
The Case for Optimizing the Frequency of Periodic Data
Movements over Hybrid Memory Systems

Thaleia Dimitra Doudali
Georgia Institute of Technology

thdoudali@gatech.edu

Daniel Zahka
Georgia Institute of Technology

dzahka3@gatech.edu

Ada Gavrilovska
Georgia Institute of Technology

ada@cc.gatech.edu

ABSTRACT
Application performance improvements in emerging systems with
hybrid memory components, such as DRAM and Intel’s Optane
DC persistent memory, are possible via periodic data movements,
that maximize the DRAM use and system resource efficiency. Simi-
larly, predominantly used NUMADRAM-only systems benefit from
data balancing solutions, such as AutoNUMA, which periodically
remap an application and its data on the same NUMA node. Al-
though there has been a significant body of research focused on
the clever selection of the data to be moved periodically, there is
little insight as to how to select the frequency of the data move-
ments, i.e., the duration of the monitoring period. Our experimental
analysis shows that fine-tuning the period frequency can boost ap-
plication performance on average by 70% for systems with locally
attached memory units and 5x when accessing remote memory via
interconnection networks. Thus, there is potential for significant
performance improvements just by cleverly selecting the frequency
of the data movements apart from choosing the data itself. While
existing solutions empirically set the duration of the period, our
work provides insights into the application-level properties that
influence the choice of the period. More specifically, we show that
there is a correlation between the application-level data reuse dis-
tance and migration frequency. Future work aims to solidify this
correlation and build a profiling solution that provides users with
the data movement frequency which dynamic data management
solutions can then use to enhance performance.

CCS CONCEPTS
• Hardware → Memory and dense storage; Analysis and de-
sign of emerging devices and systems; • Computer systems
organization→ Heterogeneous (hybrid) systems.

KEYWORDS
Data Tiering, Periodic Data Movements, Page Migration Frequency,
Page Scheduler, Emerging Memory Technologies, Heterogeneous
Memory Systems, Hybrid Memory Systems, Non Volatile Memory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8899-3/20/09. . . $15.00
https://doi.org/10.1145/3422575.3422788

ACM Reference Format:
Thaleia Dimitra Doudali, Daniel Zahka, and Ada Gavrilovska. 2020. The
Case for Optimizing the Frequency of Periodic Data Movements over Hy-
brid Memory Systems. In The International Symposium on Memory Systems
(MEMSYS 2020), September 28-October 1, 2020, Washington, DC, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3422575.3422788

1 INTRODUCTION

HybridMemory Systems.Current data-intensive analytics in dat-
acenter and exascale compute environments require hundreds of
gigabytes and terabytes of main memory capacity to meet their per-
formance requirements. To this extent, new memory technologies
have been widely explored, to provide higher capacity density at a
reasonable cost, relative to DRAM. The recent release of the Intel®
OptaneTM DC Persistent Memory Module (PMEM) [3] proposes its
use together with a smaller capacity of DRAM, so as to offset the
higher latency and lower bandwidth of PMEM [13, 22]. The App
Direct operational mode of PMEM allows it to be used alongside
DRAM as main memory managed by the operating system, similar
to traditional NUMA systems. Another cost-effective solution to
extend the overall memory capacity is the disaggregation of the
available memory resources [19, 20]. In this case, there is a remote
pool of memory that can be shared among the compute servers,
alongside locally-attached memory units. Future interconnection
fabrics [1, 2] promise to deliver high-speed data transfers across
the servers.

The disparity in the access speeds of the available memory com-
ponents, given their underlying technology and relative distance
to the compute units, is exacerbated in these future systems com-
pared to traditional DRAM-only NUMA systems. Thus, appropriate
dynamic data management solutions are necessary to boost appli-
cation performance through maximizing the use of local DRAM
but also making efficient use of the available resources, such as
bandwidth.
Data Management Solutions. There has been a notable amount
of existing solutions, which we present in more detail in Section 5,
that provides support for dynamic data movement intending to
reduce the application performance loss compared to traditional
DRAM-only systems. The predominant system-level and application-
agnostic approach is to monitor the data access information and to
periodically aggregate it into a decision on which data to move, so
that the resulting data placement improves application- or system-
level performance metrics. In contrast to periodic data management,
runtime solutions such as Unimem [26] or Tahoe [27] manage the
frequency of data movements by relying on the MPI communica-
tion phases and task based execution respectively. Either way, the
selection of which and how many data to move usually involves
some threshold, that aims to capture the performance benefit of

https://doi.org/10.1145/3422575.3422788
https://doi.org/10.1145/3422575.3422788

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Thaleia Dimitra Doudali, Daniel Zahka, and Ada Gavrilovska

moving the data to faster memory components. The most com-
monly used information in selecting which data to move is data
access frequency during a period [5, 8, 21]. Hardware-based [18]
and profiling [9–11, 23, 25] solutions enable the collection of ad-
ditional information on data access behavior and allow for more
sophisticated data movement selection.

