
A Low Power In-DRAM Architecture forQuantized CNNs using
Fast Winograd Convolutions

Muhammad Mohsin Ghaffar∗
Microelectronic Systems Design

Research Group, TU Kaiserslautern
Kaiserslautern, Germany
ghaffar@eit.uni-kl.de

Chirag Sudarshan∗
Microelectronic Systems Design

Research Group, TU Kaiserslautern
Kaiserslautern, Germany
sudarshan@eit.uni-kl.de

Christian Weis
Microelectronic Systems Design

Research Group, TU Kaiserslautern
Kaiserslautern, Germany

weis@eit.uni-kl.de

Matthias Jung
Fraunhofer Institute for Experimental

Software Engineering (IESE)
Kaiserslautern, Germany

matthias.jung@iese.fraunhofer.de

Norbert Wehn
Microelectronic Systems Design

Research Group, TU Kaiserslautern
Kaiserslautern, Germany
wehn@eit.uni-kl.de

ABSTRACT
In recent years, the performance and memory bandwidth bottle-
necks associated with memory intensive applications are encour-
aging researchers to explore Processing in Memory (PIM) archi-
tectures. In this paper, we focus on DRAM-based PIM architec-
ture for CNN inference. The close proximity of the computation
units and the memory cells in a PIM architecture reduces the data
movement costs and improves the overall energy efficiency. In this
context, CNN inference requires efficient implementations of the
area-intensive arithmetic multipliers near the highly dense DRAM
regions. Additionally, the multiplication units increase the overall
latency and power consumption. Due to this, most previous works
in this domain uses binary or ternary weights, which replaces the
complicated multipliers with bitwise logical operations resulting in
efficient implementations. However, it is well known that the binary
and ternary weight networks considerably affect the accuracy and
hence can be used only for limited applications.

In this work, we present a novel DRAM-based PIM architecture
for quantized (8-bit weight and input) CNN inference by utilizing
the complexity reduction offered by fast convolution algorithms.
The Winograd convolution accelerates the widely-used small con-
volution sizes by reducing the number of multipliers as compared to
direct convolution. In order to exploit data parallelism andminimize
energy, the proposed architecture integrates the basic computation
units at the output of the Primary Sense Amplifiers (PSAs) and the
rest of the substantial logic near the Secondary Sense Amplifiers
(SSAs) and completely comply with the commodity DRAM tech-
nology and process. Commodity DRAMs are temperature sensitive
devices, hence integration of the additional logic is challenging due

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8899-3/20/09. . . $15.00
https://doi.org/10.1145/3422575.3422790

to increase in the overall power consumption. In contrast to pre-
vious works, our architecture consumes 0.525W, which is within
the range of commodity DRAM thermal design power (i.e. ≤ 1W).
For VGG16, the proposed architecture achieves 21.69 GOPS per de-
vice and an area overhead of 2.04% compared to a commodity 8Gb
DRAM. The architecture delivers a peak performance of 7.552 TOPS
per memory channel while maintaining a high energy efficiency
of 95.52GOPS/W. We also demonstrate that our architecture con-
sumes 10.1× less power and is 2.23× energy efficient as compared
to prior DRAM-based PIM architectures.

CCS CONCEPTS
• Hardware → Memory and dense storage; Emerging archi-
tectures; •Computingmethodologies→Artificial intelligence.

KEYWORDS
DRAM, PIM architecture, Neural Networks, Quantized CNN

ACM Reference Format:
Muhammad Mohsin Ghaffar, Chirag Sudarshan, Christian Weis, Matthias
Jung, and Norbert Wehn. 2020. A Low Power In-DRAM Architecture for
Quantized CNNs using Fast Winograd Convolutions. In The International
Symposium on Memory Systems (MEMSYS 2020), September 28-October 1,
2020, Washington, DC, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3422575.3422790

1 INTRODUCTION
Convolution Neural Networks (CNNs) have shown high accura-
cies in the fields of image recognition and classification. Over the
years, a wide variety of CNN inference accelerators [4, 7, 21, 24, 36]
have been proposed, which achieves higher performance and lower
power consumption as compared to general purpose computing.
These accelerators leverage the hardware aware capabilities like cus-
tom data types and tailored memory hierarchy for highly optimized
architectures. Most of the aforementioned hardware architectures
use Dynamic Random Access Memory (DRAM) as the main mem-
ory for storing CNN data and parameters. As a result, due to limited
DRAM bandwidth, the performance and energy consumption of
these accelerators in most cases is dominated by DRAMs latency

https://doi.org/10.1145/3422575.3422790
https://doi.org/10.1145/3422575.3422790
https://doi.org/10.1145/3422575.3422790

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Ghaffar and Sudarshan, et al.

and energy consumption. Processing in Memory (PIM) architec-
tures aim to resolve the memory bottlenecks by integrating the
CNN computation units in a memory device. This approach elimi-
nates the memory bound (energy and bandwidth) issues that are
associated with CNN data and parameter accesses [24]. The tight
coupling of the memory and computational logic enables massive
data parallelism (performance increase) and minimizes the data
movement cost, which results in a much higher energy efficiency.
Because of these advantages, PIM is an active research domain in
recent years.

Researchers have investigated a wide variety for memories for
PIM architectures i.e. Resistive Random Access Memory (ReRAM)
[8, 26, 34, 60, 61], DRAM [13, 14, 30–32, 51], and Static Random
Access Memory (SRAM) [1, 3, 23, 39, 45, 46, 65] memories. However,
ReRAMs are firstly not technologically mature as compared to
DRAMs or SRAMs. Second, ReRAMs suffer from a large variability
in the resistive state values that can influence the final output of a
PIM accelerator [6, 17, 25]. The main disadvantage of using a SRAM
for CNN inference is its limited memory capacity. The current
trend in CNNs is towards deeper toplogies and hence requires
significantly higher memory storage. For this reason, SRAM is
not suitable for deep CNNs. Unlike SRAM and ReRAM, DRAM
satisfy both technological maturity and high memory capacity
requirements.

One of the key challenges with the implementation of DRAM-
based PIM architectures, especially for multi precision CNNs is
that it requires implementation of the Multiply-Accumulate (MAC)
operations near DRAM Sub-Array (SA) [51]. DRAM SA design is
highly optimized for area, density and yield. Hence, SAs are highly
sensitive towards additional logic and constrained by factors like
SA width, fine bit-line pitch and the limited number of available
metal layers (three) in the DRAM process. Due to this, most of the
prior works are confined to binary or ternary weighted networks,
which replace the MAC operation with bitwise logical operations.
However, binary and ternary weighted networks reduce the ac-
curacy of the network, which makes them unsuitable for many
applications. Alternatively, high accuracy can be achieved by using
multi-precision CNN networks but at the cost of increase in latency
and high power consumption. A commodity DRAM can withstand
thermal design power of ≤ 1W, which makes integration of the
additional logic (i.e. multipliers) inside a DRAM challenging.

An approach to reduce the arithmetic complexity of a convo-
lution layer is fast convolution algorithms such as Winograd con-
volution. The Winograd convolution has shown good accuracy
and performance for small kernel sizes i.e. 3x3 and 5x5, which
are extensively used in most of the widely used CNN topologies
like ResNet [20], VGG [48], GoogleNet [53]. The Winograd convo-
lution includes input transformation, weight transformation and
output transformation matrices to convert the input from spatial
to Winograd domain and vice-versa that enables reduced arith-
metic complexity. For example, a convolution between a 4x4 input
tile and a 3x3 kernel, Winograd convolution algorithm reduces
the number of multiplications from 36 to 16, which is 2.25x reduc-
tion in the number of multiplications than the direct convolution
operation without effecting the accuracy [37]. Furthermore, the
Winograd convolution converts the standard MAC operation to an

accumulate-multiply-accumulate (due to input transformation) op-
eration. These changes make the implementation of the relatively
less expensive adder units, as compared to multiplication units,
to be integrated near the Primary Sense Amplifier (PSA) region
of the DRAM.The rest of the substantial logic i.e. multipliers are
placed near the Secondary Sense Amplifiers (SSAs) at the bank-
IO-interface, which has less constraints as compared to the PSA
region.

