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ABSTRACT
The demand for main memory capacity is ever increasing in mobile
devices and embedded systems. Dynamic Random Access Memo-
ries (DRAMs) can not keep pace with the required main memory
capacities because of the restrictions in improving the cell den-
sity due to the slowdown in scaling and the high leakage power
consumption. Contrary, emerging Non-Volatile Memories (NVMs),
primarily Resistive RandomAccess Memories (RRAMs), offer a high
scaling potential and consume less leakage power than DRAMs.
However, they are not suitable to completely replace DRAMs as the
main memory, owing to their large read and write access latencies
and limited endurance. In this paper, we present the architecture of
a novel heterogeneous 3D-stacked on-chip main memory system
composed of DRAMs and RRAMs that can fulfill the memory ca-
pacity demands of future mobile devices. We evaluate the energy
savings of the new architecture for several applications, including
some emerging machine learning tasks on mobile devices, by con-
ducting system-level simulations in gem5 using ARM CPU models.
We explore and analyze the impacts of different hybrid memory
organizations and data allocation policies on reducing the energy
and total number of RRAM writes. On average, the new 3D-hybrid
architecture consumes 73% lesser energy and 61% lower average
power than a 2D-Hybrid memory architecture for applications from
the PARSEC benchmark. For a neural network training application,
the 3D-hybrid memory saves up to 60% energy in comparison with
a DDR4 DRAM-only main memory.
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1 INTRODUCTION
The demand for memory capacity in mobile devices and embed-
ded systems is increasing drastically. For example, on average, the
DRAM capacity in smartphones has increased by 50 % over the past
three years [37]. This growing requirement for memory capacity
arises mainly from the increase in mobile applications and their
memory footprint. Besides, today’s mobile devices keep several
applications in the DRAM in a compressed state when they are
idle in order to reduce the application relaunch time (an impor-
tant metric that affects the user experience) [9, 12]. Another factor
that contributes to the growing demand for memory capacity is
the ongoing paradigm shift from cloud-centric computing to edge
computing, particularly in machine learning. Compared to the con-
ventional cloud-centric machine learning where the data is acquired
at the edge and computed in the cloud, computing at the edge has
three major benefits: It requires less communication bandwidth,
reduces latency, and improves data privacy [11]. Machine learning
tasks, such as neural network inference and training, keep the net-
work parameters and the data in DRAM. Therefore, the memory
capacity requirements of smartphones and other edge devices will
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increase significantly in the future due to the widespread adoption
of such tasks on mobile devices.

With the increasing memory capacity, primary concerns for such
systems are the energy efficiency (since they are battery-driven)
and the average power—due to tight Thermal Design Power (TDP).
Studies have shown that DRAM can contribute 40−80 % of the total
energy consumption while performing machine-learning tasks on
mobile devices [4, 46]. DRAM refresh is a significant contributor to
the total energy that increases with its capacity [1]. The increased
refresh energy at larger memory capacity will decrease the energy
efficiency of mobile devices. On top of that, DRAM is facing severe
scaling challenges in advanced technology nodes (< 20 nm) [22, 31],
which limits the available memory capacity per area (density).

Due to the scaling challenges and the energy overhead of DRAMs,
DRAM-based main memory will not be able to meet the require-
ments of future mobile devices and embedded systems concern-
ing memory capacity and energy efficiency. On the other hand,
emerging Nonâ€“Volatile Memories (NVM), such as Phase Change
Memory (PCM) and Resistive Random Access Memory (RRAM),
are promising alternatives to DRAM due to higher density, scalabil-
ity, and no refresh energy. However, owing to their larger access
latencies and lower endurance (maximum number of writes), they
cannot fully replace DRAM in the main memory. Hence hetero-
geneous / hybrid main memory architectures composed of DRAM
and NVM are already in research (and also recently adopted by
industry—Intel’s Optane DIMM [16], JEDEC’s NVDIMM-P [18]).
However, prior work on hybrid memories mainly focused on their
use in High-Performance Computing (HPC) systems, and not on
mobile devices. Besides, from the memory technology point of view,
PCM has been extensively studied. Compared to PCM, RRAM has
substantially lower write energy, and shorter write access time [53].
Furthermore, the materials used for an RRAM device (e.g., HfO2
and TaO2) are compatible with the existing CMOS process and thus
enable easier integration. Therefore, in this paper we investigate
on RRAM based hybrid main memory for mobile devices.

The requirements of mobile devices differ from that of HPC sys-
tems. First, user experience is an essential element in evaluating the
performance of mobile devices. The quality of user experience is
determined by factors such as user perceivable responsiveness (user
response time) and smoothness of applications [48]. To ensure good
quality user experience, specific tasks, such as image processing and
real-time object recognition using neural networks, require main
memory with low latency and high bandwidth—i.e., DRAM. Sec-
ond, mobile devices have strong restrictions in terms of weight, size
and form factor when compared to HPC systems. Therefore, cur-
rent Dual In-line Memory Module (DIMM) based hybrid memories
cannot fit into those systems. Third, mobile Multiprocessor System-
on-Chip (MPSoC) have limited area and I/O pins. This restricts
the off-chip memory bandwidth. Moreover, it necessitates DRAM
and NVM sharing the same channel, causing interference with the
performance-critical applications running on DRAM. Therefore, ex-
isting 2D-hybrid memory architectures are not suitable for mobile
devices.