However, achieving optimal data placement through clever data
movement selection comes at a cost, due to the management over-
heads, which are not trivial in system-level solutions. First, the
lack of hardware support on current x86-based platforms for page-
level access counting results in solutions that involve periodic
page table scans and TLB flushes. These software overheads, which
can be reduced by specialized hardware and page sampling ap-
proaches [5, 12, 14, 15, 21, 24], can be significant for applications
with large memory footprints that hybrid memory systems want to
accommodate. Second, there are overheads associated with accesses
to pages that are under migration.
Problem Statement. Although periodic data movement improves
application performance in hybrid memory systems, the overheads
associated withmonitoring and deciding onwhich data tomove and
at what times, can have nontrivial impact to performance. However,
throughout system-level existing solutions, these constant periods
are empirically set, without a clear methodology on how to decide
upon the optimal periodicity. The goal of this work is to investigate
the sensitivity of application performance on the choice of the
memory management period, as a step toward closing this gap.
Concretely, the paper contributions are:
• We demonstrate the significance of the frequency of memory
management operations on application performance and discuss
the factors that determine the impact of changing this manage-
ment parameter (Section 3).

• Using experimention on real hardware with heterogeneous mem-
ories – DRAM and Intel Optane PMEM – and simulation-based
analysis, we present evidence of the relationship of one application-
level property – the reuse distance of its memory accesses – and
the configuration of the memory management period (Section 4).

• Given the impending diversity in memory system configurations,
and the continued growth in memory-intensive applications,
this paper is a call to action for new tools that will automate the
process of configuring and tuning the system-level memory man-
agement components for the target hardware and workloads.

2 METHODOLOGY
The analysis presented in the paper are performed on a hybrid mem-
ory hardware testbed with DRAM and Intel’s Optane DC persistent
memory, and in a simulation environment. Here we describe the
platforms, methodology, and applications used in the experiments.
Applications.We select high-performance computing kernels from
the Rodinia [6] benchmark suite, that show a variety of random
and predictive access patterns. We also include the PageRank ap-
plication from the Lonestar [16] suite, which is known to exhibit
irregular behavior.

2.1 Optane DC PMEM Platform
Testbed.Wehave access to a serverwith Intel OptaneDCPersistent
Memory Modules (PMEM). The machine contains 375 GB of DRAM
and 6 TB of PMEM. We configure the Optane Memory Modules in
App Directmode, which allows the operating system to manage the
DRAM and PMEM on each socket as separate NUMA nodes.
Methodology.We implement a page migration module in Linux
kernel version 5.4 that attaches to a target process and periodi-
cally selects several frequently accessed pages, determined by a
certain threshold, and moves them appropriately between DRAM
and PMEM. Every period, we identify page accesses using the avail-
able OS-level information, as also done in [12, 14]. The module
determines which pages were accessed by scanning the target’s
page table entries and recording whether or not each accessed bit
was set during that period. To estimate the page hotness, we cal-
culate the exponential moving average (with a certain smoothing
factor) of the page’s accessed bit history and compare it with a hot-
ness threshold that classifies a page as hot or cold, as also done in
[17]. Then, utilizing the move_pages() function from the kernel’s
NUMA-based migration API, we asynchronously move hot pages to
DRAM and cold pages to PMEM. The user specifies a target DRAM
capacity percentage and the module dynamically adjusts the cutoff
so that the correct percentage of the target processes pages are
mapped to DRAM and PMEM respectively.

2.2 Simulation

Memory Access Trace Collection. We use Intel’s Pin [4] dy-
namic binary instrumentation tool in order to capture the mem-
ory address of the last level cache misses out of a simulated three
level data cache hierarchy. We configure the cache sizes to be
proportional to the native Optane DC PMEM platform. We col-
lect traces of the Rodinia benchmarks with appropriate input data
sizes, that allow for reasonable access trace collection and analysis
times, but exhibit similar last level cache miss rates to the ones
when executing over the native PMEM platform. Figure 1 shows
a graphic representation of the application data access behavior.
While backprop, kmeans and hotspot have sequential access pat-
terns in distinct strides, lud exhibits an irregular shrinking memory
footprint that includes sequential traversals, and bfs validates the
irregular breadth-first graph traversal behavior.
HybridMemory SystemSimulation.Wedevelop a Python-based
simulation environment of a hybrid memory system that contains
two components with independently configurable technology pa-
rameters (e.g., access latency and bandwidth) and relative distance,
managed by the operating system. This light-weight simulation
environment permits quick exploration of application performance
across a variety of hybrid memory system configurations. The
simulated system contains a fast (i.e., DRAM) and a slow memory
component, such as PMEM or disaggregated DRAM. For the PMEM
simulation, we follow the access characteristics described in [13],
which also correspond to our hardware testbed, and set a 1:3 latency
and 1:0.37 bandwidth ratio between the fast and slow memory. For
the disaggregated DRAM simulation, we use information about
projected speeds of future high speed interconnects [1]. For this
platform, we set a 1:22.2 latency and 1:0.1 bandwidth ratio between