In this work, we propose a novel DRAM-based PIM architecture
for quantized CNN using Winograd convolution. The presented
architecture is fully compatible with a commodity DRAM design
and its process. Our approach does not modify the commodity
DRAM SA design that is highly optimized for area, density and
yield. The goal is to bring the computations closest to the data
to minimize the energy and to exploit maximum data parallelism.
Hence, our approach integrates the accumulation computations
of input transform at the output of the PSA that is the nearest
place to the cell, closest to the SA. We only compute partial sums
near the PSA circuit and all other substantial computations are
performed in the SSA area. Therefore, a very good trade-off between
the performance and energy/area is achieved in our work.
The key contributions of this work are:

(1) We present a low power DRAM based PIM architecture for
quantized CNN by leveraging the reduced complexity offered
by the Winograd convolution algorithm (refer Section 3).
To the best of our knowledge, we propose the first PIM
architecture for the reduced precision CNN.

(2) Our architecture is fully compatible with the existing com-
modity DRAM technology, strictly not modifying the DRAM
SA design (refer Section 4).

(3) We evaluate area, performance, and energy consumption of
our novel architecture for VGG16 benchmark. Furthermore,
we compare the presented architecture results with FPGA,
GPU, and previous DRAM-based PIM architectures (refer
Section 6).

The rest of the paper is organized as follows. Section 2 summa-
rizes related work in terms of PIM architectures and DRAM-based
PIM architecture specifically for CNNs inference. Section 3 gives a
detailed background on DRAMs andWinograd convolution. Section
4 presents the proposed architecture for quantized-CNN using the
Winograd convolution approach. Section 5 and Section 6 provides
details about the experimental setup and implementation results
and comparisons with the previous works respectively. Finally,
Section 7 presents the conclusion of the presented work.

2 RELATEDWORK
This section briefly elaborates the prior-work related to PIM archi-
tectures. Furthermore, DRAM-based PIM architectures specifically
for CNN inference are discussed in detail.

2.1 PIM architectures
Placing the computational logic inside the memory is very appeal-
ing for the researchers as it reduces the data movement costs for
data intensive applications. In particular, the technique known
as PIM offers high performance and low energy consumption as

A Low Power In-DRAM Architecture for Quantized CNNs using Fast Winograd Convolutions MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

compared to conventional computing systems. The PIM based ar-
chitectures was first presented by Stones [50], which proposed
offloading computation logic inside a memory array. Since than, a
number of subsequent works propose different ways to integrate
logic inside a memory, which includes FlexRAM [62], Computa-
tional RAM [16], DIVA [15]. Most recent works such as active
memory cube from IBM [38], Samsung [19], and ARM [64] shows
the industry’s interest in the presented approach to resolve the prob-
lems associated with data intensive applications. Furthermore, PIM
architectures for arithmetic and bitwise operations using DRAM
[2, 32, 41, 43, 44], PCM [33], SRAM [1, 3, 23, 39, 45, 46, 65] and
ReRAM [8, 26, 34, 60, 61] are proposed. Lee [30] proposed a MAC
based architecture for matrix-vector multiplication using HBM2-
based experimental platform, which is limited to only performing
16 MAC operations per bank. This limits the overall performance
of the system, especially for the networks with deeper topologies.
In this work, we focus only on DRAM-based PIM, therefore other
PIM architectures i.e. SRAM, PCM and ReRAM are declared out of
scope for this paper.

2.2 DRAM-based PIM architectures for CNN
In this section, we discuss two types of DRAM- based PIM prior-
art architectures for CNN: binary/ternary, and multi-precision.
NNDRAM [51], DRISA [32], DrAcc [13], XNOR-POP [22], and NID
[47] propose PIM architectures for binary or ternary weighted
CNNs. These architectures achieves high energy efficiency and per-
formance by replacing the expensive MAC operations with cheap
bitwise operations. Although, this technique is quite efficient for
a PIM architecture however, the binary and ternanry weight net-
works considerably affects the accuracy of deep CNN networks.
Furthermore, DRISA [32], and DrAcc [13] architectures are based
on Ambit [42]. These architectures rely on the concurrent acti-
vation of multiple DRAM rows (by asserting multiple wordlines)
and exploit the analog property of the SA bitlines (i.e. charge shar-
ing) to perform bulk bit-wise logic operations. This means a single
logic operation output is obtained at the sense amplifiers on each
bitline for every multi-row activation. Such outputs can then be
combined in order to implement a complex logic function such as
multiplication. Nevertheless, there are twomain drawbacks of using
Ambit-based-approaches. First, they have a high-latency and high-
power consumption when performing multi-bit-precision inference.
The reason is that they require several iterations of multi-row ac-
tivations in order to perform a complex logic function such as
multiplication (e.g. 8-bit multiplication requires 143 iterations [31]).
And second, the process variation in DRAM technology also im-
pacts the precision of the computed result. More specifically, the
logical operation failure due to process variation in Ambit is 26%
for a process variation of 25%.

Quantization plays a key role in achieving comparative levels
of accuracy as compared to full precision (32-bit floating point)
networks. The 8-bit quantized CNNs have shown minimal accu-
racy reduction as compared to full precision networks [67]. Hence,
Lee[30], LAcc [14] and SCOPE [31] presented DRAM-based infer-
ence architectures for quantized networks. SCOPE uses stochastic
computing to preform multi-precision multiplication, which con-
verts integer multiplication into simple bitwise AND operations.

Ban
ks

Page Size

LWL
Sub Arrays

MWL

PSA

Local Datalines

CSL

Master Datalines

LWL

Transistor

Capacitor

LBL

LBL

Bank 0

Column Decoder & SSA

R
ow

 D
ec

od
er

Memory Arrays

Block

Figure 1: DRAM Device Architecture.

SCOPE proposed to reorganize the DRAM structure with extremely
large number of banks i.e. 1024 banks per device. Consequently, the
power consumption and area overhead of SCOPE were extremely
high. LAcc proposed a lookup tables based approach for fast and ac-
curate vector multiplications. However, LAcc integrated additional
logic (to perform XOR operations required for accumulation) in the
DRAM SA, which contradicts the DRAM architecture as it is not
compatible with the DRAM process.

To date, only a few DRAM-based prior works presented the PIM
architectures for multi-precision CNN inference. To the best of our
knowledge, this is the first work to exploit the reduced complexity
offered by Winograd convolution for an in-DRAM architecture.

3 BACKGROUND
3.1 DRAMs
A DRAM device is organized as a set of banks that include memory
arrays, as shown in Figure 1. Each bank consists of row and column
decoders, Master Wordline (MWL) drivers, and SSAs. The memory
array is designed as an hierarchical structure of SAs (eg. 1024×1024
cells). To access the data from DRAM, an activate command (ACT)
is issued to a specific row, which activates the associated Master
Wordline Driver (MWLD) and Local Wordline Drivers (LWDs).
This initiates the charge sharing between the memory cells and
the respective Local Bitlines (LBLs) and the voltage difference is
sensed by the PSAs integrated in each SA (E.g. 1024 bit of data).
The concurrently sensed data by the PSAs of all the SA in a block
(i.e. row of SA) creates an illusion of a large row buffer or a page
(eg. Page size = 2KB). After row activation, read (RD) or write (WR)
commands are issued to specific columns of this logical row buffer
using Column Select Lines (CSL) to access the data via Master
Bitline (MBL) and SSAs. In order to activate a new row in the same
bank, a precharge (PRE) command has be issued to equalize the
bitlines and to prepare the bank for a new activation. Reading or
writing the data from/to the PSAs of a block (or page) is performed
in a fixed granularity of I/O data width × bursts length (e.g. 8 × 8 =
64 bit in DDR3).

3.2 Winograd Convolution
Winograd convolution is a fast approach for convolution operation,
which reduces the number of multiplications as compared to direct
convolution. This approach is based on a minimal filtering algo-
rithm proposed by Winograd [59]. A direct convolution performs
MAC operations between the input image and kernels in a raster
scan manner. However, the Winograd convolution divides the input

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Ghaffar and Sudarshan, et al.