To meet the requirements mentioned above for mobile devices,
we present a novel 3D-heterogeneous main memory architecture
consisting of DRAM and RRAM. We discuss different use cases

of the proposed architecture in mobile devices. The major new
contributions of this paper are:

(1) An architecture of a novel 3D-heterogeneous main memory
composed of DRAM and RRAM.

(2) Evaluation of the new 3D-architecture against a 2D-hybrid
architecture.

(3) A detailed evaluation of the energy benefits and the perfor-
mance impacts of the new architecture for different hybrid
memory system configurations via full-system simulations
for two selected machine learning applications on mobile
devices.

2 RELATEDWORK
In this section, we describe an overview of the prior work on 3D-
stacked main memories and hybrid main memory systems.

2.1 3D-stacked DRAM and RRAM
There is plenty of previous research on on-chip main memories
using 3D-DRAMs, which are summarized in [43]. They provide
more bandwidth and energy efficiency compared to the off-chip
DRAMs. Among the few studies on 3D-stacked main memory ar-
chitectures using RRAM, Yu et al.[54, 55] proposed a monolithic
3D-RRAM composed of different tiers of 1T-1R memory arrays (cf.
Section 3) that are fabricated over the processing tier. However,
1T-1R RRAMs, due to the density and scalability problems ex-
plained in Section 3, are less likely to replace DRAMs. Moreover,
3D-monolithic stacking of 1T-1R cells is technologically difficult
due to the high-temperature processing steps needed for silicon
transistors—temperatures >1000°C required for fabricating transis-
tors in the upper tiers can damage the interconnects in the bottom
tier [36]. Therefore, it requires breakthrough technologies such as
Carbon Nanotube FET (CNFET) or Molybdenum disulfide (MoS2)
FETs [42]. In a recent work [35], the authors propose N3XT, an
energy-efficient abundant data computing system consisting of
monolithic integrated compute tiers and CNFET-based RRAMmem-
ory tiers. We see this as a promising solution for the future if the
technology will be mature.

In contrast to prior research that focuses only on 3D-RRAM, we
propose a heterogeneous (hybrid) memory architecture composed
of 3D-stacked DRAMs and RRAMs. We focus on crossbar memories,
as they provide more capacity than 1T-1R RRAM. To the best of
our knowledge, this is the first architecture of a 3D-integrated
heterogeneous main memory composed of DRAMs and RRAMs.

2.2 Hybrid Memory System Architecture
Hybrid main memory consists of DRAM and NVM (usually PCM)
has been in extensive research during the past decade.There exist
majorly two hybrid memory organizations: flat and hierarchical.

In the flat memory organization, both the DRAM and NVM are
available in the address space. Either the Operating System (OS)
[13] or the memory controller [33] manages the allocation and
migration of pages between these two memories during run-time.
While the optimal data placement on memories is an NP-complete
problem [57], a common approach is to monitor the NVM writes
and migrate the write-intensive pages (warm pages) to (from) the
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DRAM while keeping the cold pages in the NVM. The main draw-
back of this approach is that the tracking and migration overheads
increase with the rise in memory accesses and with the increase
in DRAM capacity. For example, when frequently read pages also
have to be migrated to the DRAM because the NVM read latency is
significantly higher than DRAM, the number of page migrations be-
tween DRAM and NVM increases drastically. Also, it increases the
number of NVM writes as all the evicted pages from DRAM (even
the unmodified) need to be written back to the NVM [50]. An-
other approach to manage the flat hybrid memory address space
is to provide applications direct load / store access to the NVM—a
new feature named as DAX in Linux and Windows OS [34]—and
statically allocate data to the NVM or DRAM. Although this is a
promising solution, it needs changes to the application software,
requiring programmers aware of the memory allocation, which
is abstracted in today’s high-level programming languages, such
as Python and Java. We evaluate this approach for the proposed
architecture.

In the hierarchical memory organization, DRAM acts as a hard-
ware managed cache to the NVM, and therefore not in the address
space. Tags are stored in the SRAM or in the DRAM (in the same
cache line along with the data). In the former case, large cache
lines are used (1 − 4KB) to reduce the SRAM capacity needed for
tag storage [32]. However, large cache line sizes often lead to un-
wanted data movements between DRAM and NVM—thus, wasting
bandwidth and energy—especially when the application has less
spatial locality. On the other hand, when tags are stored in the
DRAM, more fine granular cache line sizes (e.g., 64 B) can be used
[28, 51, 52]. Therefore, we also evaluate this approach for the pro-
posed architecture.

In contrast to prior work that focuses on 2D-hybrid memory
with PCM and DRAM, we investigate the proposed 3D-hybrid mem-
ory with RRAM and DRAM. We demonstrate the benefits of the
3D-hybrid compared to the 2D-hybrid. Besides, we also investi-
gate a mixture of the flat and hierarchical organizations—a hard-
ware + software approach—by providing applications direct access
to the RRAM and a portion of the DRAM, while using the remaining
DRAM as hardware managed cache to the RRAM.