The Case for Optimizing the Frequency of Periodic Data Movements over Hybrid Memory Systems MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Figure 1: Memory access traces of the selected applications including sequential and irregular data access behavior.

the fast and slow memory. We assume that the overall capacity of
the memory system is equal to the application’s memory footprint,
split at a 1:8 capacity ratio between fast and slow memory, which
is representative of commercially available platforms, such as with
Optane DC PMEM.
Performance model.We estimate performance given the distri-
bution of accesses between fast and slow memory, following some
properties of the analytical model used in [21]. First, we aggregate
the access latency of the memory requests given their dynamic
placement throughout execution. Second, we track possible delays
of issuing memory requests, because of limited bandwidth avail-
ability. Third, we include a constant page migration overhead and
a constant delay at the beginning of each period, that captures the
software overheads of scanning the page tables and selecting which
pages to migrate. All constant overheads used in the model follow
the proposed values in [15, 21].
Methodology.We implement a page scheduling component that
periodically selects and migrates pages between the two simulated
memory components. Pages are initially allocated across the avail-
able memory components in an interleaved order. Since we do not
use a cycle-accurate simulation infrastructure, we assume that a
period is the time duration when a fixed number of memory ac-
cesses are issued, e.g., a thousand accesses. Upon the start of a
period, the page scheduler aggregates the per page access counts
(hotness) during the previous period, thus using access history to
make predictions for the page hotness during the current period, as
done in [5, 12, 14, 15, 21, 24]. The pages that were accessed during
the previous period are sorted in descending hotness order. Since
the overall memory capacity is equal to the application’s number of
pages, the scheduler needs to swap hot pages that are currently in
slow memory with least recently used (LRU) pages residing in fast
memory. We use a static upper threshold to determine how many
pages to move between the two memories, which is the capacity of
the destination memory, as done in [8]. Page swaps happen asyn-
chronously, assuming DMA support, and sequentially in order of
(hot, LRU) page pairs.

3 SENSITIVITY ANALYSIS
3.1 Optane DC PMEM Platform
Using the Optane-based hardware testbed and the datamanagement
methodology described in Section 2.1, we analyze the performance
of two applications with irregular and sequential access patterns,
pagerank and lud. We explore the effects of period length on the
application runtime and the number of migrations performed by
running experiments with monitoring periods of 600ms, 1s, and

5s. We emulate different hardware configurations by restricting
the DRAM capacity used by the application, from 10% of the pages
mapped by the application up to 50%, at which point, for both
applications, the entire working set fits in DRAM.
Irregular Access Behavior. The results from running pagerank
with a memory footprint of 12.8 GB are shown in Figure 2a. At 15%
DRAM capacity, pagerank benefits greatly from moving a small
subset of pages into DRAM early in the application execution and
then by doing a small number of migrations for the remaining time.
By analyzing access bit history from the application execution, we
found that 13.5% of the pages are accessed at least 3

4 of the scanning
periods. Moving this set of pages into DRAM closes much of the
gap between DRAM-only and PMEM-only execution times. After
this set of pages is moved into DRAM, trying to find the next hottest
2.5% of pages results in a large amount of less useful migrations,
especially at shorter period lengths, where there is less stability in
the hotness ordering of these lesser used pages.

At 30% DRAM capacity, the scheduler keeps DRAM full by low-
ering its cutoff to include pages that are more sporadically used.
This next tier of pages consists of 22% of pages that are accessed
between 1

4 and 3
4 of the periods. Because these pages are less fre-

quently used and only a portion of them can fit into DRAM, just
a single access can push a page sitting near the hotness threshold
above or below the DRAM cutoff point. Having a shorter period
causes the scheduler to be over-responsive to these frequent page
reclassifications, causing an extreme number of page migrations
that create only a small performance benefit.

At 45% DRAM capacity, there is enough space to fit the pages
that fluctuated between hot and cold status in the case with 30%
DRAM capacity into DRAM. Once these pages are moved into
DRAM, there are almost no migrations left to perform. This is why
the same amount of data is moved for all three period lengths.
Sequential Access Behavior. Figure 2b shows results from a sim-
ilar set of experiments for lud with a memory footprint of 1.9 GB.
The application characteristics of lud are distinct from pagerank
in that accesses are highly sequential and the size of the working
set is dynamic and shrinks throughout the application’s execution.
Most of the pages in lud exhibit the same access pattern, where
they are accessed continually until some point where they become
idle for the rest of the program execution. In this situation, having
a shorter period can be beneficial as it allows the scheduler to be
more responsive to changes in the working set. As soon as pages
become cold, it is good to flush them out of DRAM and replace them
with a page that is still consistently being accessed. This is reflected
across all of the capacity configurations in Figure 2b, where the

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Thaleia Dimitra Doudali, Daniel Zahka, and Ada Gavrilovska