Figure 2: Detailed flow diagram of Winograd convolution F(2x2,3x3)

image in tiles and uses hard-coded matrices to transform input and
kernel to the Winograd domain. A 2D Winograd operation is repre-
sented by F(m x m,k x k), where m and k are output tile and kernel
size respectively. The kernel of size (kxk) is applied to an input tile
of size (m+k-1)x(m+k-1). The formulas of Winograd convolution
for input tile x of size ((m+k-1)x(m+k-1)) and kernel w of size (kxk)
are given by:

𝑈 = (𝑊𝑤)𝑊𝑇 (1)
𝑉 = 𝑋 (𝑥𝑋𝑇) (2)

𝑓 = 𝑍𝑇 [𝑈 ⊙ 𝑉]𝑍 (3)
WhereW (1), X (2), and Z (3) are weight transformation, input

transformation and output transformation matrices respectively.
Figure 2 depicts the transformation matrices and the Winograd
algorithm for an input image of size (lxbxc) and a weight matrix of
size (3x3xc), where l, b, and c are height, width and channels of input
image respectively. For f(2x2,3x3) Winograd convolution requires a
kernel size of (3x3) and input tile of size (4x4) extracted by using
the aforementioned formula (3+2-1=4). The input transformation
(Figure 2- 1) and weight transformation (Figure 2- 2) functions
converts the 4x4xc input tile and the 3x3xc weights from spatial
to Winograd domain respectively. Next, point-wise multiplication
(Figure 2- 3) between the resulting (4x4xc) U and V matrices is
performed. Finally, before output transformation (Figure 2- 5) from
Winograd to spatial domain element-wise accumulation (Figure 2-
4) across the channels (c) is carried out.
For f(2x2,3x3)Winograd convolution, the input and output trans-

formation matrices consists of only 3 values (i.e. 0 , 1 and -1). These
matrices can be decomposed and implemented using only the ADD
and SUB operations. The weight matrix consists of 0.5 and -0.5
values as well and can be implemented using the SHIFT opera-
tion. However, in our implementation the weight transformation is
performed offline (directly after the training).

A convolution layer is followed by an activation function, which
introduces non-linearity the system. The most common activation
functions are relu, tanh, or sigmoid . Furthermore, a pooling layer
down-samples the input image size. Most common pooling options
are maximum (max) pooling and average (avg) pooling. Finally, The
classification scores are computed by an output Fully-Connected
layer.

4 PROPOSED ARCHITECTURE
In this section, we present our novel DRAM-based PIM architecture
forWinograd CNN inference. The architecture exploits the inherent
parallelism of the commodity DRAM structure i.e. bank-level and
SA level parallelism for enhancing the computation speed. It also
employs pipelining techniques to overlap the computations and the
data transfers (i.e. output feature map) that minimize write-back-
latency. The architecture is designed for the 8-bit input data and
8-bit weights. One of the key aims of this architecture is to retains
all the original functionality of the commodity DRAM and to be
compatible with the commodity DRAM architecture.

4.1 Top-level Architecture
DRAM architectures offer several levels of parallelism that enable
high computation parallelism for PIMs. However, the transfer and
storage of output feature maps to/in the memory locations corre-
sponding to the subsequent CNN layers is the major performance
bottleneck. Hence, the architecture partitions the number of avail-
able banks into two sets referred to as computation bank-set and
storage bank-set. The computation bank-set is responsible for com-
puting the output feature map of an arbitrary CNN layer and for-
warding of the resulting output. The storage bank-set concurrently
stores these computed results of the output feature map in the ap-
propriate memory locations corresponding to the next CNN layer.
This is similar to a pipelining technique and avoids unnecessary
write-back latencies. The functionality of the bank-sets is swapped
after all the computations of a particular CNN layer are finished. In
order to transfer the output feature maps between the bank-sets,
the internal data bus and the IO circuitry that manages the transfers
of data/addresses between the device IO and the banks are reused.

After each bank computes the required portion of the output
feature map, the PIM control circuitry generates a customized read
command to the banks in computation bank-set in order to read
this output data (SSA region, refer Section 4.4). Note that the cus-
tomized read command is encoded within the code space of an
internal command/address bus in a commodity DRAM and incurs
minimal hardware modification to the bank control circuitry. Then,
the generated portion of the output feature map from the afore-
mentioned bank is sent into the device IO circuitry using the read
path. The PIM control circuitry blocks this read data from being

A Low Power In-DRAM Architecture for Quantized CNNs using Fast Winograd Convolutions MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

transferred externally and it internally generates ACT and/or WR
commands to the appropriate banks of a storage bank-set. The data
to be written into the banks of the storage bank-set corresponds to
the portion of the output feature map generated by a bank of the
computation-bank-set.

In some CNN topologies having residual connections, the output
feature maps have to be written to multiple banks. Therefore, the
bank select circuitry is slightly modified to select multiple banks.
In other words, the internally generated commands and their re-
spective data (i.e output features) are applicable to multiple banks.
Hence, the same output features are concurrently written to the
addressed memory arrays in multiple banks.

4.2 Bank-Level Architecture
Our micro-architecture partitions the CNN computation into two
entities, i.e. the Primary Processing Units (PPUs) and the secondary
processing units (SPUs), in order to reduce the circuit complexity
near the DRAM SA. This split is required because the surround-
ings of the DRAM SA is constrained by a limited area, which is
not the case near SSA region or the bank-IO-interface that can
tolerate larger logic blocks. Hence, to achieve the balance between
area and performance, such a split is adapted in our architecture.
In order to meet the thermal constraints of a commodity DRAM
package, the proposed architecture activates only a single block
(i.e. row of SA) per bank, similar to commodity DRAM architecture.
Thus, only PPUs corresponding to the activated block are operated
concurrently.

The SA level parallelism within a block is exploited to concur-
rently compute the input feature map channels. Each Column of
SAs (COS) is responsible for computing a single channel of a input
feature map. Further, each SA is partitioned in two parallel entities
(refer Section 4.3). Therefore, a total of 32 channels per bank and
128 channels per computation bank-set are computed in parallel1.
However, the control flow of all the COS is synchronized.

4.3 Primary Processing Unit
The Primary Processing Unit (PPU) is responsible for performing
input transformations of the input tiles corresponding to a single
channel. The 2D input transformation are decomposed as follows:

𝑣00 = (𝑥00 − 𝑥20) − (𝑥02 − 𝑥22)
𝑣01 = (𝑥01 − 𝑥21) + (𝑥02 − 𝑥22)
𝑣02 = −(𝑥01 − 𝑥21) + (𝑥02 − 𝑥22)
𝑣03 = (𝑥01 − 𝑥21) − (𝑥03 + 𝑥23)

𝑣10 = (𝑥10 + 𝑥20) − (𝑥12 + 𝑥22)
𝑣11 = (𝑥11 − 𝑥21) + (𝑥12 + 𝑥22)
𝑣12 = −(𝑥11 − 𝑥21) + (𝑥12 + 𝑥22)
𝑣13 = (𝑥11 − 𝑥21) − (𝑥13 + 𝑥23)

where, 𝑣𝑖 𝑗 is an element of matrix 𝑉 (see Figure 2) and 𝑥𝑖 𝑗 is
an element of input tile 𝑋 . For the sake of simplicity only two
rows of matrix 𝑉 is presented in the above equations. It is evident
from the formulated input transformation that the partial sums (e.g.
𝑥12+𝑥22) can be reused. In order to exploit this re-usability, the PPU
only computes partial sums. The partial sums are then forwarded
to SPU where the input transformation is completed. The main
advantage of this approach is that the area of PPU is reduced and
it maintains an equal number of words that has to be transferred

1Assuming, 8 banks per device and 16 COS per bank

SEL

SEL

EN

512b

PSAs

SA

SA
Storage/
Compute

CSL

8b

8b

8b

8b

CSS

CSS-2

Adder

CSL[0] CSL[1] CSL[63]
IN[0] IN[2]IN[1] IN[511]

MBLs
Local Data Lines

PPU

Local Data Lines

Figure 3: PIM PPU Architecture (PSAs and SAs are also de-
picted for the sake of clarity).

between PPU and SPU for a given 4 × 4 tile in comparison to the
PPU that performs whole input transformation.

Figure 3 shows the architecture of the PPU. Each SA consists
of two PPUs, one on either side of the SA. Similar to PSAs the
PPUs are also shared with its neighboring SAs. For the sake of
the image clarity, the reference LBL connection to the respective
PSAs are not shown in Figure 3. The SA operates in two modes i.e.
storage mode and computation mode. In the storage mode the PPU
is disabled and the SA operates similar to a commodity DRAM SA.
In the computation mode, the PPU is enabled, the local data lines
are disconnected from MBLs and connected to PPU, the output of
the PPU is then connected to MBLs. The PPU consists of an eight
bit adder with a sign input and an additional CSS referred as CCS-2.
The operation of the SA in computation mode is as follows:

(1) The PIM bank-level control unit initially sends an ACT com-
mand to a row that senses the input data and buffers it in
PSAs.

(2) After the sensing is done (i.e. 𝑡𝑅𝐶𝐷), the bank-level control
unit sends a custom command that enables the appropriate
CSLs to select the required inputs to the adder. Note, only
two inputs are selected per clock cycle and the sign bit for
the adder is set by the control unit.

(3) That adder output is transferred to SPU via MBLs. The out-
put of the adder is 9-bits, but only 8-bits are transferred
neglecting the LSB bit. This has a very low impact on the
prediction accuracy of the CNN.