3 BACKGROUND
In this section, we provide the basics of RRAM memory technology
and discuss the integration possibilities of a DRAM+RRAM hybrid
memory into a Mobile SoC.

3.1 RRAM
A basic metal-oxide RRAM device consists of a Metal-Insulator-
Metal (MIM) structure with the insulator layer composed of a binary
or ternary transition metal oxide (e.g. HfO2, TaO2, SrTiO3) [47].
The resistance state of the RRAM device, either a High-Resistance
State (HRS) or a Low-Resistance State (LRS), is used to store logic 0
and logic 1, respectively. When writing a 1 to RRAM, known as the
SET operation, it switches from HRS to LRS. When writing a 0 to
RRAM, known as the RESET operation, the device switches from
LRS to HRS. There exist different bitcell structures and array orga-
nizations of RRAM. A simple 1-Transistor-1-Resistor (1T-1R) RRAM
bitcell consists of an RRAM memory device and a MOS transistor

to access the memory device. In the memory array, all bitcells in
a row are connected to a common wordline similar to the DRAM.
This bit cell structure offers densities and read access latencies
similar to the DRAM. However, the width of the access transistor
does not scale along with the RRAM device scaling since the write
current requirements of RRAM devices remain unchanged. There-
fore, the bitcell area of this cell structure is limited by the access
transistor. Moreover, each memory cell needs to be connected to
the silicon substrate, making the vertical stacking of cells infeasible.
Due to these drawbacks RRAMs with 1T-1R bitcell structure are
not suitable for building high density memories [38].

Another RRAM cell structure is the 1-Selector-1-Resistor (1S-1R)
bitcell. It allows building memory arrays in a crossbar organiza-
tion [10] with the smallest bitcell area (4F 2), thus providing higher
memory density than DRAM. Also, multiple crossbar arrays can
be stacked vertically to form 3D-crossbar memory, thus further
reducing the effective cell area to < 4F 2 [10]. Nevertheless, the ac-
cess latencies of this bitcell structure is higher than that of DRAM,
mainly due to the large turn on and turn off delays of the selec-
tor [19, 40]. Selector delays ranges from roughly 10 ns to 50 ns
based on the selector properties and the switching mechanism
[6]. Another RRAM array organization, which is the 3D-Vertical
RRAMs (VRRAMs) [7, 49], provides scalability in the vertical di-
rection similar to NAND flash. However, the read latency of this
configuration (∼300ns) is also significantly higher than the typical
DRAM read access latencies due to the very small sensing cur-
rents (< 100 nA) [25]. 3D-VRRAMs are well suited for replacing
NAND flashs since they provide scalability in the vertical direction
with less fabrication steps compared to 3D-crossbar memories.

Among the different memory array organizations of RRAM dis-
cussed above, crossbar arrays are more suitable for main memories
since they provide a good trade-off between access latency and den-
sity. Therefore, RRAM crossbar memories are selected for further
investigations in this paper. As of today, RRAM has several relia-
bility issues, such as limited write endurance, which depends on
the programming conditions of specific cells in the memory array.
There are various circuit-level techniques and device-level opti-
mizations to overcome these limitations. In this paper we assume a
constant endurance for all cells in the memory array.

3.2 Hybrid Memory
In this section, we examine the various integration possibilities of
the hybrid memory (DRAM+RRAM) into a mobile SoC. There are
two options for integration: off-chip (2D) or on-chip (3D). In the 2D
option, which is typical for HPC systems, either dedicated channels
are added to the SoC for hybrid memory, or hybrid memories share
the same channel with DRAM. Although this architecture is ideal
for HPC systems because of its scalability, there are, however, three
drawbacks to this choice concerning mobile devices. First, the pin
limitations in mobile SoCs are more stringent because of the chip
area constraints. This restricts the number of channels. Second,
adding more pins will increase the average power consumption
due to the power-hungry I/Os. Third, sharing the same channel
with DRAM will cause interference with the performance-critical
applications running on DRAM.
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Table 1: Specifications of the DRAM and the RRAM Die

Parameter DRAM Die RRAM Die
Technology node (nm) 22 28
Capacity (Gb) 8 + 1 (for Cache TAG/ECC) 16
Die Size (mm) 9 × 11.5 11.7 × 12.6
Die Thickness (µm) 50 50
Number of Channels 4 4
Number of Banks per Channel 4 4
I/O width 72 4
Interface and Frequency DDR, 500 MHz DDR, 500 MHz
Burst Length (BL) 4 16

Hence, we argue for a 3D-hybrid memory architecture where the
DRAM and RRAM dies are stacked on top of the SoC and connected
via Through Silicon Via (TSV). We chose TSVs for our hybrid main
memory architecture because of their wide adoption in the industry.