0x

1x

2x

3x

Ru
nt

im
e

Sl
ow

do
wn

 fr

om
 a

ll-
fa

st

Period Length (seconds)
0
5

1
0.6

15% 30% 45%
DRAM capacity

0

5

10

Da
ta

 M
ov

ed

 (G
Bs

)

pagerank

(a) pagerank

0x

1x

2x

3x

Ru
nt

im
e

Sl
ow

do
wn

 fr

om
 a

ll-
fa

st

Period Length (seconds)
0
5

1
0.6

10% 20% 30% 40% 50%
DRAM capacity

0

2
Da

ta
 M

ov
ed

 (G

Bs
)

lud

(b) lud

Figure 2: Performance and bytes moved for pagerank and
lud when executing over the Optane PMEM platform across
variable DRAM capacity and shorter period lengths. Zero
length corresponds to static allocation of all data in PMEM.

shorter periods always perform best. A similar amount of overall
data is moved for each period length, but with a shorter period,
cold data is moved out to PMEM and hot data into DRAM in a more
timely fashion.
Summary. Looking at these two applications, we can see how the
period length and the DRAM capacity interact with the characteris-
tics of the target application to influence which pages are migrated
and when. The heuristic that powers our page scheduler serves
as an indicator for the reuse distance of a page. Having a shorter
period means that the scheduler can respond faster and more often
to changes in page reuse distance. This is beneficial in situations
where there are changes in measured page reuse distance that are
strongly correlated with actual changes in future page reuse dis-
tance. This is the case with lud, where an increase in the measured
reuse distance of a given page is a good indicator that the page will
become idle. In situations where the measured reuse distances are
stable with respect to the DRAM capacity cutoff, as in pagerank at
DRAM capacities of 15% and 45%, extra calls to the scheduler are not
necessary and result in similar DRAM usage but with unnecessary
CPU usage and data movement. In cases where the measured reuse
distances are unstable with respect to the cutoff, as in pagerank
at DRAM capacity 30%, the shorter period is more responsive to
noise in measured reuse distance as opposed to true changes in
page reuse distance. In this case, having more time in between
scheduler invocations serves to smooth out this noise and achieve
good use of DRAM, but at lower overhead. By examining these
two applications on our Optane platform, we have seen evidence
that the optimal scheduling period for an application is dependent
on the distribution of page reuse distances of the application as
well as how dynamic that distribution is over the execution of the
application.

3.2 Simulation
Our simulation setup, described in Section 2.2, allows us to break
down the time an application spends in accessing memory and to

0
70

00
0

50
00

0
20

00
0

10
00

0
80

00
50

00
30

00
10

00 0
70

00
0

50
00

0
20

00
0

10
00

0
80

00
50

00
30

00
10

00 0
70

00
0

50
00

0
20

00
0

10
00

0
80

00
50

00
30

00
10

00 0
70

00
0

50
00

0
20

00
0

10
00

0
80

00
50

00
30

00
10

00 0
70

00
0

50
00

0
20

00
0

10
00

0
80

00
50

00
30

00
10

00

0x
1x
2x
3x
4x
5x

Ru
nt

im
e

Sl
ow

do
wn

 fr
om

 a
ll-

fa
st

Hybrid Memory System with DRAM and PMEM

Time spent in
migr overhead
period overhead

queueing
slow memory

fast memory

backprop kmeans hotspot lud bfs
0x
3x
6x
9x

12x
15x
18x
21x

Ru
nt

im
e

Sl
ow

do
wn

 fr
om

 a
ll-

fa
st

Hybrid Memory System with DRAM and disaggregated DRAM

(a) Runtime slowdown from the case where all data fits in fast mem-
ory (DRAM).

70
00

0

50
00

0

20
00

0

10
00

0

80
00

50
00

30
00

10
00

Requests per Period

0

25

50

75

100
Fa

st
 M

em
or

y
Hi

tR
at

e
(%

)

Applications
backprop
kmeans
hotspot

lud
bfs

(b) Fast Memory Hit Rate.

70
00

0

50
00

0

20
00

0

10
00

0

80
00

50
00

30
00

10
00

Requests per Period

0

25

50

75

100

M
isp

la
ce

d
Pa

ge
s (

%
)

Applications
backprop
kmeans
hotspot

lud
bfs

(c) Misplaced Pages.

Figure 3: Application performance across shorter period
lengths and simulated PMEM and disaggregated hybrid
memory systems.

capture the overheads associated with the periodic data monitoring
and movements, as shown in Figure 3a. The different bars corre-
spond to shorter lengths of the data monitoring and movement
period. Zero requests per period represent the case of static data
placement, interleaved across a 1:8 fast:slow memory capacity ratio.
Here follows an analysis on how the different dominant break down
parameters get affected over shorter period lengths.
Fast MemoryHit Rate. First, we observe that shorter periods gen-
erally allow for an increase in the fast memory accesses, indicating
that the scheduler is more responsive and performs more timely
data movements. Figure 3b captures the fast memory hit rate vali-
dating this observation. The steady increase in the hitrate for bfs
is due to the fact that there is a page subset that is being predomi-
nantly accessed throughout its execution and shorter periods allow
the scheduler to better identify it, especially when it does not fit
into the available DRAM capacity. On the other hand, the shrinking
memory footprint of lud doesn’t allow the history-based scheduler
to make efficient data movements, resulting in minor improvements
in hitrate. Most interestingly, the hitrate of backprop, kmeans and
hotspot, who have distinct sequential access patterns in strides,
significantly drops at specific period lengths and increases again

