
Towards Application-Specific Address Mapping for Emerging
Memory Devices

Shashank Adavally

University of North Texas

Krishna Kavi

University of North Texas

ABSTRACT
Recent advancements in 3D-stacked DRAM such as hybrid memory

cube (HMC) and high-bandwidth memory (HBM) promise higher

bandwidth and lower power consumption compared to traditional

DDR-based DRAM. However, taking advantage of this additional

bandwidth for improving the performance of real-world applica-

tions requires carefully laying out the data in memory which incurs

significant programmer effort. To alleviate this programmer burden,

we investigate application-specific address mapping to improve per-

formance while minimizing manual effort. Our approach is guided

by the following insights: (i) toggling activity of address bits can

help determine strategies to improve parallelism within memory

but this metric underestimates conflicts and (ii) modern memory

controllers reorder address requests and therefore any toggling

activity measured from an address trace is non-deterministic. Fur-

thermore, our position is that analyzing individual address bits
results in poor estimates for actual conflicts and exploited paral-

lelism and that entropy needs to be calculated for groups of address
bits. Therefore, we calculate window-based probabilistic entropy

for groups of address bits to determine a near-optimal address map-

ping. We present simulation results for ten applications that show

a performance improvement up to 25% over fixed address-mapping

and up to 8% over previous application-specific address mapping

for our proposed approach.

ACM Reference Format:
Shashank Adavally and Krishna Kavi. 2020. Towards Application-Specific

Address Mapping for Emerging Memory Devices. In The International
Symposium on Memory Systems (MEMSYS 2020), September 28-October 1,
2020, Washington, DC, USA. ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/3422575.3422785

1 INTRODUCTION
High-bandwidth memory (HBM) offers much higher bandwidth

than traditional DRAM. For instance, DDR5 provides up to 51.6 GB/s

permodule [13], while HBM2e provides up to 640GB/s per stack [20].

However, extracting this additional bandwidth for real applications

can be challenging. One possible reason is that the memory requests

from a multicore CPU are often not distributed optimally across

the HBM resources causing conflicts for channels, ranks, banks or

rows.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8899-3/20/09. . . $15.00

https://doi.org/10.1145/3422575.3422785

One approach to maximize memory system performance for

high-performance computing codes is to manually layout the data

structure or reorder computational loops. Kripke
1
, for instance,

performs a sweep overmany possible data layouts and loop ordering

to find optimal layouts for memory accesses. This approach leads

to bloated code bases that can be be hard to debug and maintain.

We posit that there is a better approach to achieving the same

performance benefits—by making the mapping of address requests

to HBM structures programmable, exposing it to the superuser by

some mechanism, and developing a methodological approach to

determining the optimal address mapping for a given application.

Previous works have shown that application-specific address map-

pings are possible and that they can provide up to 16% performance

improvement. However, they require tedious manual evaluation

and the insights were based on a limited set of applications [4]. In

this work, we leverage their insights and design a rigorous approach

to determine near optimal address mapping for each application.

Furthermore, our position is that analyzing individual address bits
results in poor estimates for actual conflicts and exploited paral-

lelism and that entropy needs to be calculated for groups of address
bits.

Contributions. Towards supporting our position, we make the

following contributions in this paper.

• We propose a new metric to determine optimal address map-

ping from an address trace by considering address bits in

groups rather than individually. The proposed metric esti-

mates parallelism and conflicts more accurately than previ-

ous entropy metrics.

• We present a methodology to determine application-specific

address mapping. In our methodology, we hierarchically re-

solvemapping address bits to channels, columns, banks, bank

groups, and rows (in that order) making use of our proposed

metric in conjunction with metrics from past research.

We present experimental results of ten applications from high-

performance computing and graph processing that demonstrate

the performance improvements for our approach.

Findings. Application-specific address mapping based on entropy
of individual bits results in 5% performance improvement on av-

erage over a baseline application-agnostic address mapping. Our

approachwhich determines entropy of groups of address bits results

in 8% performance improvement on average over the baseline.

Organization. Section 2 provides pertinent background informa-

tion and Section 3 presents our approach. Our experimental setup is

described in Section 4. We present our results in Section 5, discuss

related work in Section 6, and conclude in Section 7.

1https://github.com/LLNL/Kripke

https://doi.org/10.1145/3422575.3422785
https://doi.org/10.1145/3422575.3422785
https://doi.org/10.1145/3422575.3422785

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Shashank Adavally and Krishna Kavi

2 BACKGROUND
In this section, we provide background on the internal organization

of HBM and other pertinent information.

2.1 HBM Organization
Figure 1 shows an example 4-layer high-bandwidth memory (HBM)

stack and its organization. The HBM stack is composed of a buffer

die and 4 DRAM dies. Each DRAM die supports 2 independent

channels for a total of 8 physical channels, eachwith an independent

128-bit interface to the host processor. The channels are clocked

independently and are the primary source of parallelism within

the memory subsystem. Each channel is composed of a set of 16

banks organized into 4 bank groups of 4 banks each. Each bank is

further sub-divided into a number of DRAM rows and columns. In

some cases, a physical channel may be subdivided into two pseudo-

channels to save energy and improve performance for some access

patterns.