(4) Go to step 2, bank-level control unit repeats this cycle until
all the data in a given row is processed.

(5) Upon processing all the data in a row, bank-level control
unit precharges the row and activates a new row.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Ghaffar and Sudarshan, et al.

R
ow

 D
ec

od
er

 -
1

Column Decoder - 1

SSA, Write Driver SSA,Write Driver

x16

128-bit
256-bit

16-bit

CSL

MBL

MWL

SPU

x2

SPU

SA

SA

PSA

PPU

Adder-p-Fij Accumulator-Fij

Output Transformation

Activation Function
& Max Pool4x8-bit

To Write
Driver

2x16-bit

In[0],
In[1]

32-bit

In[62],In[63]

32-bit

PSA

PPU

8-bit
MBL

8-bit
MBL

+

X
Weight
Buffer

"U"
16-bit

x1 SPU

Figure 4: Secondary region architecture

In this architecture a single DRAM row/page (i.e. 1024-bits) is
used as two pseudo half pages (i.e 512-bits) in the computationmode.
The PSAs on each side of the SA are used as one pseudo half page.
The memory controller has to make sure that all the elements of any
given input tile (i.e. 4 × 4) is available in the same pseudo half page.
To support this feature the DRAM architecture is slightly modified
to split the incoming input data as two individual words and is
written to the respective pseudo half page but to the same columns.
Note that, this extra feature will not change the DRAM protocol, the
memory controller has to reorganize the data that will be written
as two individual words. Hence the PPU on each side of the SA are
used as an individual entity and operates concurrently. However,
the control flow of both the PPU (i.e. activating, selecting operands,
transferring PPU output to SPU, precharging) are synchronized.

4.4 Secondary Processing unit
Figure 4 shows the secondary region architecture including the
SPU, SSAs, column decoder, row decoder etc. Secondary Processing
Units (SPU) are complementary to the PPU. More specifically, the
SPU completes the input transformation and performs element wise
multiplication of transformed inputmatrix𝑉 with theweightmatrix
𝑈 . SPUs are integrated near the SSAs and has two SPUs per COS in a
bank i.e. one SPU per PPU of an active SA. The sequentially accessed
partial results from the PPU are accumulated to compute the final
result of input transformation i.e. 𝑣𝑖 𝑗 of the matrix 𝑉 . The obtained
𝑣𝑖 𝑗 of matrix 𝑉 is multiplied with the corresponding element of
matrix𝑈 . The weight matrix transformation is performed offline
(i.e. directly after training), hence the transformed weight matrices
are stored in the DRAM for CNN inference. Before activation of the
data row for input transformation, the weight matrix is accessed
and stored in a 16 × 8 − 𝑏𝑖𝑡 buffer, referred as weight buffer, in the
SPU. The weight buffer is not reloaded until a single channel of the
output feature map is fully computed.

The resulting𝑊𝑖 𝑗 from all 32 channels (i.e. SPU) are added to
obtain the partial sum of an element 𝐹𝑖 𝑗 by an adder referred as
adder-p-𝐹𝑖 𝑗 . The partial sum of an element 𝐹𝑖 𝑗 computed in all the
banks of computation bank-set are transferred to the appropriate

Table 1: Area comparison of 8Gb DRAMs (estimated vs com-
modity DRAMs)

Type Area, [mm2]

2y nm Estimated 74.4442
20 nm Samsung-DDR4 [9] 59.00
21 nm Gen-1 Hynix-DDR4 [10] 76.0
21 nm Gen-2 Hynix-DDR4 [10] 53.6
18 nm Micron-DDR4 [11] 58.48

banks of the storage bank-set, where they are accumulated to obtain
the final result 𝐹𝑖 𝑗 using the accumulator-𝐹𝑖 𝑗 . In order to concur-
rently transfer the partial sums (i.e. 32-bit) from all four banks of
computational bank-set, the data width of the internal data bus is
set to 128-bits.

The output of accumulator-𝐹𝑖 𝑗 (i.e. 32-bit) is forwarded to output
transformation unit. The output transformation unit is composed of
four 32-bit adders i.e. one adder per 𝑓𝑖 𝑗 . The transformation is done
sequentially, as and when the elements 𝐹𝑖 𝑗 are available. The final
outputs of output transformation unit is sent to activation function
and the resulting 4 − 𝑏𝑖𝑡 𝑓𝑖 𝑗 are stored in the appropriate locations
for the computation of the subsequent layers. If a max-pooling
is required between any two CNN layers, then the output of the
activation function is forwarded to max-pooling unit before storing
the results in the appropriate locations.

4.5 Control Logic
CNN is a data flow rich computation and the operations are highly
repetitive, regular and deterministic. Hence, a small state machine
with a configurable address range and control sequence is sufficient
for the PIM architectures focusing on CNNs. The configuration is
done similar to mode register configuration of a commodity DRAM.

5 EXPERIMENTAL SETUP
Our PIM uses a standard commodity state-of-the-art DRAM archi-
tecture: 8 Gb DRAM, 8 banks, 64 blocks per bank (a block is a row
of SAs), 16 SAs per block, a 1024×1024 standard SA dimension, and
a 2KB page. The area calculation of the commodity DRAM SA is
performed using the reverse engineered unit cell size and the LBL
and LWL pitches (e.g. 66 nm) of 2y nm 8Gb DRAM dies [9, 10]. The
area of the other standard DRAM circuits (e.g. decoders, sense am-
plifiers, etc.) is evaluated using the DRAM architecture exploration
tool DRAMSpec [58]. The required 2y nm DRAM technology input
parameters by DRAMSpec are extracted from multiple sources and
articles [9, 10, 12, 28, 28, 29, 54–57]. To provide an indication of
the correctness of our area evaluation methodology, we compare
the estimated 8Gb DRAM die area to 8Gb commodity DRAM dies
from various vendors (Table 1). Note that all the values lie in the
similar range.

In [52] it was shown that the peripheral transistor performance in
a 2y nm DRAM technology is approximately equivalent to a 65 nm
logic technology. For the sake of worst case area, performance and
energy, the estimations of the PIM computation units are performed
using an adapted (i.e. metal pitch, number of metal layers, etc.) UMC
65 nm Low-Leakage CMOS technology. The number of metal layers

A Low Power In-DRAM Architecture for Quantized CNNs using Fast Winograd Convolutions MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

for the computation units are restricted to three, reserving the
fourth for power lines and MBL. All the computation unit results
are extracted post place and route (using Synopsis’ IC Compiler).

The latency and energy of the DRAM circuits are estimated us-
ing an in-house enhanced circuit-level model that can be equipped
with different kind of SPICE transistor models and PDKs, such as
FreePDK [49] with PTMs [66], Cadence PDK models, and as well
proprietary DRAM transistor models. For the SPICE simulations,
we employ BSIM4 model cards built on Low Power PTM transistor
models that had to be adapted to 2y nm DRAM technology appro-
priately, to ensure functional and timing correctness. Additionally,
Monte Carlo simulations validate the functionality of the circuits
to account for manufacturing process variations [5].

To evaluate the performance of the proposed architecture, we
used 8-bit quantized input and 8-bit quantized weight VGG16 [48]
for ImageNet dataset [40]. The reason of choosing this model for
detailed analysis is based on the fact that VGG is widely used for
power and performance analysis of Winograd convolution due to
its uniform structure. VGG16 topology consists of 13 convolution
layers and 3 fully connected layers. Furthermore, the convolution
layers uses Relu activation function and max-pooling for image size
reduction. All the convolution layers use (3x3) kernels with stride
1. In the Winograd domain this translates to f(2x2,3x3) with stride
2 (refer Section 3.2).

6 RESULTS
Although, Winograd convolution is numerically different from di-
rect convolution however, it does not effect the accuracy of the
convolution operation [18, 27]. Furthermore, 8-bit quantized Wino-
grad shows negligible (< 0.5%) impact on the accuracy as compared
to its 16-bit fixed point implementation [63].

In this section, we present detailed evaluations of our architec-
ture in terms of area, power and performance. Furthermore, we
present a comparison of the proposed architecture against state-of-
the-art DRAM-based PIM architectures.