The Case for Optimizing the Frequency of Periodic Data Movements over Hybrid Memory Systems MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

only at very short ones. Section 4 sheds light into the application-
level data access characteristics that result in this behavior, which
is the data reuse distance.
Migration Overhead. Applications with sequential access pat-
terns over a large portion of their working set don’t always benefit
from very short periods. At such intervals, the pages become less
frequently accessed and the subset of pages accessed across periods
even more distinct. The history-based page scheduling component
tries to adapt to these frequent changes in the subset of pages being
accessed across periods and generates a big number of unnecessary
data movements. Figure 3c captures the percentage of pages that
were misplaced by the history-based page scheduler at least during
one period. A page is misplaced if at the beginning of a period
the scheduler fails to accurately predict its hotness and appropri-
ately place it across the hybrid memory. The page misplacements
are used to capture the effectiveness of the history-based page mi-
gration selection [8]. We observe that the scheduler struggles to
adapt and predict quick changes in the data access behavior over
shorter periods. This results in potential unecessary data move-
ments, whose overheads dominate over shorter periods, as shown
in Figure 3a. This is prominent especially across bfs and ludwhose
irregular access pattern and shrinking memory footprint trigger
unnecessary data movements given the limited history-based data
access information.
Execution Platform. Figure 3a also includes the application run-
time slowdown, given disaggregated DRAM as the slow memory
component. In such systems, the slow memory access latency domi-
nates the application runtime, because it is projected to be an order
of magnitude higher than fast memory. However, runtime can still
be significantly reduced, just by shortening the period interval of
data movements and increasing the number of fast memory re-
quests. Given the bigger disparity in the fast and slow memory
access speeds of this system configuration, we don’t necessarily
observe the same sweet spot of period lengths compared to the
ones when PMEM is the slow memory. This is due to the fact that
in disaggregated systems the overheads and slow memory access
latency are in the same order of magnitude, compared to local sys-
tems with PMEM as slow memory. Thus, there are applications
like bfs who still benefit from shorter periods in disaggregated
systems, but not in local systems where the aggregate migration
and period overheads dominate. Therefore, changes in platform
configurations can completely affect the best period length for the
same application.
Summary. The simulation analysis validates observations made
over the real PMEM hardware testbed. These are that applications
with irregular access behavior can benefit from shorter period
lengths, as long as the available DRAM capacity is enough to fit the
part of their constantly accessed working set, else the overheads
of unnecessary data movements will become dominant. For ap-
plications with more predictive access patterns, they benefit from
shorter periods that still capture the pattern, but not from very
short periods that break the page reuse distance, as will be further
explained in Section 4. Finally, execution over a different platform
with a more distinct disparity in the memory access speeds may
lead to a completely different choice of period length that benefits
performance.

backprop kmeans hotspot lud bfs
0

10000

20000

30000

Pa
ge

 R
eu

se
 D

ist
an

ce

Figure 4: Page reuse distance distribution across evaluated
applications.

3.3 Takeaways
This sensitivity analysis shows how tightly coupled is the interac-
tion of the application data access behavior and the page scheduler’s
ability to quickly adapt to pattern changes, for a given period length,
together with the configuration of the execution platform, such as
the available DRAM capacity and memory access speed. Here we
summarize the different parameters that contribute to the selection
of period length that yields best application performance:
• Execution Platform. The configuration of the testbed with
respect to the capacity of the available fast memory compared to
the application’s active working set, together with the difference
in access latency and bandwidth of the available hybrid memory
components.

• Page Scheduling Policy. The selection of data movements
plays a crucial role in maximizing the use of the available fast
memory. However, history-based information can not always
capture future data access behavior, especially over shorter mon-
itoring periods that break the repetitiveness of the access pattern,
resulting in a potentially large number of page misplacements
and unnecessary data movements, whose overheads may become
dominant.

• DataAccess Behavior.Applications with irregular versus more
regular access patterns seem to benefit from distinctly different
ranges of period length for a given execution platform configu-
ration and page scheduling effectiveness.

4 IMPACT OF DATA ACCESS BEHAVIOR
Section 3 highlights the different parameters that get affected as
we vary the length of the data monitoring and movement period
of page scheduling solutions across hybrid memory systems. The
complex relation between these parameters leads to the empirical
tuning of the period across existing solutions. In this section, we
further explore the data access characteristics that can be leveraged
to hint towards a good selection of period length, irrespective of the
execution platform and page scheduling policy.

