
Multi-Valued Physical Unclonable Functions based on Dynamic
Random Access Memory

Sven Müelich
∗

Martin Bossert

Robert F.H. Fischer

sven.mueelich@uni-ulm.de

martin.bossert@uni-ulm.de

robert.fischer@uni-ulm.de

Ulm University, Institute of Communications Engineering

Ulm, Germany

Chirag Sudarshan
∗

Christian Weis

Norbert Wehn

sudarshan@eit.uni-kl.de

weis@eit.uni-kl.de

wehn@eit.uni-kl.de

Technische Universität Kaiserslautern, Microelectronic

Systems Design Research Group

Kaiserslautern, Germany

ABSTRACT
Physical unclonable functions (PUF) are hardware primitives that

are very attractive for cryptographic applications to generate and

store secure keys. Dynamic random access memory (DRAM) has

recently become a promising technology for the construction of

PUFs. In this work, multi-valued PUFs (MVPUFs) based on DRAM

retention patterns are constructed and assessed for the first time.

We propose a holistic solution by considering the complete PUF

processing chain consisting of physical PUF source, PUF readout,

digitization, channel coding, and the application of a hash function.

In contrast to previous DRAM PUFs, a 4-ary symbol instead of a

binary one is derived from each PUF cell. This results in an increase

of entropy and thus in an improved error correction performance.

Unlike previous PUFs based on DRAM retention patterns, we do

not require any debiasing algorithms. To the best of our knowledge,

this is the first proposal of a multi-valued PUF based on DRAM. Its

properties are an average inter-response distance of ≈ 0.48, an av-

erage intra-response distance of ≈ 0.04 under stable environmental

conditions, and an entropy of up to 0.99 bit.

CCS CONCEPTS
• Security and privacy→ Embedded systems security.

KEYWORDS
DRAM, physical unclonable functions, multi-valued PUF, key gen-

eration, key storage, error correction

ACM Reference Format:
Sven Müelich, Martin Bossert, Robert F.H. Fischer, Chirag Sudarshan, Chris-

tian Weis, and Norbert Wehn. 2020. Multi-Valued Physical Unclonable Func-

tions based on Dynamic Random Access Memory. In The International

∗
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8899-3/20/09. . . $15.00

https://doi.org/10.1145/3422575.3422787

Symposium on Memory Systems (MEMSYS 2020), September 28-October 1,
2020, Washington, DC, USA. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3422575.3422787

1 INTRODUCTION
Physical unclonable functions (PUFs) are hardware primitives, which

exploit intrinsically present randomness to generate random but

reproducible sequences, referred as PUF responses, that are unique

to the device. The randomness in devices with the same circuitries

exists due to variations in the manufacturing process and is also

present across devices produced by the same manufacturer. Since

responses are unique to the device, they are excellent candidates to

generate secure cryptographic keys that are random, unique and

unpredictable. Often, these properties are not fulfilled from keys

generated by pseudo random number generators (PRNGs), e.g., [17].
Usually, cryptographic keys are stored in a non-volatile memory.

Even when a protected memory is used, there exist various kinds

of attacks to leak the key, e.g., [32]. Also, a protected non-volatile

memory requires additional chip area and increases the costs. Since

in PUFs, responses can be reproduced on demand, the need for

storing a key is eliminated. Instead the key is regenerated, when

required by the cryptosystem. However, the reproducibility (one

of the key properties) of PUF responses is highly sensitive to vari-

ations in environmental factors, such as temperature or supply

voltage. Thus, some symbols of responses are erroneously regen-

erated, while error-free responses are indispensable to derive a

key. To guarantee error-free responses, error-correcting codes have

to be applied for post-processing of PUF responses. Extensive in-

formation about PUFs and their properties can, e.g., be found in

[18].

Recently, Dynamic Random Access Memory (DRAM) has been

used to generate PUFs. DRAM-based PUFs are a promising alterna-

tive to other constructions, since DRAM is intrinsically present in

most mobile and embedded devices. Hence, in contrast to other well-

known PUF constructions like for example Ring Oscillator PUFs

(ROPUFs), no additional circuitry or modifications of the hardware

design are required to add PUF functionality to a given device.

Previous literature on DRAM-based PUFs (cf. Sec. 2.3) presented

various techniques to extract the PUF responses. Most of these prior

studies focus only on showcasing unclonability and uniqueness of

DRAM-based PUFs. However, critical issues like biased responses

https://doi.org/10.1145/3422575.3422787
https://doi.org/10.1145/3422575.3422787
https://doi.org/10.1145/3422575.3422787

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Mueelich and Sudarshan, et al.

and noise that affects uniformity and reproducibility (cf. Sec. 2.1)

are not emphasized. However, the uniformity and reproducibility

properties are particularly significant when PUFs are employed for

cryptographic key generation.

Biased Responses—During the response extraction process,

DRAM-based PUFs classify cells that flip their original value as

“0” (so-called weak cells) and cells that retain their original value

as “1” (so-called strong cells). The raw bit vectors extracted from

DRAM-based PUFs are heavily biased, i.e., they contain either a

predominant number of “0s” or “1s”. For example, the row hammer

based DRAM PUF (cf. Sec. 2.3) presented in [27] has less than

5% of cells that flipped its original value after 120 s of hammer

time. Consequently, such a PUF has a low entropy. The secret key

generation from such a non-uniform source has a major impact

on the entropy of the generated keys and highly relies on the

superiority of the employed debiasing/post-processing techniques.

Noise—DRAM cells are highly sensitive to variations in environ-

mental conditions. Hence, some cells do not consistently flip their

original values at every response extraction instance. This phe-

nomenon induces an error pattern in the extracted PUF responses.

Literature on DRAM-based PUFs shows, that the best-case intra-

Jaccard index that represents the stability of the PUF responses

is approximately 0.9. Noisy responses cannot directly serve as a

reliable cryptographic key. For example, consider a PUF with an

average number of bit flips of 32.904 and an intra-Jaccard index of

0.9662 [27]. The absolute number of noisy bit flips for such a PUF

is as high as 1.112. Hence, standard literature on PUFs applies a

helper data algorithm with an error-correcting code to counteract

the noise. However, for PUF responses that suffer under a large bias,

the helper data used to generate the key might in turn leak infor-

mation about the key unless the responses are effectively debiased

[15].

In this work, we present a novel multi-valued PUF (MVPUF) that
extracts a 4-ary symbol from each weak DRAM cell. The proposed

MVPUF has three major advantages: first, PUF responses have a

negligible bias. Second, extracting a 4-ary symbol from each PUF

cell increases the entropy from at most 1 bit to at most 2 bits. Third,

it is more robust to noise since the available error correction tech-

niques for a standard non-binary data (i.e., higher-order alphabet) is

more powerful. This work models the MVPUF responses as a noisy

communication channel and presents the complete PUF processing

chain (i.e., from response to key generation) that addresses the

aforementioned challenges. Our definition of MVPUF has to be dis-

tinguished from some approaches in the literature, which group bits

extracted from several PUF cells to one multi-valued symbol, e.g.,

[33, 34]. Our approach enables better noise handling (cf. Sec. 3.5)

and allows the extraction of a longer sequence of symbols from the

available PUF cells.

We summarize the new contributions of this paper:

• To the best of our knowledge, this is the first proposal of

a multi-valued PUF based on DRAM. The properties of the

proposed PUF are an average inter-response distance of ≈
0.48, an average intra-response distance of ≈ 0.04 under

stable environmental conditions, and an entropy of up to

0.99 bit.

• No extra debiasing step is required.