4 ARCHITECTURE
The 3D-architecture of the proposed main memory system is shown
in Figure 1. It consists of two stacked DRAM dice, and four stacked
RRAM dice. The bottom layer, which is the System on Chip (SoC)
layer, includes 4 Hybrid Memory controllers (MCs). Our exemplary
system is composed of multiple DRAM and RRAM dice, which can
be stacked on top of each other. However, there are restrictions in
freedom of the stacking order. As we can see in Figure 1a, if the
DRAM is stacked on top of the RRAM, which would be from the
perspective of heat transfer a good solution, the wider I/O data
signals, power wires, and control lines of the DRAM have to be
routed (via TSVs) through the RRAM die. This will diminish the
usable area for the RRAM die. Therefore, we choose the option to
stack the RRAM dice on top of the DRAMs as shown in Figure 1b.
Furthermore, if the DRAM acts as a cache for the RRAM, more
frequently accesses go to the DRAM and not to the RRAM, thus it
is also an energy advantage.

Table 1 lists the parameters of the DRAM and the RRAM dice for
the architecture shown in Figure 1b. Architectural specifications of
the DRAM are based on the WIDE I/O 2 standard [17]. The detailed
architecture of the DRAM die is depicted in Figure 2. Each channel
has 72 bit wide data I/Os (instead of 64 bit in WIDE I/O 2) to the cor-
responding MC. The additional 8 bits are used for transferring the
cache tag or ECC bits. We implemented a split-bank architecture—a
bank is divided into two half-banks—to cope with the distributed
wide I/O interface, similar to a WIDE I/O [21] or HBM DRAM [8].
Each half-bank can deliver 144 data bits, which matches to the half
of the number of I/Os multiplied with the burst length (36×4 = 144).
Additionally, as we stack the RRAM die on top of the DRAM die,
we have to provide areas for pass-through RRAM TSVs as shown
in Figure 2.

The architecture of our RRAM die is based on the prototype
chip from [23] at 24 nm technology. This prototype chip has a die
capacity of 16Gb per layer and a die area of 130.7mm2. In com-
parison, our RRAM die provides the same capacity (16 Gb) with an
estimated area of 147.4mm2 (cf. Table 1) at 28 nm technology node.
However, the design from [23] had used a NAND-Flash compatible
interface. Since our design objective is to use the RRAM for main
memory, the internal architecture and organization of the RRAM
die resemble a typical DRAM.

Figure 3 shows the organization of the RRAM die. The 16Gb
die is divided into four channels. Each channel has 4 banks, and
there are 16 banks per die ( [23] has also 16 banks). A bank is
internally organized as 32 blocks; each block consists of 32 RRAM
crossbar arrays (sub-arrays) with the array size of 1Mb (1024×
1024). Various architectural design decisions were taken using the
architectural exploration framework from [26]. For instance, the
number of sub-arrays per block was limited to 32 as the global wire
delays significantly increase beyond that, thereby increasing the
read and write access latencies. Similarly, the crossbar array size of
1024×1024 was optimal for both read and write access latency as
well as energy.

In contrast to the row-buffer (primary sense amplifiers) in
DRAMs, we do not employ row-buffer in our RRAM architecture.
This is because the limited number of sensing and writing circuits
within a bank (area constraints) makes it necessary to perform
several serial accesses to the sub-arrays (address looping) in order
to fetch the data to / from the row buffer1. For instance, considering
64 sense amplifiers in one bank [23], an address looping of 64 is re-
quired to fill a row buffer of size 512B. This will drastically increase
the latency and energy of a row activate operation.

In our architecture, we access only one bit of data from each
crossbar array for the read and write operations. This has several
benefits: First, it allows to perform a writing 1 (SET operation)
and writing 0 (RESET operation) in a single step, thus achieving
balanced read and write latencies, which is advantageous for main
memory. Second, it allows reducing the write voltage of the crossbar
array, as the amount of sneak current and the metal line voltage
drop is significantly lower in a single-bit access compared to a
multi-bit access. The reduction in write voltage decreases the write
energy and improves the reliability of the array periphery (driver
transistors). Also, the reduction in sneak currents during reads
will improve the read sensing margin, enabling faster and more
reliable sensing, especially when the difference between the RRAM
resistance states (LRS and HRS) is minimal due to large variations.

Due to the single-bit access scheme, we fetch data from mul-
tiple sub-arrays in parallel. Therefore, in order to fetch 64 bits
per bank (I/O width × burst length), 64 sub-arrays are activated—
distributed over two sub-array blocks. To further increase the data
transfer size to the last-level cache-line size (32 Bytes), the same
bank spans vertically across different 3D-layers. E.g., bank 0 spans
across the four vertical dice, 4 (dice)×4 (data lines)=16 data lines
finally leading to 16× 16 (burst length) = 256 bits of data per access
to an RRAM vertical channel. Hence this vertical channel is assem-
bled like a vertical DIMMwith four RRAM x4 (4 data lines) die parts
forming an x16 (16 data lines) I/O channel to the corresponding
MC on the MPSoC die (cf. Figure 1b).

The bottom MPSoC die in Figure 1b contains different process-
ing cores (CPUs, GPU, accelerators), Level-1 (L1) and Level-2 (L2)
SRAM caches, off-chip memory controller, and MCs. Each MC con-
trols a single vertical DRAM channel and a single vertical RRAM
channel. The details of MC and its different operation modes are
described in Section 6. The off-chip memory controller provides
regular applications the access to LPDDR4 /DDR4 off-chip memory.