An application’s performance can be improved by carefully opti-

mizing the data layout and choosing an optimal address mapping

which maps a physical address to DRAM structures (channels, bank

groups, banks, rows, and columns). Our hypothesis is that, for

memory-sensitive applications, choosing the right address map-

ping can result in performance improvements comparable to careful

data layout and loop ordering optimizations. We posit that an near-

optimal address mapping can be identified automatically based on

statistical techniques and without a knowledge of the algorithm.

We expect that this technique is more productive than techniques

that manually changes data layouts and/or reorder loops. In this

paper, we are concerned with choosing an near-optimal mapping

for a given application.

2.2 Row-buffer Locality and Bank-Level
Parallelism

An application’s performance can be improved by exploiting row-
buffer locality and bank-level parallelism offered by a given HBM’s

organization.

Row-buffer Locality. Accessing data from the memory typi-

cally involves: (i) opening a row (or DRAM page) by issuing an ACT
command, (ii) reading or writing one column worth of data via

RD/WR command, and (iii) in some cases, closing a row by issuing a

PRE command. In a standard HBM2 organization, activating a row

fetches 2 KB-wide [14] data into a row buffer, from which data can

be accessed in column width-sized chunks, with the width typically

matching the size of a CPU cache line (e.g., 64B). Accesses to an

already open row are faster as they avoid the latency incurred from

PRE and ACT command. Applications exhibiting high spatial locality

benefit from this wider row size relative to cache line and are said

to exploit row-buffer locality. Back-to-back accesses to the same

bank are serialized and to exploit parallelism, the accesses must be

spread across banks.

Bank-Level Parallelism.While the banks can operate in par-

allel, there are a number of restrictions imposed on them due to

some shared structures as well as current-draw limitations. Banks

within a bank group share a local data bus and the bank groups

within a channel share a global data bus.

Parallel data transfers to different banks in the same group are

serialized as they share a narrow bus. However, accesses to different

banks in different bank groups can be overlapped as they only share

the global data bus. Banks within a bank group can partially operate

in parallel. For instance, data transfer between bank A and the host

processor can be overlapped with opening or closing of rows in

bank B via ACT or PRE commands. That said, in a typical HBM, only

four ACT command can be issued in a time window known as tFAW

(four-activation window) which further limits parallelism across

banks.

2.3 Address Mapping
Given how HBM is organized, one may strive to improve bank-

level parallelism by spreading out one regular stream of accesses

across bank A of the four different bank groups and another stream

of accesses across bank B of another bank group. It is difficult to

analyze real application code to achieve this type of parallelism.

Although, modern memories use permutation-based mapping, it is

primarily focused on reducing row-conflicts. In permutation-based

mapping, least significant bits of row are XORed with the bank’s

address bits to generate a new bank ID. So, it tries to change the bank

ID whenever there is a change in row ID to prevent a row conflict.

It is intended to reduce row conflicts for certain strided pattern.

In real applications, the access patterns are more complex and

an automated approach in determining the near-optimal address

mapping strategy can help exploit both bank-level parallelism and

row-buffer locality.

It is unreasonable to expect the programmer to understand the

nuances of memory organization to properly layout their data in

memory. To complicate matters further, when running applications

in parallel, it can be hard to reason about access patterns seen by

the memory controller since requests come from many different

threads, resulting in an access pattern that was not originally in-

tended by the programmer. Therefore, it becomes necessary to

adopt an algorithm/code agnostic technique to determine the near-

optimal address mapping for an application. The potential uplift in

performance can be high — up to 60% performance improvement

has been observed in some cases [19].

3 METHODOLOGY AND APPROACH
In this section, we describe our high-level methodology and pro-

posed approach to determine a near-optimal application-specific

address mapping.

3.1 Methodology Overview
Figure 2 summarizes our methodology to determine an application-

specific address map. At a high-level, we run the application on

a reference multi-core CPU. We collect memory address traces

via a PIN tool [17]. From the address trace, we calculate three dif-

ferent statistical metrics — bit-flip count, bit-flip probability, and

repetitive counter — which are measures of exploitable parallelism

and toggle activities in address bits. Using a combination of these

three metrics, we determine the near-optimal address mapping

using the approach presented in Section 3.3. The metrics them-

selves and their limitations when used individually are described

Towards Application-Specific Address Mapping for Emerging Memory Devices MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

HBM Organization

Buffer Die

4-Hi HBM
Stack

CHANNEL 0 CHANNEL 1

CHANNEL 2 CHANNEL 3

CHANNEL 4 CHANNEL 5

CHANNEL 6 CHANNEL 7

TSV STRIP

BANK GROUP 0 BANK GROUP 1

BANK GROUP 2 BANK GROUP 3

BANK BANK BANK BANK

BANK BANK BANK BANK

BANK BANK BANK BANK

BANK BANK BANK BANK

CHANNEL BANK
DRAM
Rows

DRAM
Columns

Pseudochannel

Figure 1:HBMOrganization.Memory spansmultiple layers ofDRAMdice and is organized hierarchically into channels, banks,
rows, and columns. Banks are grouped and channels are sub-divided into pseudo-channels.