• We provide a holistic view by proposing a complete PUF pro-

cessing chain consisting of the following elements: physical

PUF source, PUF readout, digitization, channel coding, hash

function.

The paper is structured along the components of the PUF pro-

cessing chain. Ch. 2 describes the DRAM as physical PUF source,

which is the true physical unclonable entity that contains intrin-

sic randomness due to variations in manufacturing processes of

physical objects. Ch. 3 explains how the randomness in the phys-

ical PUF source is measured and how the digitized PUF readout

is generated. In Ch. 4, PUF responses are generated by applying a

Gray labeling to the PUF readout. Uniqueness and reproducibility

of the resulting PUF responses are evaluated. Ch. 5 deals with error-

correction, which is required since PUF responses are influenced

by environmental conditions (e.g., temperature), and hence, might

be reproduced erroneously. To generate robust keys, the error-free

reproduction of PUF responses has to be guaranteed by applying an

error-correcting code. Ch. 6 tackles the problem that responses are

not uniformly distributed, which is usually solved by hashing the

responses to the key-length ^, that is required by the application.

Ch. 7 discusses the obtained results and Ch. 8 summarizes related

work. Ch. 9 finally concludes the paper. Fig. 1 visualizes the compo-

nents of the PUF processing chain together with the corresponding

input and output data.

Physical source

retention times, R2
32

DRAM Readout

Sets of weak memory cells, measured after 𝑗 seconds

Digitization

PUF readout, {0, 1, 2, 3}𝑁

Mapping

PUF response, {0, 1}2𝑁

Channel Coding

error-free PUF response, {0, 1}2𝑁

Hashing

key, {0, 1}^

Figure 1: PUF processing chain visualizing all steps required
to derive a cryptographic key from the randomness intrin-
sically present in a physical source.

2 PHYSICAL PUF SOURCE
In this chapter, we first provide basic information about physical

unclonable functions (PUFs) and DRAMs.

2.1 Physical Unclonable Functions (PUFs)
Originally, the concept of PUFs has been proposed in [23]. PUFs are

hardware primitives, which include randomness that is intrinsically

present due to variations in manufacturing processes of physical

objects. This randomness can be exploited to derive and store keys

for various cryptographic applications. Literature distinguishes two

types of PUFs, depending on whether the PUF response is derived

Multi-Valued PUFs based on DRAM MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

solely from the randomness of the hardware or additionally from

an input sequence. In the first case, the PUF response is used to

derive a cryptographic key, which is inseparably linked to the hard-

ware. In the second case, authentication is a possible application

(cf. Ch. 4.3). In both cases, initialization and reproduction are distin-

guished. During initialization, so-called helper data are generated,

which are used during reproduction in order to reproduce reliable

keys. Essentially, there exist two paradigms to construct PUFs. In

delay-based PUFs (e.g., Arbiter PUF [16], Ring-Oscillator PUF [8]),

uncontrollable delays in integrated circuits are exploited to extract

randomness. In memory-based PUFs (e.g., SRAM PUF [9, 11]), ran-

domness occurs from uncontrollable behavior of memory cells.

The core properties of PUFs are uniqueness, reproducibility, and

unclonability. Uniqueness is fulfilled, if PUF responses derived from

different PUFs are distinguishable. Reproducibility is fulfilled, if

we obtain the same PUF response when evaluating a specific PUF

several times. A PUF is called unclonable, if it is not possible for the

manufacturer to produce an identical copy of a given PUF, i.e., a

PUF from which a predetermined response is generated. Different

quality measures like Hamming distance or Jaccard index have

been used in literature to evaluate uniqueness and reproducibility.

Also the symbols in PUF responses are required to be uniformly

distributed. An extensive introduction to PUFs is provided by the

standard literature, e.g., [18].

2.2 Dynamic Random Access Memory (DRAM)
Dynamic Random Access Memory (DRAM) devices are organized
as a set of banks that includes two-dimensional arrays of memory

cells. A memory cell consists of a transistor-capacitor (1T1C) pair.

The data is stored as a charge in the capacitor. The cells are con-

nected row-wise via wordlines, and column-wise via bitlines. The

wordlines are driven by the row decoder that activates a specific

row and the bitlines are connected to sense amplifiers (SAs) that

identify the logical value stored in the respective memory cells of

an activated row. This process is called row opening (or activation),

the read and write operation in DRAM can only be performed on

an open row. An open row in a memory array has to be closed by

an operation called precharge before opening any new row of that

memory array.

2.3 PUFs based on DRAM
Essentially four different approaches to construct PUFs fromDRAM

have been studied in literature.

(1) Retention Errors [7]: DRAM PUFs based on retention er-

rors extract randomness by pausing the refresh operation,

which is used to periodically recharge the memory cells.

Depending on the refresh-off duration and the DRAM tem-

perature, the cells can be categorized as strong cells and

weak cells. Strong cells retain their charge after the pause

time, while the weak cells lose their charge. These weak cells

are unique for a given device and can be used to generate

PUF responses. However, there are a set of cells (referred as

noisy cells) that changes its behavior over the time. These

cells affect the reproducible behavior of PUF and result in

noisy PUF responses.

(2) Reduced Latency [14]: The randomness observed by re-

ducing the timing parameters, which are used to ensure the

proper operation of DRAM device, reveals device-dependent

characteristics that can be utilized for the construction of a

PUF. For example, by reducing the time required for row acti-

vation process, 𝑡RCD, we can distinguish cells whose charge

is successfully detected by sense amplifiers (i.e., strong cells),

and cells for which the sensing fails (i.e., weak cells).

(3) DRAM Initial Value [31]: Motivated by the effects that

are exploited in other memory technologies (e.g., SRAM) to

construct PUFs, [31] extracts PUF responses based on the

initialization value of DRAM cells.

(4) Row Hammer [27]: The repeated activation and precharg-

ing of a specific row in a DRAM array results in a side affect

referred as RowHammer. After a certain number of activation

and precharging iterations, the weak cells of the adjacent

rows lose their charge and these weak cells are unique to

the rows and devices.

Throughout this paper, we use retention errors as the source of

randomness for generating PUF responses and cryptographic keys,

due to the availability of a retention error measurement platform

with precise temperature control. However, the proposed process-

ing chain is as well applicable to other sources like reduced latency

errors and row hammer errors. The focus of the paper is not the ran-

domness extraction technique but how the extracted randomness

from the DRAM can be used to generate consistent cryptographic

keys by using the proposed MVPUF processing chain.

3 DRAM READOUT AND DIGITIZATION
During the IC readout stage, the DRAM cells are evaluated for

different refresh-off times. Result is a set of addresses of memory

cells, that have been classified asweak for any of the used refresh-off

times. From each of these weak cells, a 4-ary symbol is derived in the

digitization stage, depending on the refresh-off time, for which the

cell was classified as weak for the first time. During initialization, all

available DRAM cells are evaluated. During reproduction only the

cells that behaved as weak cells during initialization are evaluated.

3.1 Measurement Setup
DRAM retention errors are extracted using an FPGA-based DDR3

DRAM characterization platform. The Xilinx memory controller,

i.e., memory interface generator (MIG) is customized to control the

refresh operation and its timings. This platform is also equipped

with a heating module for precise temperature control of the DDR3

SO-DIMM installed on the FPGA board. The operating temperature

can be configured in the range of 25
◦
C–90

◦
C with an accuracy of

±2◦C. This setup interacts with a host computer using the PCIe

interface. The platform is fully automated using a custom software

that is capable of writing a specific pattern of data, maintaining the

specified temperature, managing the refresh operation (i.e., On/Off)

and data read back. For further details about the measurement

platform, we refer to [13]. This work uses a 2GB DDR3 SO-DIMM

for extracting retention error. Each 2GB DDR3 SO-DIMM consists

of four 4Gb devices of which each device is defined to be a PUF.

