manage-
ment accounting and page tracking mechanisms. Specifically, our
on-going research is focussing on three aspects. First, the redesign
should enable ways to frequently update and synchronize OS global
lists and counters with application-level accounting. This must be
done in ways that do not increase budgeting costs (such as scanning
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global lists). Second, current rigid OS policies that prioritize heap
pages even during high I/O activity periods, are ineffective for mod-
ern workloads that are increasingly becoming I/O-intensive. New
mechanisms and policies are required to equally prioritize the I/O
(storage and network) pages based on their activeness and reduce
contention across page types. Finally, the solutions must also cater
to the needs of heterogeneous memory systems with substantially
different capacities. For example, high bandwidth die-stacked mem-
ory is expected to be of smaller capacity (16-32GB) compared to
DRAMs. Inefficient capacity management can inhibit applications
from exploiting the hardware benefits.

5 CONCLUSION AND FUTUREWORK
In this position paper, we highlight the need for better OS-level
memory budgeting mechanisms required for high performance,
resource efficiency, and lower performance variability. We decipher
the reasons for inaccurate budgeting in current OSes and discuss the
considerable mismatch between application-level and prohibitively
expensive system-level budgeting mechanisms. Finally, we study
the impact of such imprecise budgeting on HPC workloads running
on homogeneous and heterogeneous (i.e., NVM) systems. Our study
reveals that using current OS metrics leads to incorrect memory
provisioning, leading to a substantial loss of performance and re-
source efficiency. Solving these problems requires redesigning OS
memory management accounting and page tracking mechanisms,
which is the focus of our ongoing research.
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