Application Trace Entropy

Optimal
Address
Mapping

Algorithm

CPU
Programmable

Memory
Controller (MC)

Hardware

Run application
to profile

Tracing memory
requests

Extracting entropy
behavior

Entropy behavior
as input

Program MC with
new address
mapping

Figure 2: High level steps to determine near-optimal address
mapping

in Section 3.2. Finally, we program the memory controller with the

calculated near-optimal address mapping.

3.2 Statistical Metrics
In our approach, we introduce a statistical metric which we term

“repetitive counter” to aid in the selection of an near-optimal address

mapping. We use this metric in conjunction with two other statisti-

cal metrics previously deviced by other researchers from — termed

“bit-flip entropy”[9] and “bit-flip probability”[16]. We note that each

of these metrics only address some aspects of address bit entropies,

but collectively these metrics better measure the randomness of

memory addresses accessed by applications.

Entropy measures the frequency of an address bit flip (changing

from zero to one or one to zero). It helps to determine the optimum

address bits to use to identify rows, banks, columns etc. For example,

Figure 3 shows a sequence of addresses in the left-most block and

each of the bit positions have been color-coded based on the bit

flip rate: bits with high flip rates are denoted with darker color,

bits with medium flip rates are marked with medium and bits with

low flip rate are denoted in lighter color. The intention is to map

least flipping bits to rows to reduce row conflicts and bits with high

flip rate to columns, banks etc to increase the spatial locality and

parallelism.

Low flip

Medium

High

Address sequence

Row

Bank

Column

1 1 1 0

1 1 1 1

1 1 0 0

1 1 0 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 0 1

Figure 3: Based on the bit flip intensity, respective bits are
mapped to a specific abstraction layer

Bit-Flip Entropy. Figure 4 shows 4 consecutive address requests
to memory. Consider bit 2 as highlighted. The behaviour of each

bit position is obtained by calculating the bit-flip rate. The final flip

count is shown at the bottom. Per the figure, bits with low flip rate

(i.e. bit flip count with 0 and 1) are used to identify rows (to reduce

the row conflicts by mapping to bits that flip less frequently), bits

with medium flip rate are used to identify banks and bits with high

flip rates are used to identify columns (to increase spatial locality

and bank-level parallelism).

Bit-Flip Probability. Figure 5 shows the same address sequence,

but shows the Bit Value Ratio (BVR). For example for bit 4, the BVR

is 0.75 since this bit has a value of one 75% of the time. Then bit

flip probability is calculated using BVR ratios when the bit is zero

and one, as min(BVR, 1-BVR). Based on the frequency of the bit

flip rate, address bits are mapped to different memory structures.

It should be noted that entropy is calculated based on a sliding-

window fashion to negate the entropy variance due to the requests

reordering in the memory controller. This method produces much

precise behaviour of bit-flip. Since this technique presents more

accurate entropy information for multi-threaded workloads, we

used this method in our study.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Shashank Adavally and Krishna Kavi

1 0 1 1 1 0 1 1

1 0 1 1 0 1 0 0

Counter array

Address Stream

0 1 0 2 1 2 3 3

1 1 1 1 1 1 1 1

1 0 1 0 1 1 0 0

ColumnBankRowMapping based
on bit count

Initialize count[2] = 0

No bit flip, count[2]=0

Bit flip, count[2]++

Bit flip, count[2]++

Count[2] = 2

Figure 4: Bit flip count method showing the final bit flip
count in the bottom for each address bit of the given address
stream [9]

1 0 1 1 1 0 1 1

1 0 1 1 0 1 0 0

Bit value ratio

Address Stream

1 0.25 1 0.75 0.75 0.75 0.5 0.5

1 1 1 1 1 1 1 1

1 0 1 0 1 1 0 0

ColumnBankRowMapping based
on bit count

0 0.25 0 0.25 0.25 0.25 0.5 0.5Bit flip probability

Figure 5: Bit Probability method describing bit flip probabil-
ity of the given address stream [16]