Hence, our studies in this work are based on a set of 4 PUFs. The

retention error for a given pause interval is measured as follows:

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Mueelich and Sudarshan, et al.

First, all cells are charged. Second, the refresh operation is paused

for a required interval. Third, the cells are read. The addresses of the

cells that flipped it original value for a given refresh pause interval

are extracted.

3.2 Available DRAM Data
The sample size of our study comprises four PUFs. Each PUF was

measured at four different refresh pause durations, namely at 9 s,

10 s, 11 s, and 12 s. For each refresh pause duration 40 measurements

were conducted at 40
◦
C. The total number of measured DRAM cells

per PUF is 2
32
. Throughout this paper, let 𝑘 ∈ {1, 2, 3, 4} be the PUF

number, 𝑗 ∈ {9, 10, 11, 12} be the refresh pause duration of the

measurement in seconds, and 𝑖 ∈ {0, . . . , 39} be the number of the

measurement.

3.3 Data Analysis
To establish a notation, we define sets that contain addresses of

memory cells that are classified as weak cells for certain retention

times 𝑗 .

Definition 1. a) For a specific PUF, letA 𝑗,𝑖 denote the set of
addresses of memory cells that was classified as weak during
measurement 𝑖 with a refresh pause duration of 𝑗 seconds. For
example, for a specific PUF, A9,0 denotes the set of weak cells
that was determined during measurement 𝑖 = 0 for a refresh
pause duration of 9 s.

b) Let the set

A 𝑗,𝑖 =

𝑗⋃
ℓ=9

Aℓ,𝑖 (𝑗 = 9, . . . , 12) (1)

denote all addresses of memory cells that act as weak cell up to
including refresh pause duration 𝑗 . Note that A9,𝑖 ⊆ A10,𝑖 ⊆
A11,𝑖 ⊆ A12,𝑖 . Written in an extensive way, (1) expresses the
following relationships:

A9,𝑖 = A9,𝑖

A10,𝑖 = A9,𝑖 ∪ A10,𝑖

A11,𝑖 = A9,𝑖 ∪ A10,𝑖 ∪ A11,𝑖

A12,𝑖 = A9,𝑖 ∪ A10,𝑖 ∪ A11,𝑖 ∪ A12,𝑖

Note that A 𝑗,𝑖 = A 𝑗,𝑖 due to the subset relationship.
c) Let

A [𝑗,𝑖] = A 𝑗,𝑖 \ A 𝑗−1,𝑖 (𝑗 = 9, . . . , 12)
be the set of addresses of memory cells that were classified as
weak for the first time at refresh pause duration 𝑗 and behaved
as strong cell for all refresh pause durations 𝑗 ′ < 𝑗 . Note that⋂

12

𝑗=9 A [𝑗,𝑖] = ∅.

Fig. 2 visualizes, for all four PUFs, the number of weak memory

cells that appear for the first timewhen using refresh pause duration

𝑗 , where 𝑗 = 9, . . . , 12. For all four PUFs, measurement 𝑖 = 0 is

used for visualization. The sets A [𝑗,0]
are calculated according to

Def. 1 c). For 𝑖 = 1, . . . , 39, the cardinalities of the sets are similar.

In the digitization stage (cf. Sec. 3.4), we will derive one symbol

from each weak cell, depending on the set A [𝑗,𝑖]
that has this cell

as member.

8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
· 10

4

𝑗 , retention time in seconds

|A
[𝑗
,0
] |

(a) PUF 1

8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
· 10

4

𝑗 , retention time in seconds

|A
[𝑗
,0
] |

(b) PUF 2

8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
· 10

4

𝑗 , retention time in seconds

|A
[𝑗
,0
] |

(c) PUF 3

8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
· 10

4

𝑗 , retention time in seconds

|A
[𝑗
,0
] |

(d) PUF 4

Figure 2: Visualization of the number of memory cells that
are classified as weak for the first time at refresh pause du-
ration 𝑗 and as strong for all refresh pause duration 𝑗 ′ < 𝑗 .

Multi-Valued PUFs based on DRAM MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Let Ainit be the set of cells that is classified as weak during ini-

tialization. Similarly, let Arep be the set of cells that is classified

as weak during reproduction. When comparing these sets, we ob-

serve a large intersection. This is exemplified by the set diagram in

Fig. 3. However, there are always cells that are classified as weak

during reproduction and as strong during initialization. Those cells

are represented by the set Arep \ Ainit. Querying a cell of this set

during reproduction yields an insertion error, since we obtain an

additional symbol from the source that did not exist during initial-

ization. Insertion errors are avoided by only using cells from the

setAinit during reproduction. Hence, the addresses of cells inAinit

have to be stored. If this is done in ascending order for the union⋃
12

𝑗=9 A [𝑗,𝑖]
this does not allow to draw any conclusions from a

cell to 𝑗 without executing a measurement, and hence, security

is not decreased. Also, there are always cells that are classified

as weak during initialization and as strong during reproduction

(Ainit \ Arep). Those cells lead to deletion errors. Such an error is

possible to occur only when a cell was initially classified as weak

for a retention time of 12 s. Hence, we deal with strong cells that

occur during reproduction by categorizing them as weak for 𝑗 = 12.

Note that, since the retention time of cells might slightly vary, noise

is always present, and hence, some cells are classified different than

during initialization.

Ainit
Arep

206 35078 1379

Figure 3: Number of DRAM cells that are classified as weak
during initialization (Ainit) and during reproduction (Arep)
with exemplary numbers obtained for PUF 1.

3.4 Source
We model the PUF as a 4-ary source 𝑄 , where each weak DRAM

cell’s address corresponds to an output of 𝑄 . Let 𝑎 be the address

of a weak DRAM cell. We define the corresponding source symbol

𝑢 to be

𝑢 =

0, if 𝑎 ∈ A [9]

1, if 𝑎 ∈ A [10]

2, if 𝑎 ∈ A [11]

3, if 𝑎 ∈ A [12] .

(2)

For PUF 1, the source symbols occur with the probabilities shown

in Table 1, where

𝑝 =

|A [9] |
|A [9]∪···∪A [12] | , for 𝑢 = 0

|A [10] |
|A [9]∪···∪A [12] | , for 𝑢 = 1

|A [11] |
|A [9]∪···∪A [12] | , for 𝑢 = 2

|A [12] |
|A [9]∪···∪A [12] | , for 𝑢 = 3.

(3)

For the other PUFs the numbers turned out to be similar. The

entropy of source 𝑄 is H(𝑄) = 1.9426 < log
2
(4) = 2, which is a

relative entropy of

𝐻 (𝑄)
log

2
(4) =

1.9426

2

= 0.9713. (4)

Subsequently, we denote a sequence produced by this source as

𝒖 ∈ {0, 1, 2, 3}𝑁 (where 𝑁 is the number of considered cells) and

call it PUF readout.

3.5 PUF Readout Noise Handling
This section highlights the advantages of the proposed MVPUF

4-ary symbol readout in terms of noise handling compared to the

4-ary symbol readout by grouping the binary bits extracted from

several PUF cells (as shown in [33, 34]) referred as group-based
4-ary.