1RRAM and PCM employ current sense amplifiers that occupy more area than the
voltage sense amplifiers typically used in DRAM.
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Different dice in the 3D-stack are connected using TSVs and
microbumps. We assumed for the TSVs an implementation with a
diameter of 8 µm and a pitch of 16 µm, which is aligned to the mi-
crobump pitch for connecting the different 3D-layers. The lumped
capacitance we used in our evaluations was 100 fF for a single TSV
itself, and additional 50 fF for the microbump and the I/O circuitries.

The resistance for the TSV connection including the microbump
was assumed to be 50 mΩ. This technology data was presented
in several publications [29, 44]. We tried to minimize the number
of TSVs in this design since the primary application target is the
cost concerning mobile devices—the reliability of 3D-integrated
design decreases with the increase in the number of TSVs and
manufacturing costs drastically grows[41, 56].

5 APPLICATIONS
Applications on mobile devices can benefit from this architecture
in three different ways: 1 Emerging applications in the field of
machine learning, such as neural network training, can benefit
from the large memory capacity by accessing one or more channels
of the on-chip hybrid main memory. 2 The on-chip hybrid mem-
ory can be used as zram [14]: a swapping scheme used in mobile
devices (since Android 4.4) in order to reduce memory usage by
compressing the cold-pages and storing them in the in-DRAM swap
space (instead of using secondary storage as swap). A major draw-
back of this scheme is the premature termination of processes due
to the limited DRAM capacity in these devices, thus degrading the
user experience [15]. By employing the on-chip hybrid memory as
zram, this problem could be solved as more processes can remain in
the main memory without the massive energy overhead of DRAM.
Moreover, since the active processes are still in DRAM, the user
experience will not be degraded. 3 Performance-critical applica-
tions can leverage this architecture by allocating data directly in the
on-chip DRAM instead of accessing the slower and power-hungry
off-chip DRAM. To limit the scope of this paper, we focus only on
the first use case of this architecture in further discussions.

6 SIMULATION FRAMEWORK
This section presents the details of our simulation framework that
enables the system-level explorations of RRAM based hybrid main
memory architectures. Our framework supports both 2D- and 3D-
hybrid memory systems. The major difference between these two
systems concerning modeling is the communication protocol be-
tween the hybrid memory controller and the host CPU. The 2D-
hybrid memory system was modeled based on the NVDIMM-P
specifications of JEDEC [18]. In the 2D-hybrid memory system, the
hybrid memory controller is situated on the non-volatile DIMM
(NVDIMM)—i.e., outside the SoC. NVDIMMs typically share the
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same physical channel with DRAM DIMMs due to the pin limita-
tions. Hence, a DDR4 /DDR5 compatible protocol is required for
DIMM-based 2D-hybrid memory systems. We developed a custom
protocol based on recent discussions on the JEDEC’s NVDIMM-P
specification. On the other hand, in the proposed 3D-hybrid archi-
tecture, hybrid memory controllers are placed within the SoC (cf.
Figure 1). Hence they are directly connected to the on-chip bus (e.g.,
AXI).

Figure 4 shows the structure of our simulation framework. The
framework consists of several SystemC TLM 2.0 models of the hy-
brid memory (DRAM and RRAM) and memory controllers that are
coupled to the gem5 simulator, which serves as a realistic stimuli
generator. The hybrid memory controller comprises a configurable
frontend and a backend. The frontend consists of a single arbiter
and cache controllers for each channel. It can be configured to
three different operation modes representing the hybrid memory
organizations discussed in Section 2. Those are: cached (hierarchi-
cal), non-cached (flat), and semi-cached (flat + hierarchical). In the
cached operation mode, referred to as 3D-hybrid (3DH), the com-
plete DRAM in each channel is used as write-back cache for the
RRAM. Tags are stored in the DRAM alongwith the ECC bits similar
to the approach employed in Intel’s Knights Landing architecture
[39] for the HBM+DRAM hybrid memory. The non-cached oper-
ation mode, referred to as 3DH-Direct Access (3DH-DA), provides
a flat memory address space consists of both RRAM and DRAM.
The cache is bypassed in this mode. In the semi-cached mode, re-
ferred to as 3DH-DA with Cache (3DH-DAC), half of the DRAM in
each channel is configured as cache (similar to 3DH), whereas, the
remaining half is available in the address space. We modified the
physical page allocator of gem5 [3] so that the programmer can
specify the preferred address allocation region (i.e., RRAM /DRAM)
directly from the application, in both 3DH-DA and 3DH-DAC con-
figurations. The arbitration and mapping block of the controller
frontend coordinates with gem5 in forwarding the memory transac-
tions to the specified address regions. In addition to the operation
modes mentioned above, for the evaluations with RRAM only main
memory, the controller supports masking the DRAM; we call this
as RRAM only mode (RRAM).

The backend consists of models of DRAM[20] and RRAM con-
trollers. Each controller communicates with their respective mem-
ory model using an extended TLM 2.0 protocol with memory-
specific phases. The framework is integrated into the gem5 full-
system simulator to enable closed-loop simulations with the CPU.
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Figure 5: Accuracy Comparison of Two Scaled Systems.