3.3 Proposed Approach
Before we describe our methodology, we will illustrate an existing

work [9] with another example. Figure 6 shows a sequence of 8 ad-

dresses with bit flip counts shown at the bottom. For simplicity, we

are assuming that the memory has only 1 channel, 0 bank groups,

8 Banks (similar to [9] configuration). We are required to map 8

address bits to rows, columns and banks. As proposed in [9], (and

shown in Table 1), bits with (medium) bit-flip count of 2 (viz., bits

0, 2, 4) are used to identify banks, bits with (high) bit-flip count of

4 are used to identify columns and the remaining bits are used to

identify rows. The main focus is to reduce the number of row con-

flicts. With today’s HBM technology (comprising multiple channels,

bank groups and banks), implementing this technique for address

mapping resulted in performance improvement. However, based on

a simple observation as discussed in Section 5, we can determine

that this technique may not achieve optimal address mapping (as it

may cause conflicts in banks). Also, with the availability of parallel

structures such as channels, bank groups and banks, it would be

0 0 0 1 0 1 1 0

0 0 0 0 0 1 1 0

0 0 0 1 0 1 0 0

0 0 0 1 1 1 1 0

0 0 0 1 0 1 0 1

0 0 0 1 1 0 1 1

0 0 0 1 0 1 1 1

0 0 0 1 0 1 1 0

Address Stream

0 0 0 2 4 2 4 2Bit entropy
+

Figure 6: Sample address stream and its bit flip behaviour

beneficial to utilize them in parallel; that is, improve Channel level

parallelism and Bank parallel utilization (BPU).
2

Co Co Ba Ba Ba Co Ba Co Ba Ba Ba Co Ba Co Ba

6

6

4

6

5

3

7

6

2

2

0

6

1

7

3

2

6

2

6

6

7

5

7

6

3 2 4 Repetitive counter

Combinations

0 0 0 1 0 1 1 0

0 0 0 0 0 1 1 0

0 0 0 1 0 1 0 0

0 0 0 1 1 1 1 0

0 0 0 1 0 1 0 1

0 0 0 1 1 0 1 1

0 0 0 1 0 1 1 1

0 0 0 1 0 1 1 0

Address stream

Figure 7: Methodology

We now introduce our technique that leads to a near-optimal ad-

dress mapping, so that requests are more evenly distributed among

channels, bank groups and banks. To simplify the explanation of

our technique, we assume that the memory is configured with a

single channel and has only banks (and no bank groups). As a first

step, we consider high entropy bits, and explore all possible per-

mutations of using these bits to identify banks and columns (not

rows). For example, from Figure 6, we identified 5 bits with high

entropy (viz., bits 0-4): for our example DRAM, we need two bits

for column ID and three bits for bank ID. Thus we can explore all 60

permutations of mapping these 5 high entropy bits for column and

2
BPU is quantified as the average number of banks in main memory that are being

used concurrently [10]

Towards Application-Specific Address Mapping for Emerging Memory Devices MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

bank addresses. We only show three possible permutations (out

of possible 60) in Figure 7. For each possible mapping, in a sliding

window fashion among memory requests, with a window size of

8 (since there are 8 banks), we track unique banks accessed in a

window. In the figure 7, the array under each permutation shows

the bank ID used for the specific address. At the end of address

trace, for each possible mapping we compute a “repetitive count”.

A repetitive count indicates, for a given mapping how many times

a bank is being used by multiple addresses. For example the right-

most address mapping results in 4 addresses mapped to bank 6 (i.e.,

repetitive count of 3) and 2 addresses mapped to bank 7 (i.e., repeti-

tive count of 1), giving a net repetitive count of 4. The permutation

with least repetitive count is considered the near-optimal mapping

configuration since it minimizes conflicts to banks (similarly for

channels or bank groups) and improve parallelism. So, out of the 3

permutations shown in figure 7, second permutation has the least

repetitive count for the example address trace, indicating that banks

are being used in higher degree of bank level parallelism. So bits 0,

1 and 3 are used to identify banks and remaining bits 2 and 4 are

used to identify columns.

Conventional address mappings try to preserve spatial locality

so that consecutive addresses are mapped to the same row (least

significant bits are used for column selection). However such an

assignment does not benefit from bank and channel parallelism

available. In our method, we select n bits with high entropy, where

n is the number of bits needed for selecting channels, bank groups,

banks and columns.

Algorithm 1: Near-Optimal Address Mapping

1: procedure SelectMap(trace,map)
2: Calculate bit flip count from trace

3: Sort and extract indices of n highest values

4: Permute all (nCc) combinations for channel assignment

5: For each permutation calculate repetitive counter value

6: Assign bits with the lowest repetitive counter to channels

7: Assign bits with the next highest bit flip count to columns

8: Permute remaining combinations for bank group

assignment

9: Identify optimum bank group assignment

10: Permute remaining high entropy bits for bank assignment

11: Identify optimum bank assignment via repetitive counter

Algorithm 1 outlines our method. Let us consider a realistic con-

figuration of HBM that consists of 8 channels (i.e., 3 bits for channel

address), 4 bank groups (i.e. 2 bits for bank group identification), 4

banks per group (2 bits for bank address) and 32 columns per row

(5 bits for column address; each column consists of 64 bytes). We

assume that each row in a bank contains 2KB. For such HBM system

we select n=12 bits with highest entropy. We start with all possible

permutations of 3 bits needed for channel address. Once we identify

the 3 bits that result in least repetitive count (as explained in previ-

ous paragraphs) and are set aside for channel address. These bits

are excluded from further consideration. We then set aside 5-bits

with highest entropy as column address. We then repeat selecting

optimal permutations (resulting in least repetitive count) for select-

ing bits to identify bank groups and then for selecting banks. The

Table 1: Simulation Setup

Configuration Description

Core configuration 128-entry

instruction window,

4 wide issue

Core count 8

Core frequency 3.2 GHz

Caches L1 32kB

8-way set associative

L2 128kB

8-way set associative

L3 8MB

16-way set associative

Memory type HBM 1Gbps

Memory channels 8

Memory size 4 GB

Memory controller queue size Readq-32; Writeq-32

Scheduling Policy FR-FCFS-Cap [18]

Baseline Memory Mapping SK Hynix GDDR5 [1]

(RoBaCoBaChCo)

remaining address bits are used for row address. Our methodology

identifies bits for the memory structures (channels, bank groups,

banks, columns and rows) to maximize memory parallelism.