6.1 Area Evaluation
Based on the methodology described in Section 5, the area evalua-
tions of all the relevant circuits of the presented PIM architecture
are shown in Table 2. The presented area results for the PIM en-
hanced DRAM are evaluated for three architecture variants, (1) all
DRAM SAs are enhanced with basic computation units (referred as
All-MAC-rows) (2) a limited number of SAs (eight in this case) in
each COS are enhanced with basic computation units (referred as
8-MAC-rows) (3) 16-MAC-rows. The preferred variant is 8-MAC-
rows as it achieves the highest memory density (bits/mm2) and
the lowest area overhead of 2.04% (measured as additional area in
comparison with the baseline standard DRAM die). This enables
our architecture to be employed as high memory density host mem-
ory with accelerator feature. The 8-MAC-rows architecture variant
offer a storage space of 512 kB for storing a single channel of input
feature map. The available data space is overwritten after finishing
the computation of a particular CNN layer and is sufficient for most
of the CNN topology. The weight transformation is performed of-
fline and the transformed weights are stored in non-PIM enhanced
SAs.

Table 2: Area evaluation results of all the building blocks of
the PIM enhanced DRAM. The area of the PIM dies is mea-
sured in terms of an overhead computed on top of the stan-
dard DRAM die area.

Area
Block 𝐻𝑒𝑖𝑔ℎ𝑡 ×𝑊𝑖𝑑𝑡ℎ

[`𝑚2]

Sub-array (SA)𝑎 73.68 × 74.036
PSAs (512×), per side of SA 10 × 74.036
SA with PSAs 93.68 × 74.036
Bank without computation units 6329.2 × 1444.58
Column decoder 125 × 1444.58
Row decoder 6329.2 × 250
CSS-2 0.5 × 74.036
Adder (PPU) 5 × 74.036
SPU 1292
Adder-p-𝐹𝑖 𝑗 7521.83
Accumulator-𝐹𝑖 𝑗 739.8
Output Transformation Adders (4×) 4 × 401.4
Activation Function (ReLU) 23
Max-Pooling 548.3
Bank - PIM (8-MAC-rows) 6460.72 × 1444.58
Bank - PIM (16-MAC-rows) 6548.72 × 1444.58
Bank - PIM (All-MAC-rows) 7076.72 × 1444.58
8Gb Standard DRAM Die 74.4442 (mm2)
8Gb PIM Die (8-MAC-rows) (2.04% overhead)
8 Gb PIM Die (16-MAC-rows) (3.4% overhead)
8 Gb PIM Die (All-MAC-rows) (9.7% overhead)
𝑎 including redundancy

Table 3: Latency and Energy of various operations for the
core clock frequency of 200MHz.

Operation Latency [ns] Energy [pJ]

ACT (2KB page) 12 614
PRE (2KB page) 10 314
PPU 1.60 0.14
RD/WR (PSA-SSA) 3ns 418/438
SPU 4.50 1.2
Adder-p-𝐹𝑖 𝑗 4.78 24.93
Accumulator-𝐹𝑖 𝑗 4.63 3.3
Output Transf. Adders (4×) 4.56 6.4
Bank to Bank communication 3 clks 1pJ/bit
Device Background Power - 34mW

6.2 Latency and Energy Cost of Basic
Operations

Using the tools and methodology described in Section 5, we com-
pute the cost in terms of latency and energy of basic operations in
the proposed PIM-device. The results are summarized in Table 3.
For instance, activating a 2KB bank page (row) takes approx. 12 ns
and consumes around 614 pJ.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Ghaffar and Sudarshan, et al.

Table 4: Comparison of DRAM based PIM architectures.

This Work
DRISA [32] 𝑎 LAcc [14] SCOPE [31] 8-MAC-Rows

(per device)

DRAM process technology 22nm 25nm 22nm 2ynm
Capacity [Gb] 8 8 8 8
of Banks 1024 32 1024 8
Page size 4KB 𝑏 4KB 4KB 𝑏 2KB

Peak Performance [TOPS] 1.65 0.267 7.08 0.059
Power [W] - 5.3 176.4 0.525
Area [𝑚𝑚2] 258.2 54.8 273.38 75.916
Area Overhead [%] 318.27 <1 342.86 2.04
Power Density [W/𝑐𝑚2] - 9.67 64.53 0.69
Energy Efficiency [GOPS/W] - 50.37 40.13 112.38
Normalized Performance/Bank [GOPS] 𝑐 0.805 4.25 3.45 7.3
𝑎 re-evaluated to 8Gb capacity [31]
𝑏 single bank has 16 SAs (256 × 2048) and all SAs operate in parallel, equivalent to 4KB page size
𝑐 normalized to 2KB page size - linear scaling

6.3 Deployment in Servers
Recently, cloud-oriented neural network accelerator designs are
emerging. Dedicated hardware-based or FPGA-based accelerator
cards are deployed in servers to perform neural network infer-
ence [24, 35]. Integrating the proposed DRAM devices, instead of
conventional DRAM devices into server memory racks, enables
accelerator functionality without requiring any extra accelerator
cards for neural network inference. Note that the presented architec-
ture maintains high memory density and retains the host memory
functionality of the DRAM devices. A typical DDR4 memory chan-
nel configuration in servers is 16 devices per rank, four rank per
Dual In-line Memory Module (DIMM) called, Quad Rank Load Re-
duced DIMM (LRDIMM), and two DIMMs per memory channel.
This memory configuration with the proposed 8Gb DRAM device
achieves a peak performance of 7.552 TOPS per channel. Energy
efficiency per memory channel is similar to a single PIM device
with 15% margin. Deploying the PIM-enhanced DRAM dies in a
DDR3 memory channel (i.e. 3 LRDIMMs per channel), then the
peak performance increases to 11.564 TOPS per channel.

6.4 Comparison with Other DRAM-based PIMs
Table 4 presents the detailed comparison of our architecture with
other DRAM based PIM architectures i.e DRISA [32], LAcc [14]
and SCOPE [31]. As mentioned in Section 1, the prior-art PIM
architectures re-organize the DRAM with larger page size (i.e 4KB)
and a higher number of banks that has a direct impact on the overall
throughput. Contrary to this approach, our architecture consists
of only 8 banks and has a standard page size of 2KB. For the sake
of a fair comparison between these works, Table 4 also presents
normalized performance per bank. Our architecture achieves the
highest performance (7.3 GOPS) per bank.

The major concerns of LAcc and SCOPE architectures are the
high power consumption and power density. LAcc and SCOPE

consume 10.1× and 336× high power as compared to our architec-
ture respectively. The high power consumption and power density
of LAcc and SCOPE make them infeasible for commodity DRAM
technology and packaging. Additionally, such a high power den-
sity accelerates the leakage in the DRAM cells. These architectures
require special packaging i.e. ceramics and extra cooling to with-
stand high power consumption. Contrarily, the power consumption
(0.525W) and power density (0.69W/𝑐𝑚2) of our architecture are
within the accepted range of a commodity DRAM device and its
package properties.

The proposed architecture has the highest energy efficiency
among all previous architectures. The energy efficiency of our work
is 2.23× and 2.80× better compared to LAcc and SCOPE respectively.
Hence, fulfilling one of the key aims of this architecture i.e. not
only emphasize on the throughput (like DRISA or SCOPE) but
rather to be compatible with commodity DRAMs with acceptable
power consumption and higher energy efficiency. Additionally,
the presented PIM-DRAM chip also satisfies the norms of the high-
density main memory (host memory) on top of the CNN accelerator
features.

6.5 Comparison with GPU and FPGA
In this section, we compare the performance and power consump-
tion of our proposed PIM architecturewithHuang [21] and Lavin[27],
which are FPGA and GPU implementations of Winograd convo-
lution respectively. We explicitly consider Huang [21] FPGA im-
plementation because this work includes the influence of external
memory on the overall performance and power consumption es-
timations. Furthermore, both the implementations use reduced
precision weights for their implementations.

A bit true model of our architecture is implemented and fed
with the data presented in Table 3 to estimate the total perfor-
mance and energy values. The performance results are depicted in

A Low Power In-DRAM Architecture for Quantized CNNs using Fast Winograd Convolutions MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Table 5: Comparison with FPGA and GPU implementations
of Winograd convolution

This
GPU [27] FPGA [21] Work 𝑎

Platform NVIDIA Xilinx
Titan X VUS440 -

Precision [bits] 16 float 16 fixed 8 fixed
Frequency [MHz] 1126 200 200
CNN topology VGGE𝑏 VGG16 VGG16
Fast convolution yes yes yes

Avg. Performance [GOPS] ≈7060 943 21.69
Power [W] 250 25 0.525
Energy Effic. [GOPS/W] 28.24 37.72 41.3

𝑎 8-MAC-Rows, (per device)
𝑏 VGGE has 16 convolution layers as compared to VGG16, which
has 13 convolution layers

Table 5. The GPU has the highest performance among the archi-
tectures due to high amount of parallelism offered by the CUDA
cores. It can be seen from the results that the proposed architecture
consumes 47.6× and 476× less power than FPGA and GPU imple-
mentations, respectively. Furthermore, our architecture is 1.46×
and 1.09× energy efficient than the corresponding GPU and FPGA
implementations. From the presented results, it is evident that the
proposed PIM architecture is extremely favourable for low power
embedded devices.