Table 2: Specifications of the Simulated System.

Heterogeneous
Memory

2GB RRAM: tRL − tCCDR − tWL − tCCDW = 36 − 16 − 14 − 36 ns;

eRD − eWR = 903.6 − 2765.1 pJ ; Pleak = 2.7mW .

512MB 3D-DRAM: tRL − tRCD − tRP − tRAS = 12 − 14 − 14 − 24 ns;

IDD0 − IDD4R − IDD4W − IDD5 = 51 − 271 − 271 − 241mA.

DDR4 DRAM
2GB DRAM: tRL − tRCD − tRP − tRAS = 13.3 − 13.3 − 13.3 − 32.5 ns;

IDD0 − IDD4R − IDD4W − IDD5 = 243 − 738 − 675 − 472mA.

Processing
Core

ARM V8A HPI CPU, 2 cores, 64-bit, 2.0 GHz, L1 local cache (32 KB),

Shared L2 cache (64 KB), 32-Byte Cache-line

7 EXPERIMENTAL METHODOLOGY
To improve the accuracy, all simulations were performed by exe-
cuting applications on the detailed CPU model from ARM in the
gem5 System call Emulation (SE) mode. However, improving the
simulation accuracy will significantly increase the simulation time,
particularly when simulating applications with a large memory
footprint. Besides, when evaluating the hybrid memory configura-
tions in which DRAM acts as a cache to the RRAM, it is essential to
keep the memory footprint larger than the cache size. We kept the
memory footprint 3X the DRAM cache size to simulate the worst-
case scenario. A single channel of our hybrid memory consists of
2GB RRAM and 512MB DRAM. Since it was impossible to per-
form full-system simulations with such a large memory footprint
in a reasonable time (< 1 week for each exploration), we simu-
lated a scaled-down memory system with 4MB DRAM and 16MB
RRAM (scaling factor of 128). Also, the processor cache sizes were
reduced to the minimum size (cf. Table 2). It should be noted that
only the memory capacities (i.e., the address space) were scaled,
whereas, the timing and current specifications remained unchanged
so that the accuracy of the experimental results are not affected.
Figure 5 illustrates the accuracy comparison of two scaled hybrid
systems for the evaluated machine learning applications. It shows
that there is negligible variation in the accuracy of results from
scaling the memory system in the way we described. Table 2 lists
the major parameters of the simulated systems. The timings and
energy specifications of DRAM and RRAM dice were generated
using the architectural exploration frameworks [45] and [27], based
on the architectural specifications in Table 1.
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To compare the 2D- and 3D-hybrid systems (cf. Section 8.1),
we executed several applications from the PARSEC CPU bench-
mark suite [2] and twomachine learning applications—representing
supervised (neural network training) and unsupervised (kmeans)
learning. Since our goal is to investigate the 3D-hybrid memory
architecture for machine learning on mobile devices, we focus on
the machine learning applications for the comprehensive analysis
of different hybrid memory controller configurations in Section 8.2.
For evaluating our memory allocation policy in the hybrid mem-
ory controller configurations with flat address space (3DH-DA and
3DH-DAC), it was necessary to choose a C implementation of both
applications since the C allows memory allocation through the
malloc and mmap functions2. These functions are not directly ac-
cessible to the programmer in high-level programming languages,
such as Python. This restrained us from selecting the standard
benchmarks (which are written in Python or C++) for our eval-
uations. Therefore, we chose the C implementation of a neural
network training application from a publically available git repos-
itory [5]. This application performs training on the MNIST data
set for recognizing handwritten digits. It uses Stochastic Gradient
Descent (SGD) as optimization function. Since we focus on transfer
learning, our goal is not to train the network from scratch, instead,
to improve the accuracy of a pre-trained network. Therefore, all
simulations start with a pre-trained network with 75% accuracy and
finish when the network achieves an accuracy of 82%. Although
the selected network can achieve up to 92% accuracy in further
training, we limit the training accuracy to reduce the simulation
time. Likewise, for the kmeans application, we selected the C im-
plementation from [30]. The goal of this specific application is to
classify 8000 objects, each with 196 co-ordinates, into 3 clusters.
We limited the number of iterations to 3 in order to complete the
simulations within a reasonable time.

8 RESULTS
This section presents the experimental evaluation results of the
new 3D-hybrid memory architecture and demonstrates its bene-
fits over the 2D-hybrid memory. For evaluations of the 2D-hybrid
memory, we used the PARSEC benchmark suite. Although this is a
CPU benchmark not only focusing on embedded applications, we
used this benchmark to compare the 2D architecture, which is the
state-of-the-art for HPC, with the 3D architecture. For detailed as-
sessments of the 3D-hybrid memory architecture in mobile devices,
we used the emerging machine learning applications.