A commonly used metric to indicate the behavior of the ac-
cess pattern is data reuse distance. In the context of our simulation
analysis, we define the reuse distance of a certain page, as the num-
ber of memory requests to other pages that passed between two
consecutive accesses to that particular page. Figure 4 shows the
distribution of the reuse distance across the pages of the applica-
tions we evaluated. We split our observations given the a-priori
knowledge we have on the access patterns of the applications, as
depicted in Figure 1.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Thaleia Dimitra Doudali, Daniel Zahka, and Ada Gavrilovska

Irregular Access Behavior. The outliers of reuse distance in lud
and bfs hint towards their irregular access behavior. More specif-
ically, the outliers of lud correspond to the part of its memory
footprint that is shrinking, whose reuse distance is not repeating
over time, compared to its page subset which gets accessed through-
out execution in sequential traversals. In contrast, the majority of
bfs pages are accessed throughout execution, however the graph
traversal in a breadth-first style results in page reuse distances that
are distinctly different across pages depending on the correspond-
ing graph layers.
Sequential Access Behavior. On the other hand, applications
with sequential access patterns have no outliers in page reuse dis-
tance, since there are specific page subsets that participate in the
pattern and get reused at very specific distances (strides), that re-
peat throughout execution. There seems to be a correlation between
the period length for which the application’s fast memory hitrate
dips (Figure 3b) and the median page reuse distance of the applica-
tion. More specifically, when the history-based scheduler operates
at a frequency which is less than the reuse distance of a signifi-
cant group of pages, such as around 10,000 requests per period for
backprop, 3,000 for kmeans and 5,000 for hotspot, then its ability
to correctly predict the access behavior drops. Thus, it’s critical that
the history-based page scheduler operates at a frequency which
doesn’t break the page reuse distance, so that it can properly iden-
tify the repetition of any sequential strides over a certain page
subset.
Takeaways. The page reuse distance helps us categorize an ap-
plication into regular or irregular access pattern behavior. More
importantly, it also seems to highly correlate with the choice of
period length that optimizes performance for a given platform exe-
cution and page scheduling policy. More specifically, the operation
of a history-based page scheduler at a frequency which breaks the
page reuse distance of a significant page subset, can be detrimen-
tal to performance. Future work, aims to solidify these correlations
and build a holistic modeling infrastructure, that binds all three
parameters (execution platform, page scheduling policy and data ac-
cess behavior) into the selection of an appropriate data monitoring
and movement period length.

5 RELATEDWORK
In this section we summarize dynamic data management solutions
for hybrid memory systems focusing on the monitoring frequency
of data access behavior and at what times data is moved, which
varies primarily depending on the level of implementation.
System-level solutions keep track of application access behavior
and periodically decide upon which pages to migrate. Such solutions
include either actual OS-level prototypes or proposals evaluated
in simulation environments. These solutions empirically set the
period time interval (often referred to as epoch), while some share
certain insights to justify their choice.

More specifically, when Thermostat [5] runs every 10 seconds
or more, then the overheads of selecting page migrations results in
negligible CPU activity and potential application slowdown. The
authors of Kleio [8] fix the period to 0.01 seconds, so as to allow
for enough period samples in their machine intelligent placement

methodology. Next, the authors of HMA [21] show that shorter
periods (e.g., from 1 second to 0.1 seconds) allow the placement
policy to adapt more quickly to the data access pattern, but when it
becomes too fine grained (e.g. 0.001 seconds) the per period software
overheads dominate. Similar exploration is also done by the authors
of [15], who propose page migration support for disaggregated
systems with DRAM and PMEM memory components.

Our work not only validates all of the above observations, but takes
it a step further and identifies the data access behavior that leads to
these insights.

Runtime solutions rely on application-specific detection of distin-
guishable execution to trigger data movements. More specifically,
Unimem [26] leverages the MPI communication phases to launch
data movements and Tahoe [27] targets task-based execution to
trigger the necessary data movements. These solutions are tailored
to the specific runtimes and explore a range of data movement
frequencies aligned with computational phases.

Our analysis does not depend on application phases and specific
runtimes, but rather explores application agnostic solutions and oper-
ating system-level page scheduling.

Specialized hardware across related works helps reduce the over-
heads of acquiring the necessary information for data movement
decisions, like page hotness tracking [5, 12, 14, 15, 21, 24]. Addi-
tionally, custom hardware automates threshold-based data move-
ment triggers [7, 18]. Finally, additional hardware for buffering data
copies and allowing access to data that is under migration allows for
reducing access stalls and improving application performance [18].

Even when the per period overheads are reduced via hardware
support, the question remains of which period duration better captures
data access behavior.

6 SUMMARY AND FUTUREWORK
In this paper we show that the choice of the parameter determin-
ing the periodicity of memory management operations can have
significant impact on the attainable application performance and
on the efficiency of the memory management methods. Yet, exist-
ing solutions fall short on proposing a methodology for how this
parameter should be configured. We identify that the execution
platform and effectiveness of the page scheduling policy in combi-
nation with the application-specific data access behavior lead to a
period length sweet spot which maximizes fast memory use with
minimal overheads. Instead of empirically setting the period length,
we envision a profiling tool that leverages characteristics of the
data access pattern, using metrics such as the page reuse distance,
in order to identify a range of period lengths that can improve fast
memory locality, which should then be combined with knowledge
of the execution platform and page scheduling policy.