7 CONCLUSION
In this paper, a novel DRAM-based PIM architecture for multi-
precision CNN inference is presented that is compatible with exist-
ing commodity DRAM architecture and process. We usedWinograd
convolution algorithm to reduce the computation complexity of the
convolution layers and to avoid the multiplication first approach of
MAC, which is a huge area, power, and performance bottleneck for
multi precision CNN in PIM implementations. The area overhead
of the proposed architecture is 2.04% compared to a commodity
8Gb DRAM. Furthermore, the proposed architecture achieves a
peak performance of 59GOPS per device and energy efficiency of
112.38 GOPS/W, which is 2.23× improvement over the prior DRAM-
based PIM architectures. Additionally, the power consumption (i.e.
0.525W) of the presented architecture is within the accepted range
of a commodity DRAM device and its package properties. The
proposed architecture deployed in server domain achieves a peak
performance of 7.552 TOPS per memory channel while still func-
tioning as a high-density host memory. In the future, we aim to
extend this work to perform in-memory neural network training.

ACKNOWLEDGMENTS
The project OPRECOMP acknowledges the financial support of the
EU FET programme under grant agreement No.732631. This work
is also supported by German Academic Exchange Service (DAAD).
Furthermore, we thank the anonymous reviewers for their valuable
suggestions.

REFERENCES
[1] A. Agrawal, A. Jaiswal, D. Roy, B. Han, G. Srinivasan, A. Ankit, and K. Roy. 2019.

Xcel-RAM: Accelerating Binary Neural Networks in High-Throughput SRAM
Compute Arrays. IEEE Transactions on Circuits and Systems I: Regular Papers PP
(04 2019), 1–13. https://doi.org/10.1109/TCSI.2019.2907488

[2] S. Angizi and D. Fan. 2019. Accelerating Bulk Bit-Wise X(N)OR Operation in
Processing-in-DRAM Platform. CoRR abs/1904.05782 (2019). arXiv:1904.05782
http://arxiv.org/abs/1904.05782

[3] A. Biswas and A. P. Chandrakasan. 2018. Conv-RAM: An energy-efficient SRAM
with embedded convolution computation for low-power CNN-based machine
learning applications. In 2018 IEEE International Solid - State Circuits Conference -
(ISSCC). 488–490.

[4] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’Brien, and Y. Umuroglu.
2018. FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration
of Quantized Neural Networks. CoRR abs/1809.04570 (2018). arXiv:1809.04570
http://arxiv.org/abs/1809.04570

[5] K. Chandrasekar, C. Weis, B. Akesson, N. Wehn, and K. Goossens. 2013. To-
wards variation-aware system-level power estimation of DRAMs: An empirical
approach. In 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).
1–8.

[6] A. Chen and M. Lin. 2011. Variability of resistive switching memories and its
impact on crossbar array performance. In 2011 International Reliability Physics
Symposium. MY.7.1–MY.7.4. https://doi.org/10.1109/IRPS.2011.5784590

[7] Y. Chen, T. Krishna, J. S. Emer, and V. Sze. 2017. Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE
Journal of Solid-State Circuits 52, 1 (Jan 2017), 127–138. https://doi.org/10.1109/
JSSC.2016.2616357

[8] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie. 2016. PRIME:
A Novel Processing-in-Memory Architecture for Neural Network Computation
in ReRAM-Based Main Memory. In 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). 27–39.

[9] J. Choe. 2017. Samsung 18 nm DRAM cell integration: QPT and higher uniformed
capacitor high-k dielectrics. https://www.techinsights.com/blog/samsung-18-nm-
dram-cell-integration-qpt-and-higher-uniformed-capacitor-high-k-dielectrics

[10] J. Choe. 2017. SK hynix’ 21 nm DRAM Cell Technology: Comparison of 1st and
2nd generation. https://www.techinsights.com/blog/sk-hynix-21-nm-dram-cell-
technology-comparison-1st-and-2nd-generation

[11] J. Choe. 2018. Micron’s 1x DRAMs Examined. https://www.eetimes.com/author.
asp?section_id=36&doc_id=1333289

[12] A. Das. 2012. Hynix DRAM layout, process integration adapt to change. https://
www.eetimes.com/hynix-dram-layout-process-integration-adapt-to-change/#

[13] Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang. 2018. DrAcc: A DRAM Based
Accelerator for Accurate CNN Inference. In Proceedings of the 55th Annual Design
Automation Conference (San Francisco, California) (DAC ’18). ACM, New York,
NY, USA, Article 168, 6 pages. https://doi.org/10.1145/3195970.3196029

[14] Q. Deng, Y. Zhang, M. Zhang, and J. Yang. 2019. LAcc: Exploiting Lookup Table-
based Fast and Accurate Vector Multiplication in DRAM-based CNN Accelerator.
In 2019 56th ACM/IEEE Design Automation Conference (DAC). 1–6.

[15] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin, C.
Chen, C. W. Kang, I. Kim, and G. Daglikoca. 2002. The Architecture of the DIVA
Processing-in-Memory Chip. In Proceedings of the 16th International Conference on
Supercomputing (New York, New York, USA) (ICS ’02). Association for Computing
Machinery, New York, NY, USA, 14–25. https://doi.org/10.1145/514191.514197

[16] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. Mckenzie. 1999.
Computational RAM: implementing processors in memory. IEEE Design Test of
Computers 16, 1 (1999), 32–41.

[17] A. Fantini, L. Goux, R. Degraeve, D. J. Wouters, N. Raghavan, G. Kar, A. Belmonte,
Y. . Chen, B. Govoreanu, and M. Jurczak. 2013. Intrinsic switching variability
in HfO2RRAM. In 2013 5th IEEE International Memory Workshop. 30–33. https:
//doi.org/10.1109/IMW.2013.6582090

[18] J. Fernandez-Marques, P. N.Whatmough, A. Mundy, andM.Mattina. 2020. Search-
ing for Winograd-aware Quantized Networks. arXiv:2002.10711 [cs.LG]

[19] Z. Guz. 2014. Real-Time Analytics as the Killer Application for Processing-In-
Memory.

[20] K. He, X. Zhang, S. Ren, and J. Sun. [n.d.]. Deep Residual Learning for Image
Recognition. CVPR ’15 ([n. d.]).

[21] Y. Huang, J. Shen, Z. Wang, M. Wen, and C. Zhang. 2018. A High-efficiency
FPGA-based Accelerator for Convolutional Neural Networks using Winograd
Algorithm. Journal of Physics: Conference Series 1026 (may 2018), 012019. https:
//doi.org/10.1088/1742-6596/1026/1/012019

[22] L. Jiang, M. Kim, W. Wen, and D. Wang. 2017. XNOR-POP: A processing-in-
memory architecture for binary Convolutional Neural Networks in Wide-IO2
DRAMs. In 2017 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED). 1–6. https://doi.org/10.1109/ISLPED.2017.8009163

[23] Z. Jiang, S. Yin, M. Seok, and J. Seo. 2018. XNOR-SRAM: In-Memory Computing
SRAMMacro for Binary/Ternary Deep Neural Networks. In 2018 IEEE Symposium
on VLSI Technology. 173–174.

https://doi.org/10.1109/TCSI.2019.2907488
https://arxiv.org/abs/1904.05782
http://arxiv.org/abs/1904.05782
https://arxiv.org/abs/1809.04570
http://arxiv.org/abs/1809.04570
https://doi.org/10.1109/IRPS.2011.5784590
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://www.techinsights.com/blog/samsung-18-nm-dram-cell-integration-qpt-and-higher-uniformed-capacitor-high-k-dielectrics
https://www.techinsights.com/blog/samsung-18-nm-dram-cell-integration-qpt-and-higher-uniformed-capacitor-high-k-dielectrics
https://www.techinsights.com/blog/sk-hynix-21-nm-dram-cell-technology-comparison-1st-and-2nd-generation
https://www.techinsights.com/blog/sk-hynix-21-nm-dram-cell-technology-comparison-1st-and-2nd-generation
https://www.eetimes.com/author.asp?section_id=36&doc_id=1333289
https://www.eetimes.com/author.asp?section_id=36&doc_id=1333289
https://www.eetimes.com/hynix-dram-layout-process-integration-adapt-to-change/#
https://www.eetimes.com/hynix-dram-layout-process-integration-adapt-to-change/#
https://doi.org/10.1145/3195970.3196029
https://doi.org/10.1145/514191.514197
https://doi.org/10.1109/IMW.2013.6582090
https://doi.org/10.1109/IMW.2013.6582090
https://arxiv.org/abs/2002.10711
https://doi.org/10.1088/1742-6596/1026/1/012019
https://doi.org/10.1088/1742-6596/1026/1/012019
https://doi.org/10.1109/ISLPED.2017.8009163

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Ghaffar and Sudarshan, et al.