8.1 2D vs 3D-hybrid Memory
We first evaluate the benefits of the proposed 3D-hybrid main mem-
ory architecture against the 2D-hybrid memory and DDR4 DRAM.
The 2D- and 3D-hybrid memory controllers operate in the cached
mode—i.e., 2DH and 3DH, as described in Section 6. Figure 6 plots
the experimental results for the applications described in Section 7
normalized to the DRAM baseline—i.e., main memory consists of
only DDR4 DRAM. The results show that the 3DH system signif-
icantly reduces the energy and average power compared to the

2Although these functions access the logical address, we modified gem5 to make the
physical memory allocator aware of the two address regions: DRAM and RRAM, based
on the flags passed through these functions.

2DH and the baseline. On average (across all applications), the 3DH
consumes 73% and 68% lower energy compared to the 2DH and
DDR4 DRAM, respectively. Similarly, the average power for 3DH is
61% and 74% lower than the 2DH and DDR4 DRAM. However, the
performance degradation (cf. Figure 6a) is severe for some applica-
tions: e.g., the execution time of canneal is roughly 60% higher in
3DH compared to the baseline. The increase in execution time is
due to the low cache hit ratio (50%). Nevertheless, the Energy Delay
Product (EDP) for canneal is still 25% lower in 3DH compared to the
baseline (cf. Figure 6c). This proves that the proposed 3D-hybrid ar-
chitecture is better compared to the other two architectures. On the
other hand, the 2DH system shows EDP higher than the baseline
for most applications. This is due to the higher energy consump-
tion of 2DH compared to the baseline (cf. Figure 6b), emanating
from the memory accesses to the DDR4 DRAM cache. In the cache
implementation, tags are stored in the DRAM instead of SRAM.
Therefore, every access to the hybrid memory requires one DRAM
access for the tag look-up even for a cache miss, thus increasing
the energy overhead. Note here that there is no additional energy
overhead for a hit, as the data comes along with the tag. Hence, the
energy overhead of 2DH compared to the baseline is significantly
higher for applications with low cache hit rate, e.g., in canneal. In
contrast, accesses to the 3D-DRAM in 3DH configuration consume
significantly lower power and energy compared to DDR4 DRAM.
Hence this configuration has substantial power and energy savings
compared to the 2DH and the baseline.

Nevertheless, it is worth mentioning that the benefits of 2DH
will be significant when the memory system has capacity misses
leading to page faults. Due to the limitations of our experimen-
tal set-up, we are unable to simulate this scenario. Therefore, we
emulated an example scenario for the stream benchmark, on a
Linux virtual machine with 4GB DRAM and SSD based secondary
storage. The application memory footprint was set to 3GB. We
executed the application first with 4GB DRAM, and then with 3GB
DRAM (by reducing the virtual machine’s memory capacity). In
the former case, there were negligible capacity misses (swap space
usage was 20MB), while in the latter case, the OS starts using the
swap space (increased to 800MB) due to the lack of main memory
capacity, resulting in frequent page faults. As shown in Figure 7,
the average execution time of all stream kernels has increased by
at least one order of magnitude when the application has to access
the swap space (NAND Flash SSD) due to page faults. A hybrid
main memory (both 2DH and 3DH) will drastically reduce the
performance degradation in this scenario by leveraging the larger
capacity (compared to DRAM) and fast access latency (compared
to NAND Flash) of RRAM.

8.2 Evaluation of 3D-hybrid Memory
Architecture

In this section, we conduct a detailed investigation of the proposed
3D-hybrid memory architecture for different memory controller
configurations described in Section 6. Aforementioned in the previ-
ous section, the benefits of 3DH (reduction in energy and average
power consumption) come with a marginal performance degrada-
tion. This might not be acceptable for the mobile applications that
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Figure 6: Comparison of 2D- and 3D-Hybrid Memory Architectures with the DDR4 DRAM for various Applications
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directly affect the user experience (e.g., image streaming, neural net-
work inference), as mentioned in Section 1. Hence, the applications
that demand large memory capacity and not directly influencing
the user experience will be the preferred choice for the proposed
3D-hybrid memory on mobile devices. Therefore, we selected two
emerging big data applications on mobile devices that satisfy these
criteria. First, the neural network training (nn_train), which has
much significance in mobile devices due to the recent advance-
ments in Artificial Intelligence (AI) towards on-device learning—
e.g., to customize features, such as predictive keyboard and natural
language processing, to the individual mobile user. Second, the
conventional clustering algorithm, kmeans, an unsupervised learn-
ing technique that could be used to derive meaningful information
from the raw data on mobile devices (e.g., user activity and health
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Figure 8: Comparison of 3D-hybrid Memory Architectures for Neural Network Training and Kmeans Clustering.

data from the wearables, images from the camera). Details of these
applications are discussed in Section 7.

Allocating data to the DRAM and the RRAM address space is
still an open challenge for the hybrid memory with flat hierarchy—
i.e., 3DH-DA and 3DH-DAC configurations. We use a simple, yet
effective, workload-specific static allocation policy: the network (i.e.,
weights and activations) is stored in the DRAM since the training
involves frequent accesses and updates of the weights, the training
data is allocated in the RRAM since it involves mainly reads. We
follow a similar approach for kmeans: the cluster centroids and
distances are stored in the DRAM, unclassified data is stored in the
RRAM.