Let Σ be a finite alphabet of cardinality |Σ| = 𝑞. Further let 𝑐 ∈ Σ
be the transmitted symbol and 𝑦 ∈ Σ the received symbol. The

𝑞-ary symmetric channel is described by the transition probabilities

Pr{𝑦 | 𝑐} =
{
1 − 𝑝 , if 𝑦 = 𝑐
𝑝

𝑞−1 , if 𝑦 ≠ 𝑐,
(5)

where 0 ≤ 𝑝 ≤ 1 is the symbol error probability. For the source

with uniformly distributed weak cells and noisy cells, which is the

case in DRAM, the group-based 4-ary has channel transitions that

resemble a symmetric channel, e.g., the probabilities that a symbol

0 is changed to symbol 1 or 2 or 3 during the regeneration are equal.

One or both of the cells that were registered as weak during the

enrollment phase may not appear to be weak at the reproduction

phase. This means that a given symbol can be transformed into any

other symbol in the alphabet due to noise.

Contrary to this, in the proposed extraction any given symbol can

at most be transformed to one other symbol in the alphabet. This is

because of the DRAM retention behavior. For example, it is unlikely

that a cell, that was classified as symbol 0 during enrollment (i.e.,

belongs to set A [9]
), is transformed into symbol 2 (i.e., belongs

to set A [11]
) during regeneration. Fig. 4 shows the PUF readout

behavior modeled as a noisy communication channel. The data

analysis shows that such scenarios, i.e., 0 → 2 or 0 → 3 or 1 → 3

are highly unlikely and occur at a very low probability of ≤ 0.002.

Likewise, the probability that the symbol, classified as 2 or 3 to

be transformed as 1 or 0, respectively, also occurs at a very low

probability of ≤ 0.001. Consequently, the PUF response in the

proposed methodology has half the number of error bits (i.e., worst

case) in comparison to group-based 4-ary. This understanding can

be leveraged for better error correction.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Mueelich and Sudarshan, et al.

𝑖 𝑗

0 0

1 1

2 2

3 3

1 − 𝑝01

𝑝01

Figure 4: Channel transitions.

Example 1. Considering the 4-ary PUF readouts

𝒖 = 1 3 0 3 2 1 3 2 0 2

𝒖 ′
𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

= 1 3 1 2 2 1 3 2 0 2

𝒖 ′𝑔𝑟𝑜𝑢𝑝 = 1 3 2 1 2 1 3 2 0 2

where 𝒖 is the arbitrary PUF readout at initialization, 𝒖 ′
𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

is proposed readout at reproduction and 𝒖 ′𝑔𝑟𝑜𝑢𝑝 is the group based
readout at reproduction. Applying Gray labeling (cf. Ch. 4) to these
symbols, we get the binary sequence

𝒓 = 01 10 00 10 11 01 10 11 00 11

𝒓 ′
𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

= 01 10 01 11 11 01 10 11 00 11

𝒓 ′𝑔𝑟𝑜𝑢𝑝 = 01 10 11 01 11 01 10 11 00 11

hence, the proposed readout offers better error handling capabilities.

4 DERIVATION OF PUF RESPONSES
The available DRAM data are divided into two disjoint data sets: For

each refresh pause duration, we use five out of the 40 measurements

to derive the initial response. The other measurements serve as

validation group during the reproduction process (cf. Ch. 4.2). Thus,

for initialization we consider the sets

A [9] B
4⋂

𝑖=0

A [9,𝑖] , . . . , A [12] B
4⋂

𝑖=0

A [12,𝑖] . (6)

We order the addresses of weak DRAM cells in increasing order

and randomly choose𝑁 = 1024 cells that contribute to the PUF read-

out. We apply Gray labeling to the PUF readouts 𝒖 ∈ {0, 1, 2, 3}𝑁
and represent each of the four PUF symbols by two bits. The map-

ping is done as represented in Tab. 1. For comparison, a natural

labeling is also given in Tab. 1, which is simply the binary enumer-

ation of the symbols from the 4-ary PUF alphabet.

Table 1: Gray labeling

Symbol 𝑢 0 1 2 3

Probability 𝑝 0.2545 0.1659 0.2186 0.3609

Gray labeling S 00 01 11 10

Natural labeling 00 01 10 11

Single bit 0 1 0 1

We get two advantages from using the Gray labeling. First, one

symbol error, which changes a symbol to one of the two adjacent

symbols, only results in one bit error. For example, assume a certain

memory address that acts for the first time as weak cell during

initialization when using refresh pause duration 9 s. Further assume,

that in the reproduction phase this cell acts as weak cell for the first

time when using refresh pause duration 10 s. This leads to a change

from symbol 1 to symbol 2 in the 4-ary PUF readout. Using the

Gray labeling, however, we observe only one bit error (cf. Tab. 1). In

contrast, using natural labeling, we would observe two bit errors in

some cases, for example when symbol 1 is transformed to symbol 2

during reproduction.

Second, we obtain a distribution of zeros and ones, that is closer

to a uniform distribution, since with probability 0.2545 + 0.2186 ≈
0.4732 we obtain 00 or 11 in the Gray labeled sequence, and with

probability 0.1659 + 0.3609 ≈ 0.5268 we obtain 01 or 10.

Consequently the entropy (and relative entropy) of a Gray la-

beled PUF response is H = 0.9979 ≤ log
2
(2). A Gray labeled se-

quence will subsequently be denoted with 𝒓 ∈ {0, 1}2𝑁 and will be

called PUF response. We define 𝑛 B 2𝑁 . We provide Example 2 to

motivate the benefit of extracting symbols from an higher-order

alphabet.

Example 2. Consider the last row of Tab. 1, and assume that we
directly extract a binary sequence of length 𝑛 = 1024, where a “0”
occurs with probability 𝑝0 = 0.4732 and a “1” occurs with probability
𝑝1 = 0.5268. This also yields an entropy of 0.9979, but only half as
many bits. Recall, that from the physical perspective this means: if
during reproduction an address is classified in a neighbored set (e.g.,
A [11] instead of A [12]), this results in a bit flip. Using the 4-ary
alphabet with Gray labeling only 1

2
of a block is affected in such a

case, since a block has the double length.

4.1 Uniqueness of PUF Responses
We study the uniqueness of PUFs by considering the relative inter-

response distance.

Definition 2. Let the vectors 𝒓𝑎 = (𝑟𝑎,1, . . . , 𝑟𝑎,𝑛) and 𝒓𝑏 =

(𝑟𝑏,1, . . . , 𝑟𝑏,𝑛) denote the initial responses of two PUFs 𝑎 and 𝑏. The
relative inter-response distance of these PUFs is

dist
inter

H
=

1

𝑛
· |{] : 𝑟𝑎,] ≠ 𝑟𝑏,] ,] = 1, . . . , 𝑛}|.

Desired is an average inter-response distance close to 0.5. The

average pairwise relative inter-response distances when using Gray

labeling and considering all PUFs is 0.48, while we instead obtain

an average value of 0.73 when comparing the 4-ary PUF readouts

instead. We explain the plausibility of the results by providing a

simple example.

Example 3. Considering the 4-ary PUF readouts

𝒖 = 1 3 0 3 2 1 3 2 0 2

𝒖 ′ = 3 2 1 2 0 2 2 2 0 2

we observe a relative Hamming distance of 7

10
= 0.7. Applying Gray

labeling on 𝒖 and 𝒖 ′ we get the binary PUF responses

𝒓 = 01 10 00 10 11 01 10 11 00 11

𝒓 ′ = 10 11 01 11 00 11 11 11 00 11

Multi-Valued PUFs based on DRAM MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

and hence, a relative Hamming distance of 9

20
= 0.45.