[24] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S.
Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell,
M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland,
R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A.
Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E.
Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M.
Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon. 2017. In-Datacenter Performance Analysis of a Tensor
Processing Unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture (Toronto, ON, Canada) (ISCA ’17). ACM, New York, NY,
USA, 1–12. https://doi.org/10.1145/3079856.3080246

[25] Y.-F. Kao, W. C. Zhuang, C.-J. Lin, and Y.-C. King. 2018. A Study of the Variability
in Contact Resistive Random Access Memory by Stochastic Vacancy Model.
Nanoscale Research Letters 13, 1 (16 Jul 2018), 213. https://doi.org/10.1186/s11671-
018-2619-x

[26] S. Ko and S. Yu. 2020. SMART Paths for Latency Reduction in ReRAM Processing-
In-Memory Architecture for CNN Inference. arXiv:2004.04865 [cs.AR]

[27] A. Lavin. 2015. Fast Algorithms for Convolutional Neural Networks. CoRR
abs/1509.09308 (2015). arXiv:1509.09308 http://arxiv.org/abs/1509.09308

[28] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim, D. S. Kim,
H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon, M. J. Kim, J. Lee, K. W. Park, B.
Chung, and S. Hong. 2014. 25.2 A 1.2V 8Gb 8-channel 128GB/s high-bandwidth
memory (HBM) stacked DRAM with effective microbump I/O test methods using
29nm process and TSV. In 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC). 432–433.

[29] J. C. Lee, J. Kim, K. W. Kim, Y. J. Ku, D. S. Kim, C. Jeong, T. S. Yun, H. Kim,
H. S. Cho, Y. O. Kim, J. H. Kim, J. H. Kim, S. Oh, H. S. Lee, K. H. Kwon, D. B.
Lee, Y. J. Choi, J. Lee, H. G. Kim, J. H. Chun, J. Oh, and S. H. Lee. 2016. 18.3 A
1.2V 64Gb 8-channel 256GB/s HBM DRAM with peripheral-base-die architecture
and small-swing technique on heavy load interface. In 2016 IEEE International
Solid-State Circuits Conference (ISSCC). 318–319.

[30] W. J. Lee, C. H. Kim, Y. Paik, J. Park, I. Park, and S. W. Kim. 2019. Design of
Processing-“Inside”-Memory Optimized for DRAM Behaviors. IEEE Access 7
(2019), 82633–82648.

[31] S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng, B. Brennan,
and Y. Xie. 2018. SCOPE: A Stochastic Computing Engine for DRAM-Based
In-Situ Accelerator. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 696–709.

[32] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie. 2017. DRISA: A
DRAM-based Reconfigurable In-Situ Accelerator. In 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 288–301.

[33] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie. 2016. Pinatubo: A processing-
in-memory architecture for bulk bitwise operations in emerging non-volatile
memories. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC).
1–6.

[34] H. Liu, J. Han, and Y. Zhang. 2019. A Unified Framework for Training, Mapping
and Simulation of ReRAM-Based Convolutional Neural Network Acceleration.
IEEE Computer Architecture Letters 18, 1 (2019), 63–66.

[35] J. Liu, J. Wang, Y. Zhou, and F. Liu. 2019. A Cloud Server Oriented FPGA Acceler-
ator for LSTM Recurrent Neural Network. IEEE Access 7 (2019), 122408–122418.

[36] L. Lu, Y. Liang, Q. Xiao, and S. Yan. 2017. Evaluating Fast Algorithms for Con-
volutional Neural Networks on FPGAs. In 2017 IEEE 25th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). 101–
108.

[37] L. Meng and J. Brothers. 2019. Efficient Winograd Convolution via Integer
Arithmetic. CoRR abs/1901.01965 (2019). arXiv:1901.01965 http://arxiv.org/abs/
1901.01965

[38] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C. . Cher,
C. H. A. Costa, J. Doi, C. Evangelinos, B. M. Fleischer, T. W. Fox, D. S. Gallo,
L. Grinberg, J. A. Gunnels, A. C. Jacob, P. Jacob, H. M. Jacobson, T. Karkhanis,
C. Kim, J. H. Moreno, J. K. O’Brien, M. Ohmacht, Y. Park, D. A. Prener, B. S.
Rosenburg, K. D. Ryu, O. Sallenave, M. J. Serrano, P. D. M. Siegl, K. Sugavanam,
and Z. Sura. 2015. Active Memory Cube: A processing-in-memory architecture
for exascale systems. IBM Journal of Research and Development 59, 2/3 (2015),
17:1–17:14.

[39] S. Okumura, M. Yabuuchi, K. Hijioka, and K. Nose. 2019. A Ternary Based Bit
Scalable, 8.80 TOPS/W CNN accelerator with Many-core Processing-in-memory
Architecture with 896K synapses/mm2.. In 2019 Symposium on VLSI Circuits.
C248–C249.

[40] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, and et. al.
2015. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vision
115, 3 (Dec. 2015).

[41] V. Seshadri, K. Hsieh, A. Boroum, D. Lee, M. A. Kozuch, O. Mutlu, P. B. Gibbons,
and T. C. Mowry. 2015. Fast Bulk Bitwise AND and OR in DRAM. IEEE Computer
Architecture Letters 14, 2 (2015), 127–131.

[42] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M.A. Kozuch,
O. Mutlu, P. B. Gibbons, and T.C. Mowry. 2017. Ambit: In-memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM Technology. In Proceed-
ings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture
(Cambridge, Massachusetts) (MICRO-50 ’17). ACM, New York, NY, USA, 273–287.
https://doi.org/10.1145/3123939.3124544

[43] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry. 2016. Buddy-RAM: Improving the
Performance and Efficiency of Bulk Bitwise Operations Using DRAM. CoRR
abs/1611.09988 (2016). arXiv:1611.09988 http://arxiv.org/abs/1611.09988

[44] V. Seshadri and O. Mutlu. 2019. In-DRAM Bulk Bitwise Execution Engine. CoRR
abs/1905.09822 (2019). arXiv:1905.09822 http://arxiv.org/abs/1905.09822

[45] X. Si, J. Chen, Y. Tu, W. Huang, J. Wang, Y. Chiu, W. Wei, S. Wu, X. Sun, R. Liu, S.
Yu, R. Liu, C. Hsieh, K. Tang, Q. Li, and M. Chang. 2019. 24.5 A Twin-8T SRAM
Computation-In-Memory Macro for Multiple-Bit CNN-Based Machine Learning.
In 2019 IEEE International Solid- State Circuits Conference - (ISSCC). 396–398.

[46] X. Si, Y. Tu, W. Huanq, J. Su, P. Lu, J. Wang, T. Liu, S. Wu, R. Liu, Y. Chou, Z.
Zhang, S. Sie, W. Wei, Y. Lo, T. Wen, T. Hsu, Y. Chen, W. Shih, C. Lo, R. Liu, C.
Hsieh, K. Tang, N. Lien, W. Shih, Y. He, Q. Li, and M. Chang. 2020. 15.5 A 28nm
64Kb 6T SRAM Computing-in-Memory Macro with 8b MAC Operation for AI
Edge Chips. In 2020 IEEE International Solid- State Circuits Conference - (ISSCC).
246–248.

[47] J. Sim, H. Seol, and L. Kim. 2018. NID: Processing Binary Convolutional Neural
Network in Commodity DRAM. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 1–8.

[48] K. Simonyan and A. Zisserman. 2015. Very Deep Convolutional Networks for
Large-Scale Image Recognition. In International Conference on Learning Represen-
tations.

[49] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D. Franzon,
M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal. 2007. FreePDK: An Open-
Source Variation-Aware Design Kit. In 2007 IEEE International Conference on
Microelectronic Systems Education (MSE’07). 173–174.