The experimental results of both applications are plotted in Fig-
ure 8 normalized to the baseline (DRAM). Similar to the previous
results in Section 8.1, all 3D systems demonstrate significant en-
ergy reduction compared to the baseline. Remarkably, the RRAM

only main memory offers the highest energy savings for both ap-
plications. However, it has also the largest performance degrada-
tion (∼ 75%) for the nn_train application (cf. Figure 8a). Compared
to the RRAM only system, the performance reduction of nn_train
is not severe in 3DH (∼ 25%) due to the high DRAM cache hit
rate (90%). In contrast, the low hit rate of kmeans (20%) worsens
the execution time and energy of 3DH compared to the other con-
figurations. It must be noted that the 3DH-DA with our simple
allocation policy performs equally or better than the 3DH for both
applications. Although the 3DH-DAC has higher execution time
and energy compared to the 3DH-DA, it provides more flexibility
to the programmer in memory management since it is infeasible to
track each allocation and de-allocation in complex programs.

When comparing the EDP in Figure 8c, RRAMonly configuration
is the best choice for both applications despite its more substantial
execution time for the nn_train. However, since RRAM has limited
endurance, frequent writes will damage the memory cells. There-
fore, the number of writes to the RRAM should be minimized. As
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Figure 9: Influence of the RRAM Selector Delay.

shown in Figure 8d, the nn_train has approximately three orders
of magnitude larger writes compared to the kmeans, in the RRAM
configuration. However, the number of writes for nn_train has sig-
nificantly reduced in the 3DH configuration (high cache hit rate),
thus improving the RRAM reliability. The reduction in writes for
kmeans is only marginal due to its low cache hit rate. Notably, our
allocation policy in 3DH-DA and 3DH-DAC significantly reduces
the number of RRAM writes compared to 3DH (approximately 10 X
reduction), in both applications. The 3DH-DAC enables the pro-
grammer to allocate data structures even with marginal–moderate
writes into the hybrid address space since the DRAM cache filters
the direct writes to the RRAM. Therefore, we expect this configu-
ration will perform even better in reducing the RRAM writes for
complex programs. Further research is needed in this direction.

8.3 Influence of Selector Delay
In this section, we evaluate how the increase in RRAM access laten-
cies due to selector delays (cf. Section 3) influence the performance

of the two machine learning applications for the different hybrid
memory configurations. Based on the reported numbers in [6], we
considered three selector delays: 10 ns (default for all evaluations),
20 ns, and 50 ns.

Figure 9 shows the normalized execution time for nn_train and
kmeans applications compared to the DRAM baseline. The execu-
tion time of nn_train significantly increases (up to 3 X) with the rise
in selector delay for the RRAM only configuration. In contrast, there
is an only marginal increase in the execution time for kmeans (up
to 15%) for the same system configuration. Notably, all three hybrid
configurations (3DH, 3DH-DA, and 3DH-DAC) are unaffected by
the selector delays for the nn_train application. This is due to the
large cache hit rate in 3DH, and due to the efficacy of our alloca-
tion policy in the other two configurations. Conversely, there is
a significant increase in the execution time for kmeans with the
rise in selector delays in all hybrid configurations. Apparently, the
higher sensitivity of execution time to the selector delay in the 3DH
system is due to the lower cache hit ratio. However, the increased
selector delay sensitivity in the 3DH-DA configuration shows that
there are still a few frequent accesses to the RRAM address space of
the hybrid memory, which could be allocated to the DRAM address
space by the programmer. In other words, this shows the potential
for further improving the allocation strategy. Notable here is the
lower sensitivity of the 3DH-DAC configuration to the selector
delay, although the execution time is yet higher than the 3DH-DA
due to the overhead of managing the DRAM cache. However, these
overheads can be reduced by improving the cache, for instance, by
introducing a miss-map structure to avoid the DRAM cache tag
look-up in the case of a miss [24]. Consequently, we expect that the
3DH-DAC configuration—i.e., the hardware-software approach—
will perform better even if the programmer fails to allocate some
pages in the DRAM address space that are frequently accessed.

9 CONCLUSION
In this paper, we presented the architecture of a novel heteroge-
neous 3D-main memory composed of RRAMs and DRAMs. This
new architecture exploits the capabilities of 3D-integration to com-
bine the benefits of RRAMs (high density, scalability, and low en-
ergy) and DRAMs (fast read/write accesses, and high endurance).
Thus, it offers large on-chip main memory capacities for emerging
big data applications on mobile devices. Our evaluations showed
that, on average, the proposed 3D-hybrid architecture consumes
73% lower energy and 61% lower average power than a 2D-Hybrid
memory architecture. Besides, we evaluated the new architecture
for various hybrid memory organizations using different machine
learning tasks on mobile devices. For a neural network training
application, the 3D-hybrid memory provides up to 52% and 60%
energy savings for the hierarchical and flat memory organizations,
respectively, compared to the main memory with DDR4 DRAM.
An RRAM only main memory offers the maximum energy savings
(75%) for this application. However, it suffers from 3–4 orders of
magnitude larger number of RRAMwrites than the hybrid memory,
thus causing endurance issues in the RRAM. Finally, we analyzed
the influence of RRAM memory cell selector delays on the perfor-
mance of these applications.
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