Fig. 5 shows the distribution of the pairwise relative inter-response

distance of the 4-ary PUF readout as well as for the Gray labeled

PUF response. The latter is close to the optimal value.

As further quality measure of uniqueness, we use the relative

Hamming weight.

Definition 3. Let 𝒓 = (𝑟1, . . . , 𝑟𝑛) be the binary response of a
certain PUF. The relative Hamming weight of 𝒓 is

wtH (𝒓) =
1

𝑛
· |{] : 𝑟] ≠ 0,] = 1, . . . , 𝑛}|.

The optimum value of the average relative Hamming weight

is 0.5. Fig. 6 visualizes the relative Hamming weights for the four

PUFs as well as the average value.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Relative inter-resp. dist.

N
u
m
b
e
r
o
f
o
c
c
u
r
e
n
c
e

rel. inter-resp. dist. Gray labeling

rel. inter-response dist. 4-ary

inter Jaccard index

Gray labeling:

min = 0.4722

mean = 0.4849

max = 0.4961

4-ary:

min = 0.7168

mean = 0.7319

max = 0.7471

Jaccard-Index:

min = 0.0000

mean = 0.0000

max = 0.0000

Figure 5: Pairwise relative inter-response distances of the
four PUFs.

In contrast to most other PUF constructions, literature on DRAM-

based PUFs usually uses the Jaccard index, since this measure is

applied to compare sets and memory addresses are represented as

sets. For comparability with results from literature on DRAM-based

PUFs, we also apply the Jaccard index, in addition the the Hamming

distance.

Definition 4. Let 𝐴 and 𝐵 be sets. The Jaccard index is defined
as

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | .

If we represent the addresses of weak cells of two different PUFs,

we result in a Jaccard index of 0, which is the optimal value for the

so-called inter-response Jaccard index and represents a high level of

uniqueness.

4.2 Reproducibility of PUF Responses
In the reproduction phase, for each refresh pause duration 𝑗 ∈
{9, 10, 11, 12} one measurement is conducted. Then, the sets in

1 2 3 4
0.48

0.48

0.49

0.49

0.5

0.5

0.51

PUF number

R
e
l
a
t
i
v
e
H
a
m
m
i
n
g
w
e
i
g
h
t

PUF 𝑖 , (𝑖 = 1, . . . , 4)

Mean

Figure 6: Relative Hamming weights of the four PUFs and
the average value.

Def. 1 are generated and responses are derived as explained above.

Recall from Ch. 3.3 and Fig. 3 that there exist always memory cells

that were classified as weak during initialization, but not during

reproduction, i.e., the set 𝐴𝑖𝑛𝑖𝑡 \𝐴rep. After initialization, we store

the set of addresses of cells that were classified as weak cells for

any refresh-off time 𝑗 in ascending order. Since the addresses in

𝐴𝑖𝑛𝑖𝑡 \ 𝐴rep were classified to be weak most often for 𝑗 = 12, we

guess that they belong to A [12]
. This leads to errors only in rare

cases.

We take the 4-ary PUF readouts as well as the Gray labeled PUF

responses of the four PUFs and use the validation set to check

the quality of reproduced responses. As quality measure for repro-

ducibility, we use the relative intra-response distance.

Definition 5. Let 𝒓 = (𝑟1, . . . , 𝑟𝑛) be the initial response of a
certain PUF and 𝒓 ′` = (𝑟 ′

`,1
, . . . , 𝑟 ′`,𝑛) be𝑚 reproduced responses of

the same PUF (` = 1, . . . ,𝑚). The relative intra-response distance of
this PUFs is

dist
intra

H
=

1

𝑚

𝑚∑̀︁
=1

(
1

𝑛
|{] : 𝑟`,] ≠ 𝑟 ′`,] ,] = 1, . . . , 𝑛}|

)
.

The average relative intra-response distances calculated over

all PUFs should be close to “0”. Using our measurements, the av-

erage relative intra-response distances of the Gray encoded PUF

responses is 0.0354, while calculating the distances based on the

4-ary PUF readouts results in 0.0694. Note that all responses are

produced under the same environmental (temperature) conditions.

We again explain the plausibility of the results by using a simple

example.

Example 4. Considering the 4-ary sequences

𝒖 = 0 3 1 2 3

𝒖 ′ = 0 2 1 2 3

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Mueelich and Sudarshan, et al.

we observe a relative Hamming distance of 1

5
= 0.2. Applying Gray

labeling on 𝒖 and 𝒖 ′ we get the binary sequences

𝒖 = 00 10 01 11 10

𝒖 ′ = 00 11 01 11 10

and hence, a relative Hamming distance of 1

10
= 0.1.

Fig. 7 shows the distribution of the relative intra-response dis-

tances of the 4-ary PUF readout as well as for the Gray labeled PUF

responses. The latter is close to the optimal value, such that the

remaining instabilities can be treated by applying techniques from

the field of error-correcting codes (cf. Ch. 5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

Relative intra-response distance

N
u
m
b
e
r
o
f
o
c
c
u
r
e
n
c
e

rel. intra-resp. dist. Gray labeling

rel. intra-response dist. 4-ary

intra Jaccard index

Gray labeling:

min = 0.0234

mean = 0.0354

max = 0.0537

4-ary:

min = 0.0469

mean = 0.0694

max = 0.1074

Jaccard-Index:

min = 0.9187

mean = 0.9404

max = 0.9549

Figure 7: Pairwise relative intra-response distances.

As already done for uniqueness in Ch. 4.1, we calculate the Jac-

card index according to Def. 4, to enable a comparison to literature

on DRAM-based PUFs. We consider the sets Ainit and Arep, which

include the cells that are classified as weak during initialization and

during reproduction, respectively. We obtain an intra-response Jac-

card index of ≈ 0.95 under stable environmental conditions, which

implies a high robustness.

4.3 PUFs with Challenge-Response Behavior
So far we considered responses that are generated solely based on

the hardware’s randomness. Another type of PUFs can be chal-

lenged with a binary sequence. The response is produced based on

that challenge in addition to the hardware’s randomness. A chal-

lenge and its corresponding response are called a challenge response
pair (CRP). For applications, like authentication, two conditions

have to be fulfilled. First, it is required to have a large amount of

CRPs. Second, based on known CRPs, it has to be impossible to

guess responses that correspond to challenges, which do not appear

in the set of known CRPs.

We outline an authentication scenario, as for example in [29],

which can be implemented with challengeable PUFs: Assume that

Alice wants to authenticate herself to Bob. During initialization, Bob

collects a set of CRPs from Alice and stores them in a trustworthy

database. During authentication, Bob chooses a CRP (𝒙,𝒚) and
sends the challenge 𝒙 to Alice. Alice challenges her PUF with 𝒙 and

sends the corresponding response 𝒚′
to Bob. If 𝒚 = 𝒚′

Bob knows

that 𝒚′
has to be produced by Alice’s PUF. Every CRP may be used

only once, since otherwise Eve can collect CRPs and provide correct

responses to some of the challenges in the future.

Due to the large amount of DRAM cells that are measured, it is

possible to define challenges to a PUF that yield to unique responses.

Therefore, we consider the set Ainit. Note that the cardinality of

Ainit was observed in the interval [19.808, 35.284]. For genera-
tion of responses, we want to measure a relatively small amount

of those cells, e.g., 1.024 (we define a challenge to be one of the

1024-elementary subsets of {1, . . . 15.000}). To use a conservative

estimation, there are ≈
(
15.000
1.024

)
such responses. This is in the order

of ≈ 2
5.000

, and hence, supports the requirement that an excessive

number of CRPs is desired in order to prevent learning algorithms

from setting up a mathematical clone.