[50] H.S. Stone. 1970. A Logic-in-Memory Computer. IEEE Trans. Comput. 19, 1 (Jan.
1970), 73–78. https://doi.org/10.1109/TC.1970.5008902

[51] C. Sudarshan, J. Lappas, M. M. Ghaffar, V. Rybalkin, C. Weis, M. Jung, and N.
Wehn. 2019. An In-DRAM Neural Network Processing Engine. In 2019 IEEE
International Symposium on Circuits and Systems (ISCAS). 1–5.

[52] M. Sung, S. Jang, H. Lee, Y. Ji, J. Kang, T. Jung, T. Ahn, Y. Son, H. Kim, S. Lee, S. Lee,
J. Lee, S. Baek, E. Doh, H. Cho, T. Jang, I. Jang, J. Han, K. Ko, Y. Lee, S. Shin, J. Yu,
S. Cho, J. Han, D. Kang, J. Kim, J. Lee, K. Ban, S. Yeom, H. Nam, D. Lee, M. Jeong,
B. Kwak, J. Park, K. Choi, S. Park, N. Kwak, and S. Hong. 2015. Gate-first high-
k/metal gate DRAM technology for low power and high performance products.
In 2015 IEEE International Electron Devices Meeting (IEDM). 26.6.1–26.6.4.

[53] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. 2015. Going Deeper with Convolutions. In Computer
Vision and Pattern Recognition (CVPR). http://arxiv.org/abs/1409.4842

[54] TechInsights. 2014. TECHNOLOGY ROADMAP of DRAM for Three Major manu-
facturers: Samsung, SK-Hynix and Micron. https://vdocuments.site/technology-
roadmap-of-dram-for-three-major-manufacturers-samsung-sk-hynix.html

[55] TechInsights. 2017. Samsung 18 nm DRAMAnalysis. https://www.techinsights.
com/blog/samsung-18-nm-dram-analysis

[56] TechInsights. 2018. Micron Technology MT43A4G40200NFA-S15 ES:A HMC
Gen2 - Memory Functional Analysis. https://w2.techinsights.com/l/4202/2019-08-
28/2hbr19/4202/248106/Sample_Report_MFR_1810_802_Memory_Floorplan_
Analysis.pdf.

[57] C. Weis, I. Loi, L. Benini, and N. Wehn. 2013. Exploration and Optimization of
3-D Integrated DRAM Subsystems. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 32 (2013), 597–610.

[58] C. Weis, A. Mutaal, O. Naji, M. Jung, A. Hansson, and N. Wehn. 2016. DRAMSpec:
A High-Level DRAM Timing, Power and Area Exploration Tool. International
Journal of Parallel Programming 45 (11 2016). https://doi.org/10.1007/s10766-
016-0473-y

[59] S. Winograd. 1980. Arithmetic Complexity of Computations. Society for In-
dustrial and Applied Mathematics. https://doi.org/10.1137/1.9781611970364
arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611970364

[60] C. Xue, W. Chen, J. Liu, J. Li, W. Lin, W. Lin, J. Wang, W. Wei, T. Chang, T.
Chang, T. Huang, H. Kao, S. Wei, Y. Chiu, C. Lee, C. Lo, Y. King, C. Lin, R. Liu, C.
Hsieh, K. Tang, and M. Chang. 2019. 24.1 A 1Mb Multibit ReRAM Computing-
In-Memory Macro with 14.6ns Parallel MAC Computing Time for CNN Based
AI Edge Processors. In 2019 IEEE International Solid- State Circuits Conference -
(ISSCC). 388–390.

[61] C. Xue, W. Chen, J. Liu, J. Li, W. Lin, W. Lin, J. Wang, W. Wei, T. Huang, T. Chang,
T. Chang, H. Kao, Y. Chiu, C. Lee, Y. King, C. Lin, R. Liu, C. Hsieh, K. Tang, and
M. Chang. 2020. Embedded 1-Mb ReRAM-Based Computing-in- Memory Macro
With Multibit Input and Weight for CNN-Based AI Edge Processors. IEEE Journal
of Solid-State Circuits 55, 1 (2020), 203–215.

[62] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Torrellas.
1999. FlexRAM: toward an advanced intelligent memory system. In Proceedings

https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1186/s11671-018-2619-x
https://doi.org/10.1186/s11671-018-2619-x
https://arxiv.org/abs/2004.04865
https://arxiv.org/abs/1509.09308
http://arxiv.org/abs/1509.09308
https://arxiv.org/abs/1901.01965
http://arxiv.org/abs/1901.01965
http://arxiv.org/abs/1901.01965
https://doi.org/10.1145/3123939.3124544
https://arxiv.org/abs/1611.09988
http://arxiv.org/abs/1611.09988
https://arxiv.org/abs/1905.09822
http://arxiv.org/abs/1905.09822
https://doi.org/10.1109/TC.1970.5008902
http://arxiv.org/abs/1409.4842
https://vdocuments.site/technology-roadmap-of-dram-for-three-major-manufacturers-samsung-sk-hynix.html
https://vdocuments.site/technology-roadmap-of-dram-for-three-major-manufacturers-samsung-sk-hynix.html
https://www.techinsights.com/blog/samsung-18-nm-dram-analysis
https://www.techinsights.com/blog/samsung-18-nm-dram-analysis
https://w2.techinsights.com/l/4202/2019-08-28/2hbr19/4202/248106/Sample_Report_MFR_1810_802_Memory_Floorplan_Analysis.pdf
https://w2.techinsights.com/l/4202/2019-08-28/2hbr19/4202/248106/Sample_Report_MFR_1810_802_Memory_Floorplan_Analysis.pdf
https://w2.techinsights.com/l/4202/2019-08-28/2hbr19/4202/248106/Sample_Report_MFR_1810_802_Memory_Floorplan_Analysis.pdf
https://doi.org/10.1007/s10766-016-0473-y
https://doi.org/10.1007/s10766-016-0473-y
https://doi.org/10.1137/1.9781611970364
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611970364

A Low Power In-DRAM Architecture for Quantized CNNs using Fast Winograd Convolutions MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

1999 IEEE International Conference on Computer Design: VLSI in Computers and
Processors (Cat. No.99CB37040). 192–201.

[63] C. Yang, Y. Wang, X. Wang, and L. Geng. 2019. WRA: A 2.2-to-6.3 TOPS Highly
Unified Dynamically Reconfigurable Accelerator Using a Novel Winograd De-
composition Algorithm for Convolutional Neural Networks. IEEE Transactions
on Circuits and Systems I: Regular Papers 66, 9 (2019), 3480–3493.

[64] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatowski.
2014. TOP-PIM: Throughput-Oriented Programmable Processing in Memory.
In Proceedings of the 23rd International Symposium on High-Performance Parallel
and Distributed Computing (Vancouver, BC, Canada) (HPDC ’14). Association
for Computing Machinery, New York, NY, USA, 85–98. https://doi.org/10.1145/
2600212.2600213

[65] Z. Zhang, J. Chen, X. Si, Y. Tu, J. Su, W. Huang, J. Wang, W. Wei, Y. Chiu, J. Hong,
S. Sheu, S. Li, R. Liu, C. Hsieh, K. Tang, and M. Chang. 2019. A 55nm 1-to-8 bit
Configurable 6T SRAM based Computing-in-Memory Unit-Macro for CNN-based
AI Edge Processors. In 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC).
217–218.

[66] W. Zhao and Y. Cao. 2007. Predictive Technology Model for Nano-CMOS Design
Exploration. J. Emerg. Technol. Comput. Syst. 3, 1 (April 2007), 1–es. https:
//doi.org/10.1145/1229175.1229176

[67] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. 2016. DoReFa-Net: Training
Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients.
arXiv:1606.06160 [cs.NE]

https://doi.org/10.1145/2600212.2600213
https://doi.org/10.1145/2600212.2600213
https://doi.org/10.1145/1229175.1229176
https://doi.org/10.1145/1229175.1229176
https://arxiv.org/abs/1606.06160

	Abstract
	1 Introduction
	2 Related Work
	2.1 pim architectures
	2.2 dram-based pim architectures for cnn

	3 Background
	3.1 dram
	3.2 Winograd Convolution

	4 Proposed Architecture
	4.1 Top-level Architecture
	4.2 Bank-Level Architecture
	4.3 Primary Processing Unit
	4.4 Secondary Processing unit
	4.5 Control Logic

	5 Experimental Setup
	6 Results
	6.1 Area Evaluation
	6.2 Latency and Energy Cost of Basic Operations
	6.3 Deployment in Servers
	6.4 Comparison with Other DRAM-based PIMs
	6.5 Comparison with GPU and FPGA

	7 Conclusion
	Acknowledgments
	References