One of the limitations with previously reported works is that bit

entropy alone does not lead to optimal address mapping since such

a mapping can still limit potential memory parallelism. Entropy

explains the bit flip behaviour but not the bit flip rate with respect

to other bits. More details will be discussed in section 5.

4 EXPERIMENTAL SETUP
In this section, we describe the experimental setup used to evaluate

our address mapping technique. We describe the simulation setup

used to evaluated the effectiveness of our technique, the workloads

used in this study and the technique to collect address traces.

4.1 Simulation Setup
We used Ramulator [14] for our simulations. The system configura-

tions used are listed in Table 1. We assumed a realistic multi-core

configuration with 128-entry instruction window, 4-wide issue

running at 3.2 GHz. Cores are supported by 3 levels of caches of

different sizes. We selected our memory type to be HBMwith multi-

ple levels of memory hierarchies like channels, banks, bank groups,

rows and columns with a memory size of 4GB and optimal sched-

uling policies. We assume a memory mapping similar to SK Hynix

GDDR5 (RoBaCoBaChCo) as our baseline.

We modified Ramulator to support and maintain OpenMP multi-

core ordering of memory requests (using time stamps with memory

traces as mentioned in section 4.2). Ramulator allocates all physical

pages randomly but in a real system, some portion of the pages are

allocated consecutively. So, we modified Ramulator such that the

address translation results in 40 percent consecutive pages and 60

percent random pages to mimic operating system allocation.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Shashank Adavally and Krishna Kavi

4.2 Workloads
A wide variety of workloads have been considered in our study, in-

cluding fromRodinia [8], graph processing [12], LLNL [15], HPCG [3],

GAP [6] suites and different micro benchmarks. More details of the

workloads can be found in Table 2. For each benchmark, we cap-

tured 1 billion instructions using modified Intel PIN tool [17] and

replayed them through Ramulator. Our modified PIN tool captures

actual CPU cycle-stamps along with other necessary data. So that

the address traces are replayed in the specific order of the cycle-

stamp to maintain the correct address ordering for multi-threaded

programs.

Table 2: Benchmarks description

Benchmarks Label Description

Sequential access SEQ Vector Addition

Strided access STR Stride Vector addition

Random-10 R10 Vector additionwith 10% of elements

accessed randomly

Random-40 R40 Vector additionwith 40% of elements

accessed randomly

Random-70 R70 Vector additionwith 70% of elements

accessed randomly

Hotspot HS Temperature simulation tool from

Rodinia

Kripke KR Deterministic particle transport

code

Breadth First Search BFS Graph traversal workload

High-Performance

Conjugate Gradient

HPCG SpMV and dot product

Triangle Counting TC Order invariant with possible rela-

belling

5 RESULTS AND ANALYSIS
From Figure 8, it can be observed that most of the workloads are

benefiting from our proposed technique except BFS. Our technique

generates near-optimal mapping that distributes the memory re-

quests across the channels, banks groups and banks. One of the

key differences we notice is the reduction in row conflicts com-

pared to the baseline and count-based entropy mapping. It should

be noted that the strided access workloads have higher improve-

ments over the baseline. This is because in strided workloads, the

spacial locality is minimal and leads to higher row conflicts with

sub-optimal address mappings. With three types of synthetic micro-

benchmarks, R10, R40, R70 (with different randomized memory

accesses), it can be seen that the difference in performance im-

provement between bit-flip count-based entropy technique and our

method is decreased. This can be explained as the randomness in

the application increases, performance difference between near-

optimal and non-optimal mapping techniques decreases because

the random requests cannot be guaranteed more even distribution

across channels, bank groups and banks. For benchmark BFS, our

methodology has lower row conflicts but smaller Bank Parallel

utilization (BPU). Figure 9 shows the reduction of row conflicts

compared to baseline. Using the proposed technique, row conflicts

have improved except for R70. We have seen 2% increase in row con-

flicts for R70 but with equal distribution of requests among banks

and channels, overall performance has improved by 7%. In Gen-

eral, we observed over 16% reduction in row conflicts on average

compared to the baseline.

Now let us return to the issue we raised in section 3.3. Figure

10 shows a stream of addresses and bit flip counts shown at the

bottom. It can be seen that the LSB portion of the bits have smaller

entropy when compared to MSB portion. As explained previously,

LSB bits are used to map to rows to reduce row conflicts and MSB

bits to columns to increase locality or to banks to increase bank

level parallelism. But the behaviour of each requests’ LSB bits (3

bits) is seen to be varying for each address request. As per suggested

mapping suggested in [9], had these bits been used to identify a row,

each of the request would create a row conflict. With our technique,

selection of the mapping bits is done based on the load distribution,

eliminating this problem.