We verify the idea by using PUF 1 and study the relative response

distances of several CRPs. The ideal value should be close to 0.5. We

generate 1.000 CRPs by choosing the challenges randomly followed

by evaluating the PUF according to the chosen challenge. Fig. 8

visualizes the results for both, 4-ary PUF readouts and Gray labeled

PUF responses. The latter are close to the optimal value, and hence,

provide an attacker from guessing the response to an unknown

challenge.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
· 10

4

Relative inter-response distance

N
u
m
b
e
r
o
f
o
c
c
u
r
e
n
c
e

rel. inter-resp. dist. Gray code

rel. inter-response dist. 4-aryGray labeling:

min = 0.4316

mean = 0.4813

max = 0.5366

4-ary:

min = 0.6582

mean = 0.7308

max = 0.7959

Figure 8: Pairwise relative Hamming distances of responses
generated for different challenges using the same PUF.

5 CHANNEL CODING
Error-correcting codes are a very powerful technique to counteract

noise that occurs in communication scenarios, when a message is

transmitted over a noisy channel. In the context of PUFs, error-

correcting codes are used to correct erroneously reproduced PUF

responses.

Multi-Valued PUFs based on DRAM MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

5.1 Preliminaries
A linear code over a finite field F𝑞 with𝑞 elements is a𝑘-dimensional

subfield of the vector space F𝑛𝑞 and is denoted as C(𝑞;𝑛, 𝑘, 𝑑). In
this notation, 𝑛 is called the codeword length, 𝑘 is the dimension,

and 𝑑 the minimum distance. Most often concatenated codes are

considered for error-correction in the context of PUFs. Using code

concatenation, long codes can be constructed by using two short

codes (inner code and outer code). The advantage is, that decoding

of the concatenated code is done by (multiple times) decoding the

short component codes, which is more efficient. Using C(𝑛o, 𝑘o, 𝑑o)
as outer code and C(𝑛i, 𝑘i, 𝑑i) as inner code, the concatenated code

has the parameters C(𝑛o ·𝑛i, 𝑘o ·𝑘i, 𝑑o ·𝑑i). The theory of concate-

nated codes can be found in standard textbooks, e.g. [4].

The following classes of linear codes are used in the design of

our concatenated code constructions: Reed-Muller codes [22, 25],

denoted as RM(𝑞;𝑛, 𝑘, 𝑑), Reed-Solomon codes [26], denoted as

RS(𝑞;𝑛, 𝑘, 𝑑), and BCH codes [2, 3, 10], denoted asBCH(𝑞;𝑛, 𝑘, 𝑑).
For construction methods, encoding and decoding of these code

classes, we also refer to standard textbooks, e.g., [4].

When designing error-correcting codes for PUFs, several require-

ments have to be fulfilled. The codeword length has to be equal to

the response length, since responses are mapped to codewords. The

code dimension 𝑘 serves as security parameter, since the scheme

can be broken by trying all 2
𝑘
possible codewords when guessing

the correct response. The block error probability obtained when

decoding corresponds to the probability that a response is repro-

duced incorrectly. Usually, a block error probability of 10
−6

or 10
−9

is desired when working with PUFs, depending on the underlying

hardware.

5.2 Secure Sketches
A secure sketch aims to guarantee PUF responses that are repro-

duced without errors. For this purpose, a PUF response has to be

mapped to a codeword. Since our final PUF response is binary, we

can directly apply the code-offset algorithm according to [6, 12].

Fig. 9 visualizes initialization and reproduction of the code-offset

algorithm, which we briefly review in this paragraph. During ini-

tialization, the initial PUF response 𝒓 is extracted from the PUF. A

random codeword of the used error-correcting code C is chosen and

added
1
to 𝒓 . The resulting vector 𝒉 is stored and serves as helper

data in the reconstruction phase. Note that 𝒉 and a representation

of C can be publicly stored in a helper data storage, since an at-

tacker cannot use this information to efficiently reconstruct the

initial PUF response 𝒓 .
During reproduction, a response 𝒓 ′ is extracted from the PUF. As

shown in Fig. 9, a vector 𝒚 that can be interpreted as received word

is obtained when adding 𝒉 to 𝒓 ′. If the distance between 𝒓 and 𝒓 ′ is
within the error correction capabilities of C, the decoding result 𝒄
is equal to the codeword 𝒄 , which was chosen during initialization.

Hence, adding 𝒉 to 𝒄 recovers the initial response 𝒓 .

5.3 Channel Model
Studying how the errors that occur during reproduction are dis-

tributed over the DRAM cells reveals that they occur relatively

1
Addition of binary vectors is performed component-wise modulo 2.

PUF

𝒓

𝒓 ′ = 𝒓 ⊕ 𝒆
= 𝒄 ⊕ 𝒉 ⊕ 𝒆

Helper

Data

Generation

𝒄 ∈𝑅 C
𝒉 := 𝒓 ⊕ 𝒄

C,𝒉
Helper

Data

Storage

𝒉 C

Pre–

processing

𝒚 := 𝒓 ′ ⊕ 𝒉
= 𝒄 ⊕ 𝒉 ⊕ 𝒆 ⊕ 𝒉
= 𝒄 ⊕ 𝒆

𝒚
Decoding

𝒄 = dec(𝒚)

𝒓 = 𝒄 ⊕ 𝒉
Key

Initialization

Reproduction

Figure 9: Visualization of the code-offset algorithm for PUFs
[20].

uniformly over all cells. Hence, for a first approach, it is reasonable

to assume a classical symmetric channel with bit error probability

𝑝 as channel model. We consider the Gray labeled PUF responses.

Since we decided to use a PUF readout of length 𝑁 = 1024 we

obtain a response length of 𝑛 = 2𝑁 = 2048. The maximum amount

of errors that was observed is 0.0537. Due to the small data set (and

the stable environmental conditions) we conservatively assume a

bit error probability of 𝑝 = 0.1 (this is an established procedure

how to estimate the bit error probability of the Binary Symmetric
Channel (BSC), for example, compare to [9]). Let the random vari-

able 𝑋 denote the number of errors in a sequence of length 𝑛. The

probability that 𝑖 errors occur in a sequence of length 𝑛 is

Pr{𝑋 = 𝑖} =
(
𝑛

𝑖

)
· 𝑝𝑖 · (1 − 𝑝)𝑛−𝑖 . (7)

The expected number of errors is

E{𝑋 } = 𝑛 · 𝑝, (8)

and hence, 𝑝 =
E{𝑋 }
𝑛 . Fig. 10 visualizes the cumulative distribution

function of 𝑋 . Pr{𝑋 ≤ 𝑖} is the probability that at most 𝑖 errors

occur. Hence, 1 − Pr{𝑋 ≤ 𝑖} is the probability that more than 𝑖

errors occur. The reasons for errors in reproduced sequences were

discussed in Ch. 3.3.

5.4 Error-Correcting Codes
We consider the Gray labeled PUF responses of length 𝑛 = 2048 as

in (7), (8) and Fig. 10. Let the random variable 𝑋 again denote the

number of errors in a response. From the cumulative distribution

function (cf. Fig. 10), we conclude that for all 𝜏 > 260 we have

Pr{𝑋 > 𝜏} = 1 − Pr{𝑋 ≤ 𝜏}
= 1 − 1

= 0.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Mueelich and Sudarshan, et al.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

𝑋 (Number of errors)

P
r
{𝑋

≤
𝑖}

Figure 10: Cumulative distribution function of the number
of errors.