ACKNOWLEDGMENTS
We thank the anonymous reviewers on their constructive feedback.
This work is partially supported by NSF award SPX-1822972, and
via funding and infrastructure donations from Facebook and Intel.

REFERENCES
[1] 2020. Gen-Z Consortium: Computer Industry Alliance Revolutionizing Data

Access. https://genzconsortium.org/.

https://genzconsortium.org/

The Case for Optimizing the Frequency of Periodic Data Movements over Hybrid Memory Systems MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

[2] 2020. Intel Omni-Path Architecture (Intel OPA) Driving Exascale Com-
puting and HPC Driving Exascale Computing and HPC with Intel.
https://www.intel.com/content/www/us/en/high-performance-computing-
fabrics/omni-path-driving-exascale-computing.html.

[3] 2020. Intel® OptaneTM DC Persistent Memory. https://www.intel.com/content/
www/us/en/architecture-and-technology/optane-dc-persistent-memory.html.

[4] 2020. Pin - A Dynamic Binary Instrumentation Tool. https://software.intel.com/
content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-
tool.html.

[5] Neha Agarwal and Thomas F. Wenisch. 2017. Thermostat: Application-
Transparent Page Management for Two-Tiered Main Memory. In Proceedings
of the Twenty-Second International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Xiapos;an, China) (ASPLOS ’17).
Association for Computing Machinery, New York, NY, USA, 631–644. https:
//doi.org/10.1145/3037697.3037706

[6] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, JeremyW. Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Heterogeneous
Computing. In Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC) (IISWC ’09). IEEE Computer Society, Washington, DC,
USA, 44–54. https://doi.org/10.1109/IISWC.2009.5306797

[7] Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi. 2017. BATMAN: Tech-
niques for Maximizing System Bandwidth of Memory Systems with Stacked-
DRAM. In Proceedings of the International Symposium onMemory Systems (Alexan-
dria, Virginia) (MEMSYS ’17). Association for Computing Machinery, New York,
NY, USA, 268–280. https://doi.org/10.1145/3132402.3132404

[8] Thaleia Dimitra Doudali, Sergey Blagodurov, Abhinav Vishnu, Sudhanva Guru-
murthi, and Ada Gavrilovska. 2019. Kleio: A Hybrid Memory Page Scheduler
with Machine Intelligence. In Proceedings of the 28th International Symposium on
High-Performance Parallel and Distributed Computing (Phoenix, AZ, USA) (HPDC
’19). ACM, New York, NY, USA, 37–48. https://doi.org/10.1145/3307681.3325398

[9] Thaleia Dimitra Doudali and Ada Gavrilovska. 2017. CoMerge: Toward Efficient
Data Placement in Shared Heterogeneous Memory Systems. In Proceedings of the
International Symposium on Memory Systems (Alexandria, Virginia) (MEMSYS
’17). Association for Computing Machinery, New York, NY, USA, 251–261. https:
//doi.org/10.1145/3132402.3132418

[10] T. D. Doudali and A. Gavrilovska. 2019. Mnemo: BoostingMemory Cost Efficiency
in Hybrid Memory Systems. In 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). 412–421.

[11] Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram,
Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten Schwan. 2016. Data
Tiering in Heterogeneous Memory Systems. In Proceedings of the Eleventh Euro-
pean Conference on Computer Systems (London, United Kingdom) (EuroSys ’16).
Association for Computing Machinery, New York, NY, USA, Article 15, 16 pages.
https://doi.org/10.1145/2901318.2901344

[12] Vishal Gupta, Min Lee, and Karsten Schwan. 2015. HeteroVisor: Exploiting Re-
source Heterogeneity to Enhance the Elasticity of Cloud Platforms. In Proceedings
of the 11th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (Istanbul, Turkey) (VEE ’15). Association for Computing Machinery,
New York, NY, USA, 79–92. https://doi.org/10.1145/2731186.2731191

[13] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the Intel
Optane DC Persistent Memory Module. arXiv:1903.05714 [cs.DC]

[14] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan. 2017.
HeteroOS: OS Design for Heterogeneous Memory Management in Datacenter. In
Proceedings of the 44th Annual International Symposium on Computer Architecture
(Toronto, ON, Canada) (ISCA ’17). Association for Computing Machinery, New
York, NY, USA, 521–534. https://doi.org/10.1145/3079856.3080245

[15] Vamsee Reddy Kommareddy, Simon David Hammond, Clayton Hughes, Ah-
mad Samih, and Amro Awad. 2019. Page Migration Support for Disaggre-
gated Non-Volatile Memories. In Proceedings of the International Symposium
on Memory Systems (Washington, District of Columbia) (MEMSYS ’19). As-
sociation for Computing Machinery, New York, NY, USA, 417–427. https:
//doi.org/10.1145/3357526.3357543

[16] Milind Kulkarni, Martin Burtscher, Calin Casçaval, and Keshav Pingali. 2009.
Lonestar: A Suite of Parallel Irregular Programs. In ISPASS ’09: IEEE International
Symposium on Performance Analysis of Systems and Software (Boston, MA, USA).
http://iss.ices.utexas.edu/Publications/Papers/ispass2009.pdf

[17] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Em-
mett Witchel. 2016. Coordinated and Efficient Huge Page Management with
Ingens. In Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation (Savannah, GA, USA) (OSDI’16). USENIX Association, USA,
705âĂŞ721.