5.1 Case Study: Kripke Application
Apart from regular compute workloads, this technique can be im-

plemented for HPC application codes. We considered Kripke [15]

as an initial scientific example. One of the main goals with Kripke is

to investigate how different data layouts effect performance. Kripke

supports 6 layouts using Directions(D). Groups (G) and Zones (Z),

and we explored a relation between data layouts with different

address mappings. Figure 12 shows the overall performance of dif-

ferent layouts running different workload configurations. It can be

seen that the best performing layout is different for each workload

size configuration. We can conclude that an optimal layout has to

be determined for each configuration to achieve the best perfor-

mance. Since Kripke is a 3-dimensional application, it is simpler to

sweep all layout possibilities across the loops to calculate optimal

layout. But this may not be a viable technique to determine optimal

layout for more complex workloads like 6-dimensional applications.

Instead of estimating the optimal mapping for each data layout,

we calculate a near-optimal mapping of one layout for a workload

configuration to improve the performance without modifying the

layout but changing the mapping of addresses to different HBM

structures.

5.2 Entropy Persistence
We wanted to explore if the computed entropy remains consistent

across different runs for a given application. This is because as

the system ages, the virtual-to-physical address mapping changes

and we verify the amount of variance this could introduce in the

calculated entropy. Such a study was not undertaken by others.

Since the proposed technique uses physical addresses, it is also

important to investigate the consistency of physical address bits

across multiple runs. For this purpose, we collect physical address

traces using "kpageflags" and "pagemap" files in linux, which pro-

vide necessary information on physical pages [2], and capture

physical addresses through modified PIN tool (traces the physi-

cal addresses that are computed using the information provided by

"kpageflags" and "pagemap" files) and replay them on Ramulator.

Towards Application-Specific Address Mapping for Emerging Memory Devices MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

-5

0

5

10

15

20

25

30

SEQ STR R10 R40 R70 HS KR BFS HPCG TC Average

Pe
rc

en
t

of
 im

pr
ov

em
en

t

Benchmarks

Performance improvement over baseline

Bit-flip count Proposed work

Figure 8: Performance results comparing past application-specific technique [9] and our proposed approach against a static
baseline. Our proposed approach improves performance up to 25% over the static baseline and up to 8% over previous ap-
proaches [9].

-10%

0%

10%

20%

30%

40%

50%

60%

Pe
rc

en
t o

f r
ed

uc
ti

on
 in

 ro
w

co

nf
lic

ts

Benchmarks

Row Conflicts improvement over baseline

Figure 9: Row conflicts improvements the static baseline.
Our proposed approach reduces row conflicts by 16% over
the static baseline.

We compared the change in performance of near-optimal address

mapping achieved by our technique over multiple runs, each with

potentially different physical addresses assigned to application. This

process of collection of traces, simulation and compute near-optimal

address mapping is repeated for multiple runs of each application

to validate the stability of entropy across possibly different physical

address assignments.

Figure 11 shows the bit-flip probability of hotspot benchmark

for each address bit. Y-axis shows bit-flip ratio (i.e. higher the value,

higher the probability that the bit flips) for each address bit (X-axis).

This figure includes bit-flip probability data from three different

runs of the benchmark and, measuring the entropy for each run.

The entropy for address bits is similar for most of the workloads

but in some some workloads, the entropy for Most Significant bits

(MSB) tends to differ slightly (it can also be seen in Figure 11). One

0 0 0 1 1 1
0 0 0 1 1 0
1 1 1 0 1 0
1 1 1 0 1 1
0 0 0 0 0 1
0 0 0 1 0 1
1 1 1 1 0 0
1 1 1 0 0 0

3 3 3 3 1 3

31 30 29 2 1 0Bit position

Bit flip entropy

Figure 10: Observed limitation in generating optimal map-
ping by depending solely on entropy

of the reason could be the change in locality of the physical pages

across multiple runs could have led to higher variation of MSB bits.

Overall, we observe that the average entropy variation is as low as

1% and at most as high as 6%. Although the variation in entropy

may reach 6%, it is limited to specific range of bits (i.e. MSB bits

25-31). We also observe that these variations do not lead to signifi-

cant changes in the near-optimal address mapping configurations.

And performance variations between these different mappings over

multiple runs is small (between 1%-4%). This supports that entropy

behaviour may show small variations between different runs, but

the impact on the overall performance using our address mapping

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Shashank Adavally and Krishna Kavi

0

0.1

0.2

0.3

0.4

0.5

0.6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B
it

 f
li

p
 p

ro
b

a
b

il
it

y

Bit position

Entropy behaviour of Hotspot workload across multiple runs

Run_1 Run_2 Run_3

Figure 11: Entropy consistency over multiple runs

0

0.5

1

1.5

2

16, 16 16, 32 16, 64 32, 16 32, 32 32, 64N
o

rm
a

li
ze

d
 e

x
e

c
u

ti
o

n
 c

y
c
le

s

Workload variations (Groups, Zones)

Execution cycles normalized to DGZ layout

DGZ DZG GDZ GZD ZDG ZGD

Figure 12: Multiple Layout performance under different
workload configurations

1.5E+09

1.55E+09

1.6E+09

1.65E+09

1.7E+09

1.75E+09

1.8E+09

1.85E+09

Baseline (DGZ) Optimal mapping (DGZ) Layout change (GDZ)

E
xe

cu
ti

o
n

 c
y

cl
e

s

Configuration

Performance

Figure 13: Comparison

does not vary significantly. Thus, we only need to run the applica-

tion once, collect traces and compute near-optimal address mapping

for the application. This mapping should be suitable for all future

executions of the application.