Thus, we want to be able to correct 𝑡 ≤ 260 errors. This requires an

error-correcting code of minimum distance 𝑑 = 2𝑡 + 1 = 521.

Assuming a desired key length of 128 bit (e.g., for AES-128

[5]), the requirement is a C(2; 2048, ≥ 128, ≥ 521). This require-
ment can be fulfilled by an concatenated code, consisting of an

RS(26; 64, 32, 33) outer code, and an RM(2; 32, 6, 16) inner code.
The concatenated code C1 (2; 2048, 192, ≥ 528) is obtained.

Assuming a desired key length of 256 bit (e.g., for AES-256

[5]), the requirement is a C(2; 2048, ≥ 256, ≥ 521). This require-
ment can be fulfilled by an concatenated code, consisting of an

RS(27; 128, 42, 87) outer code, and an extended BCH code
2 BCH(2; 16, 7, 6)

inner code. This yields an overall concatenated codeC2 (2; 2048, 294, ≥
522). Note that the small code rates are common in the PUF sce-

nario, e.g., [24]. Of course, code 𝐶2 can also be used for a key of

length 128. However, the disadvantage then is the larger field size.

6 HASHING
Note that the final key is always binary in applications. Hence, in

this step, a perfectly reconstructed, error free binary PUF response

is assumed. This response is hashed to the final key length, for

example to length 128 if a key for the Advanced Encryption Standard
(AES) [5] is generated. This step is rather trivial and usually not

considered in the PUF literature. For completeness, we mention

that for example the cryptographic hash functions SHA-1 (used in

[9]) and SPONGENT (used in [19]) have been applied in the context

of PUFs before.

7 COMPARISON
In this section, we compare the new MVPUF processing chain

against the binary counterparts proposed in [21] and [28]. For the

2
Consider the BCH(2; 15, 7, 5) code (cf. [4]). By extension (which means by append-

ing “0” or “1” to each codeword such that the weight is even) a (𝑛,𝑘,𝑑) code can be

transformed into an (𝑛 + 1, 𝑘, 𝑑 + 1) code, if 𝑑 is odd.

sake of fair comparison, we consider only those work which uses

retention errors as the source of randomness. Table 2 shows the

comparison of this work against the aforementioned prior works.

The MVPUF responses achieve the highest entropy and requires no

additional debiasing algorithm. However, the proposed response

extraction technique is more time-consuming compared to binary

extraction. Since the proposed MVPUF processing chain can be

applied to other sources such as reduced latency and row hammer

that consume less time per readout. Hence, the increased readout

time will have a negligible effect during the reproduction phase for

these sources.

Table 2: Comparison of the proposed MVPUF processing
chain against the binary counterparts

This work [21] [28]
Refresh pause duration {9s,10s,11s,12s} 10s 10s or 20s

Debiasing Required No Yes Yes

PUF response Entropy 0.99 0.9 -

8 RELATEDWORK
In this section, we discuss the PUF response processing techniques

adopted in DRAM-based PUF literature for consistent key genera-

tion. In [30] a retention error based PUF was proposed. This work

employed a lightweight Hamming encoding/decoding algorithm to

counteract the noise in PUF responses and generated keys. How-

ever, Hamming codes are only capable of correcting single-bit errors

and detecting double-bit errors. [21] modeled retention errors ex-

tracted from the DRAM as a noisy communication channel and

extract channel models to identify the appropriate error-correcting

code. [21] proposed to use Temporal Majority Voting (TMV) in

combination with one of the 2 algorithms (i.e., choose length and

Von Neumann debiasing) to debias the raw bits extracted from the

DRAM after refresh off period. [21] proposed to use the helper

data scheme (i.e., fuzzy extractor [6]) as a pre-processing scheme to

reduce the noise [28], which is then fed to the error-correcting (i.e.,

BCH code) or decoding block for consistent key generation. [28] is

another retention error based PUF that also proposed to employ a

fuzzy extractor to reduce the response bit error rate by generating

helper data. Similar to [21], [28] also proposed to use choose length

debiasing and a linear error-correcting code, such as a BCH code,

for error correction. Both, [21] and [28] proposed the processing

chain applicable for binary responses. [1] extracted the randomness

by exploiting row-hammer errors and proposed to use a similar pro-

cessing chain as [28]. [14] used the errors occurring due to reduced

timing parameters as a source of randomness. [14] proposed a filter

mechanism that performs multiple iterations (in orders of 100) of

reduced latency reads. Only, the cells that exhibit sensing failure

probability greater than a certain threshold are considered as weak

cells in the PUF response. This technique is similar to TMV. To the

best of our knowledge, this is for the first time that a DRAM-based

multi-valued PUF is proposed that extracts non-biased responses

and generates keys with high entropy.

Multi-Valued PUFs based on DRAM MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

9 CONCLUSION
In this work, we proposed a complete PUF processing chain in-

cluding the first multi-valued PUF based on DRAM. We explained

how to extract PUF readouts over a 4-ary alphabet from DRAM

retention errors in order to increase entropy and to improve error

correction. We applied methods from the fields of channel coding

and hash functions to derive secure cryptographic keys that can

for example be used for the AES cryptosystem. The constructed

PUFs have an average inter-response distance of ≈ 0.48, an average

intra-response distance of ≈ 0.04 under stable environmental condi-

tions, and an entropy of up to 0.99 bit. In contrast to binary DRAM

PUFs that have been proposed in the literature, no extra debiasing

algorithms are required. In future work, robustness under varying

temperature conditions will be studied.

ACKNOWLEDGMENTS
This work was funded in parts by the Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation) under project FI

982/15-1 and project WE 2442/14-1. The project OPRECOMP ac-

knowledges the financial support of the EU FET programme under

grant agreement No.732631.

REFERENCES
[1] Nikolaos Athanasios Anagnostopoulos, Tolga Arul, Yufan Fan, Christian Hatzfeld,

André Schaller, Wenjie Xiong, Manishkumar Jain, Muhammad Umair Saleem,

Jan Lotichius, Sebastian Gabmeyer, Jakub Szefer, and Stefan Katzenbeisser. 2018.

Intrinsic Run-Time Row Hammer PUFs: Leveraging the Row Hammer Effect for

Run-Time Cryptography and Improved Security †. Cryptography 2 (2018), 13.

[2] Raj C. Bose and Dwijendra K. Ray-Chaudhuri. 1960. Further Results on Error

Correcting Binary Group Codes. Information and Control 3, 3 (1960), 279–290.
[3] Raj C. Bose andDwijendra K. Ray-Chaudhuri. 1960. On a Class of Error Correcting

Binary Group Codes. Information and Control 3, 1 (1960), 68–79.
[4] Martin Bossert. 1999. Channel Coding for Telecommunications. John Wiley &

Sons, Inc.

[5] Joan Daemen and Vincent Rijmen. 2002. The Design of Rijndael. Vol. 2. Springer.
[6] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. 2004. Fuzzy Extractors: How

to Generate Strong Keys from Biometrics and other Noisy Data. In International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
523–540.

[7] Daniel Fainstein, Sami Rosenblatt, Alberto Cestero, Norman Robson, Toshiaki

Kirihata, and Subramanian Iyer. 2012. Dynamic Intrinsic Chip ID using 32nm

High-K/metal Gate SOI Embedded DRAM. In Symposium on VLSI Circuits. IEEE,
146–147.

[8] Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas. 2002.

Silicon Physical Random Functions. In Proceedings of the 9th ACM Conference on
Computer and Communications Security. ACM, 148–160.