[18] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu. 2017. Utility-Based
Hybrid Memory Management. In 2017 IEEE International Conference on Cluster
Computing (CLUSTER). 152–165.

[19] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K.
Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated Memory for Expansion
and Sharing in Blade Servers. In Proceedings of the 36th Annual International
Symposium on Computer Architecture (Austin, TX, USA) (ISCA ’09). Association
for Computing Machinery, New York, NY, USA, 267–278. https://doi.org/10.
1145/1555754.1555789

[20] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang,
Parthasarathy Ranganathan, and Thomas F. Wenisch. 2012. System-Level Implica-
tions of Disaggregated Memory. In Proceedings of the 2012 IEEE 18th International
Symposium on High-Performance Computer Architecture (HPCA ’12). IEEE Com-
puter Society, USA, 1–12. https://doi.org/10.1109/HPCA.2012.6168955

[21] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G. H. Loh.
2015. Heterogeneous memory architectures: A HW/SW approach for mixing
die-stacked and off-package memories. In 2015 IEEE 21st International Symposium
on High Performance Computer Architecture (HPCA), Vol. 00. 126–136. https:
//doi.org/10.1109/HPCA.2015.7056027

[22] Onkar Patil, Latchesar Ionkov, Jason Lee, Frank Mueller, and Michael Lang. 2019.
Performance characterization of a DRAM-NVM hybrid memory architecture
for HPC applications using intel optane DC persistent memory modules. In
Proceedings of the International Symposium on Memory Systems, MEMSYS 2019,
Washington, DC, USA, September 30 - October 03, 2019. ACM, 288–303. https:
//doi.org/10.1145/3357526.3357541

[23] A. J. PeÃśa and P. Balaji. 2014. Toward the efficient use of multiple explicitly
managed memory subsystems. In 2014 IEEE International Conference on Cluster
Computing (CLUSTER). 123–131.

[24] A. Prodromou, M. Meswani, N. Jayasena, G. Loh, and D. M. Tullsen. 2017. Mem-
Pod: A Clustered Architecture for Efficient and Scalable Migration in Flat Address
Space Multi-level Memories. In 2017 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA). 433–444.

[25] Du Shen, Xu Liu, and Felix Xiaozhu Lin. 2016. Characterizing Emerging
Heterogeneous Memory. SIGPLAN Not. 51, 11 (June 2016), 13–23. https:
//doi.org/10.1145/3241624.2926702

[26] Kai Wu, Yingchao Huang, and Dong Li. 2017. Unimem: Runtime Data Manage-
menton Non-volatile Memory-based Heterogeneous Main Memory. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (Denver, Colorado) (SC ’17). ACM, New York, NY, USA,
Article 58, 14 pages. https://doi.org/10.1145/3126908.3126923

[27] Kai Wu, Jie Ren, and Dong Li. 2018. Runtime Data Management on Non-volatile
Memory-based Heterogeneous Memory for Task-parallel Programs. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage, and Analysis (Dallas, Texas) (SC ’18). IEEE Press, Piscataway, NJ, USA,
Article 31, 13 pages. http://dl.acm.org/citation.cfm?id=3291656.3291698

https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://doi.org/10.1145/3037697.3037706
https://doi.org/10.1145/3037697.3037706
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/3132402.3132404
https://doi.org/10.1145/3307681.3325398
https://doi.org/10.1145/3132402.3132418
https://doi.org/10.1145/3132402.3132418
https://doi.org/10.1145/2901318.2901344
https://doi.org/10.1145/2731186.2731191
https://arxiv.org/abs/1903.05714
https://doi.org/10.1145/3079856.3080245
https://doi.org/10.1145/3357526.3357543
https://doi.org/10.1145/3357526.3357543
http://iss.ices.utexas.edu/Publications/Papers/ispass2009.pdf
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1109/HPCA.2012.6168955
https://doi.org/10.1109/HPCA.2015.7056027
https://doi.org/10.1109/HPCA.2015.7056027
https://doi.org/10.1145/3357526.3357541
https://doi.org/10.1145/3357526.3357541
https://doi.org/10.1145/3241624.2926702
https://doi.org/10.1145/3241624.2926702
https://doi.org/10.1145/3126908.3126923
http://dl.acm.org/citation.cfm?id=3291656.3291698

	Abstract
	1 Introduction
	2 Methodology
	2.1 Optane DC PMEM Platform
	2.2 Simulation

	3 Sensitivity Analysis
	3.1 Optane DC PMEM Platform
	3.2 Simulation
	3.3 Takeaways

	4 Impact of Data Access Behavior
	5 Related Work
	6 Summary and Future Work
	Acknowledgments
	References