6 RELATEDWORK
Liu et al. [21] were among the earliest to show that the memory sub-

system performance can be improved by manipulating the address

map. Specifically, they proposed to hash bank bits of a physical

address with other address bits to create modified bank bits which

increased bank-level parallelism (and row-buffer hit rate). Our work

in comparison explores optimizing row, column, bank group, and

channel bits in addition to bank bits for better memory perfor-

mance. Bojnordi et al. [19] demonstrated the importance of having

a application specific mapping and their work shows performance

gains of up to 12%. While they projected the performance bene-

fits, reliable techniques to achieve the optimal mapping was not

described. Other works [21] propose permutation-based page inter-

leaving technique that decreases row-buffer conflicts by remapping

the conflicting request to a different bank. Our proposed work

focuses on broader level of memory hierarchy on distribution of

workload equally to among multiple channels, banks groups and

banks. DREAM [9] propose a method to extract memory access

pattern and estimate optimized address pattern. This study is lim-

ited to one channel and our investigation revealed that the similar

estimation technique for multi-channels may not work for all ap-

plications. In our work, we proposed a technique that performs

better for some applications in multi-channel configuration and

also investigated the reliability of entropy. Berkin [5] introduced a

mathematical framework to optimize data reorganization process

for common operations such as swap, transpose. Impulse [7] is

an improved memory controller that improves the effective use of

memory bandwidth by prefetching only the useful data in case of

scientific workloads like sparse matrix-vector product. Our work

focuses on optimizing address mapping for different types of appli-

cations. Self-OptimizingMemory Controller [11] is a Reinforcement

learning (RL) based memory controller, that dynamically adjusts

DRAM command scheduling policy based on the requirement, that

improves DRAM bandwidth usage efficiently. While it is important

to improve memory controller scheduling techniques, it is also

crucial to optimize the address mapping for different category of

applications.

7 CONCLUSION
In this paper, we investigated an address mapping technique that

achieves near-optimal performance gains. We also evaluated the sta-

bility of entropy (and thus consistency of address mapping) across

different runs of an application. Our technique is evaluated with

different workloads and noticed on average 8 percent performance

gains, and in some cases as high as 25 percent gains, when compared

to the baseline.We have also shown that our approach to computing

entropy is consistent across different runs with possibly different

physical addresses. We noticed very small performance variations,

between 1%-4%, across runs with different physical addresses, sug-

gesting that entropy varies very little for each application and thus

can be used more reliably for mapping addresses near optimally.

ACKNOWLEDGMENTS
The authors sincerely thank Vignesh Adhinarayanan (AMD), Der-

rick Aguren (AMD), Jagadish Kotra (AMD), Karthik Rao (AMD) for

their feedback on this work. The research is supported in part by

NSF award #1828105, and the NSF Net-Centric Industry/University

Cooperative Research Center.

REFERENCES
[1] [n.d.]. Hynix GDDR5 SGRAMPart H5GQ1H24AFR. http://www.hytic.net/upload/

files/2014/05/HYNIX-H5GQ1H24AFR.pdf.

http://www.hytic.net/upload/files/2014/05/HYNIX-H5GQ1H24AFR.pdf
http://www.hytic.net/upload/files/2014/05/HYNIX-H5GQ1H24AFR.pdf

Towards Application-Specific Address Mapping for Emerging Memory Devices MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

[2] [n.d.]. Linux pagemap. https://www.kernel.org/doc/Documentation/vm/

pagemap.txt.

[3] 2019. High Performance Conjugate Gradient. https://github.com/hpcg-

benchmark/hpcg.

[4] Shashank Adavally and Krishna Kavi. 2018. 3D-DRAM Performance for Different

OpenMP Scheduling Techniques in Multicore Systems. In 2018 IEEE 20th Inter-
national Conference on High Performance Computing and Communications; IEEE
16th International Conference on Smart City; IEEE 4th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 675–683.

[5] Berkin Akin, Franz Franchetti, and James C. Hoe. 2015. Data reorganization

in memory using 3D-stacked DRAM. 42nd ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA) (2015), 131–143.

[6] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP Benchmark

Suite. CoRR abs/1508.03619 (2015). arXiv:1508.03619 http://arxiv.org/abs/1508.

03619

[7] J. Carter, W. Hsieh, L. Stoller, M. Swanson, Lixin Zhang, E. Brunvand, A. Davis,

Chen-Chi Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama. 1999.