[9] Jorge Guajardo, Sandeep S. Kumar, Geert-Jan Schrijen, and Pim Tuyls. 2007.

FPGA Intrinsic PUFs and their Use for IP Protection. In International Workshop
on Cryptographic Hardware and Embedded Systems. Springer, 63–80.

[10] Alexis Hocquenghem. 1959. Codes Correcteurs d’Erreurs. Chiffres 2, 2 (1959),
147–56.

[11] Daniel E. Holcomb, Wayne P. Burleson, and Kevin Fu. 2007. Initial SRAM State as

a Fingerprint and Source of True Random Numbers for RFID Tags. In Proceedings
of the Conference on RFID Security, Vol. 7. 2.

[12] Ari Juels and Martin Wattenberg. 1999. A Fuzzy Commitment Scheme. In Pro-
ceedings of the 6th ACM Conference on Computer and Communications Security.
ACM, 28–36.

[13] Matthias Jung, Deepak M. Mathew, Carl C. Rheinländer, Christian Weis, and

Norbert Wehn. 2017. A Platform to Analyze DDR3 DRAM’s Power and Retention

Time. IEEE Design & Test 34, 4 (2017), 52–59.
[14] Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu. 2018. The DRAM

Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploit-

ing the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices. In

Symposium on High Performance Computer Architecture (HPCA). IEEE, 194–207.
[15] Patrick Koeberl, Jiangtao Li, Anand Rajan, and Wei Wu. 2014. Entropy Loss in

PUF-based Key Generation Schemes: The Repetition Code Pitfall. In International
Symposium on Hardware-Oriented Security and Trust (HOST). IEEE, 44–49.

[16] Jae W. Lee, Daihyun Lim, Blaise Gassend, G. Edward Suh, Marten Van Dijk, and

Srinivas Devadas. 2004. A Technique to Build a Secret Key in Integrated Circuits

for Identification and Authentication Applications. In Symposium on VLSI Circuits,
2004. Digest of Technical Papers. IEEE, 176–179.

[17] Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten Klein-

jung, and Christophe Wachter. 2012. Ron was wrong, Whit is right. Cryptology

ePrint Archive, Report 2012/064.

[18] Roel Maes. 2013. Physically Unclonable Functions: Constructions, Properties and
Applications. Springer Science & Business Media.

[19] Roel Maes, Anthony Van Herrewege, and Ingrid Verbauwhede. 2012. PUFKY:

A Fully Functional PUF-based Cryptographic Key Generator. In International
Workshop on Cryptographic Hardware and Embedded Systems (CHES). Springer,
302–319.

[20] Sven Müelich. 2019. Channel coding for hardware-intrinsic security. Ph.D. Disser-
tation. Universität Ulm.

[21] Sven Müelich, Sebastian Bitzer, Chirag Sudarshan, Christian Weis, Norbert Wehn,

Martin Bossert, and Robert FH Fischer. 2019. Channel Models for Physical Un-

clonable Functions based on DRAM Retention Measurements. In International
Symposium Problems of Redundancy in Information and Control Systems (REDUN-
DANCY). IEEE, 149–154.

[22] David E. Muller. 1954. Application of Boolean Algebra to Switching Circuit

Design and to Error Detection. Transactions of the IRE Professional Group on
Electronic Computers EC-3, 3 (1954), 6–12.

[23] Ravikanth Pappu. 2001. Physical One-Way Functions. Ph.D. Dissertation. Mas-

sachusetts Institute of Technology.

[24] Sven Puchinger, Sven Müelich, Martin Bossert, Matthias Hiller, and Georg Sigl.

2015. On Error Correction for Physical Unclonable Functions. In Proceedings of
10th International ITG Conference on Systems, Communications and Coding (SCC).

[25] Irving S. Reed. 1954. A Class of Multiple-Error-Correcting Codes and the Decod-

ing Scheme. IEEE Transactions on Information Theory (1954).

[26] Irving S. Reed and Gustave Solomon. 1960. Polynomial Codes over Certain Finite

Fields. J. Soc. Indust. Appl. Math. 8, 2 (1960), 300–304.
[27] André Schaller, Wenjie Xiong, Nikolaos Anagnostopoulos, Muhammad Saleem,

Sebastian Gabmeyer, Stefan Katzenbeisser, and Jakub Szefer. 2017. Intrinsic

Rowhammer PUFs: Leveraging the Rowhammer Effect for Improved Security. In

Hardware Oriented Security and Trust. IEEE, 1–7.
[28] A. Schaller, W. Xiong, N. A. Anagnostopoulos, M. U. Saleem, S. Gabmeyer, B.

𝒗Skorić, S. Katzenbeisser, and J. Szefer. 2019. Decay-Based DRAM PUFs in

Commodity Devices. IEEE Transactions on Dependable and Secure Computing 16,

3 (2019), 462–475.

[29] G. Edward Suh and Srinivas Devadas. 2007. Physical unclonable functions for

device authentication and secret key generation. In 44th ACM Design Automation
Conference. IEEE, 9–14.

[30] Soubhagya Sutar, Arnab Raha, Devadatta Kulkarni, Rajeev Shorey, Jeffrey Tew,

and Vijay Raghunathan. 2017. D-PUF: An Intrinsically Reconfigurable DRAM

PUF for Device Authentication and Random Number Generation. ACM Trans.
Embed. Comput. Syst. 17, 1, Article 17 (Dec. 2017), 31 pages. https://doi.org/10.

1145/3105915

[31] Fatemeh Tehranipoor, Nima Karimian, Kan Xiao, and John Chandy. 2015. DRAM

Based Intrinsic Physical Unclonable Functions for System Level Security. In Great
Lakes Symposium on VLSI. ACM, 15–20.

[32] Randy Torrance and Dick James. 2009. The State-of-the-Art in IC Reverse Engi-

neering. In CHES (Lausanne, Switzerland). 363–381. https://doi.org/10.1007/978-

3-642-04138-9_26

[33] Meng-Day Yu, Matthias Hiller, and Srinivas Devadas. 2015. Maximum-Likelihood

Decoding of Device-Specific Multi-Bit Symbols for Reliable Key Generation. In

Int. Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 38–43.
[34] Siarhei S. Zalivaka, Alexander V. Puchkov, Vladimir P. Klybik, Alexander A.

Ivaniuk, and Chip-Hong Chang. 2016. Multi-valued Arbiters for Quality En-

hancement of PUF Responses on FPGA Implementation. In Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 533–538.

https://doi.org/10.1145/3105915
https://doi.org/10.1145/3105915
https://doi.org/10.1007/978-3-642-04138-9_26
https://doi.org/10.1007/978-3-642-04138-9_26

	Abstract
	1 Introduction
	2 Physical PUF source
	2.1 Physical Unclonable Functions (PUFs)
	2.2 Dynamic Random Access Memory (DRAM)
	2.3 PUFs based on DRAM

	3 DRAM Readout and Digitization
	3.1 Measurement Setup
	3.2 Available DRAM Data
	3.3 Data Analysis
	3.4 Source
	3.5 PUF Readout Noise Handling

	4 Derivation of PUF Responses
	4.1 Uniqueness of PUF Responses
	4.2 Reproducibility of PUF Responses
	4.3 PUFs with Challenge-Response Behavior

	5 Channel Coding
	5.1 Preliminaries
	5.2 Secure Sketches
	5.3 Channel Model
	5.4 Error-Correcting Codes

	6 Hashing
	7 Comparison
	8 Related Work
	9 Conclusion
	References