Impulse: building a smarter memory controller. In Proceedings Fifth International
Symposium on High-Performance Computer Architecture. 70–79. https://doi.org/

10.1109/HPCA.1999.744334

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron.

2009. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE
International Symposium on Workload Characterization (IISWC). 44–54. https:

//doi.org/10.1109/IISWC.2009.5306797

[9] Mohsen Ghasempour, Jim D. Garside, Aamer Jaleel, and Mikel Luján. 2015.

DReAM: Dynamic Re-arrangement of Address Mapping to Improve the Per-

formance of DRAMs. ArXiv abs/1509.03721 (2015).

[10] Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur

Mutlu. 2019. Understanding the Interactions of Workloads and DRAM Types: A

Comprehensive Experimental Study. ArXiv abs/1902.07609 (2019).

[11] E. Ipek, O. Mutlu, J. F. Martínez, and R. Caruana. 2008. Self-Optimizing Memory

Controllers: A Reinforcement Learning Approach. In 2008 International Sympo-
sium on Computer Architecture. 39–50. https://doi.org/10.1109/ISCA.2008.21

[12] Jewillco. 2015. Graph500-v2-spec. https://github.com/graph500/graph500/tree/

v2-spec.

[13] Dongkyun Kim, Minsu Park, Sungchun Jang, Jun-Yong Song, Hankyu Chi, Ge-

unho Choi, Sunmyung Choi, Jaeil Kim, Changhyun Kim, Kyungwhan Kim, et al.

2019. 23.2 A 1.1 V 1ynm 6.4 Gb/s/pin 16Gb DDR5 SDRAM with a Phase-Rotator-

Based DLL, High-Speed SerDes and RX/TX Equalization Scheme. In 2019 IEEE
International Solid-State Circuits Conference (ISSCC). IEEE, 380–382.

[14] Y. Kim, W. Yang, and O. Mutlu. 2016. Ramulator: A Fast and Extensible DRAM

Simulator. IEEE Computer Architecture Letters 15, 1 (Jan 2016), 45–49. https:

//doi.org/10.1109/LCA.2015.2414456

[15] Adam Kunen, Teresa S. Bailey, and Peter N. Brown. 2015. KRIPKE - AMASSIVELY

PARALLEL TRANSPORT MINI-APP.

[16] Y. Liu, X. Zhao, M. Jahre, Z. Wang, X. Wang, Y. Luo, and L. Eeckhout. 2018. Get

Out of the Valley: Power-Efficient Address Mapping for GPUs. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA). 166–179.
https://doi.org/10.1109/ISCA.2018.00024

[17] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:

Building Customized Program Analysis Tools with Dynamic Instrumentation. In

Proceedings of the 2005 ACM SIGPLAN Conference on Programming Languagen
Design and Implementation (Chicago, IL, USA) (PLDI ’05). ACM, New York, NY,

USA, 190–200. https://doi.org/10.1145/1065010.1065034

[18] Onur Mutlu and Thomas Moscibroda. 2007. Stall-Time Fair Memory Access

Scheduling for Chip Multiprocessors.. In MICRO. IEEE Computer Society, 146–

160.

[19] Mahdi Nazm Bojnordi and Engin Ipek. 2012. PARDIS: A programmable memory

controller for the DDRx interfacing standards. ACM Transactions on Computer
Systems (TOCS) 31, 13–24. https://doi.org/10.1109/ISCA.2012.6237002

[20] Chi-Sung Oh, Ki Chul Chun, Young-Yong Byun, Yong-Ki Kim, So-Young Kim,

Yesin Ryu, Jaewon Park, Sinho Kim, Sanguhn Cha, Donghak Shin, et al. 2020.

22.1 A 1.1 V 16GB 640GB/s HBM2E DRAM with a Data-Bus Window-Extension

Technique and a Synergetic On-Die ECC Scheme. In 2020 IEEE International
Solid-State Circuits Conference-(ISSCC). IEEE, 330–332.

[21] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. 2000. A permutation-based page

interleaving scheme to reduce row-buffer conflicts and exploit data locality. In

Proceedings 33rd Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO-33 2000. 32–41. https://doi.org/10.1109/MICRO.2000.898056

https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://github.com/hpcg-benchmark/hpcg
https://github.com/hpcg-benchmark/hpcg
https://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://doi.org/10.1109/HPCA.1999.744334
https://doi.org/10.1109/HPCA.1999.744334
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/ISCA.2008.21
https://github.com/graph500/graph500/tree/v2-spec
https://github.com/graph500/graph500/tree/v2-spec
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/ISCA.2018.00024
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1109/ISCA.2012.6237002
https://doi.org/10.1109/MICRO.2000.898056

	Abstract
	1 Introduction
	2 Background
	2.1 HBM Organization
	2.2 Row-buffer Locality and Bank-Level Parallelism
	2.3 Address Mapping

	3 Methodology and Approach
	3.1 Methodology Overview
	3.2 Statistical Metrics
	3.3 Proposed Approach

	4 Experimental Setup
	4.1 Simulation Setup
	4.2 Workloads

	5 Results and Analysis
	5.1 Case Study: Kripke Application
	5.2 Entropy Persistence

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

