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ABSTRACT
Design of edge devices is driven by the need for the lowest possible
cost and energy consumption. Both of these are strongly affected
by on-chip memories as they often constitute a large fraction of
embedded processors. One way to reduce energy consumption is by
reducing the supply voltage. However, this causes memory cell hard
fault rates to rise exponentially, thus degrading yield at low volt-
age and increasing cost. Also the weaker memory cells often lead
to worsened chip yield and mean-time-to-failure. Deep learning
neural network applications constitute a significant fraction of the
workloads that are run today on these low cost embedded devices.
Despite the inherent resilience of most of these deep learning appli-
cations, inference accuracy degrades significantly at high fault rates.
We propose SAME-Infer, a software assisted memory resilience
technique for efficient inference at the edge. It is a fault-aware
linking methodology for software managed embedded memories
to efficiently map the critical code/layers onto the non-faulty seg-
ments of the memory and the non-critical fault tolerant sections
in the faulty or error-prone memory segments. This is done in a
way such that memory hard faults can be tolerated and voltage be
lowered without degrading the accuracy (SAME inference accu-
racy at lower voltage/higher error rate). Our evaluation on 10 real
microcontroller class chips shows that more than 175mV reduc-
tion in voltage can be achieved without any loss in accuracy for a
variety of neural networks. SAME-Infer can also be considered as
an efficient fault tolerance/in-field repair technique as it tolerates
on average 25x (upto 350x) increase in bit error rate with minimal
impact on inference accuracy.

CCS CONCEPTS
• Computer systems organization → Reliability; Embedded
systems; •Hardware→ Fault tolerance;Hardware reliability;
• Software and its engineering → Embedded software; • Com-
puting methodologies→ Neural networks.
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1 INTRODUCTION
The demand for deploying deep learning neural network (DNN)
algorithms in edge and mobile devices is increasing. These appli-
cations are extremely compute intensive. Since the edge devices
are often energy constrained, it is critical to enhance the energy
efficiency of DNN inference on such devices. Further, these edge
devices are deployed in increasingly harsh environments resulting
in worsened hardware failure rates [8] but still require continued
reliable operation. To make matters worse, typical fault tolerance
techniques (sparing, system-level fault tolerance, error correcting
codes) are usually unaffordable due to cost or energy reasons in
these contexts. Furthermore, many of the faults are permanent or
semi-permanent and possibly wearout related. As a result, in-field
repair/replace, though needed, is very difficult in many environ-
ments.

The primary characteristics of embedded systems at the edge
of the Internet-of-Things (IoT) are low cost and low energy con-
sumption, which are both strongly affected by on-chip memories
[18]. On-chip SRAM-based embedded memories occupy a large
fraction of chip area and consume a significant portion of the over-
all system energy. To make these memories efficient, the embedded
systems community has increasingly turned to software-managed
on-chip memories – also known as scratchpad memories (SPMs)
[27] – due to their 40% lower energy as well as latency and area
benefits compared to hardware-managed caches [11].

One way to reduce the energy consumption of these on-chip
memories is by reducing the supply voltage. However, doing so
leads to an exponential rise in the memory cell hard fault rate. Also,
due to manufacturing variability, some memory cells turn out to be
weaker (or faulty) and often leads to bit-failures which affects yield
and, in turn, cost of these edge devices. These weak memory cells
also constrain the lowest voltage an SPM can be run at, and are
prone to aging induced failures. Running applications on a voltage
scaled device with faulty memory leads to erroneous behaviour of
the application.

On the other hand, DNN algorithms are known to be approxima-
tion friendly and fault resilient [26]. Previous works have shown
that if a few elements in the weight matrix or inputs are erroneous,
the final inference accuracy remains unchanged. These errors often
do not get propagated to the output or the perturbation these errors
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cause is negligible enough such that the final classification is not
affected. A recent body of work has focused on exploiting this char-
acteristic of Deep Learning (DL) networks by reducing precision
of computation through quantization as it does not affect accuracy
but significantly reduces storage requirement [17, 21]. Therefore,
DNN algorithms have an inherent capability of masking errors due
to memory faults if the errors occur in non-critical locations.

In this work we propose SAME-Infer, a lazy link-time fault-aware
memory mapping approach for Deep Learning networks. SAME-
Infer extends the software construction toolchain (compiler and
linker), for software managed memories, to intelligently map the
critical regions of the network in non-faulty memory segments
and non-critical fault tolerant regions in the faulty segments of the
memory. Contributions of this work include:

• We study the impact of memory faults on inference accu-
racy by approximating the error tolerance of each layer’s
weight and activation values. We extend this methodology
to approximate the error tolerance of every weight kernel
(per layer, per filter). Further, we use this methodology to
bin the data sections of a DNN program based on varying
degrees of criticality.

• We develop SAME-Infer approach to relink compiled pro-
gram based on memory fault map and the criticality measure
of the data partitions.

• We develop analytical models for predicting probability of
successful relinking given the program and the expected bit
error rate (BER).

• We evaluate the SAME-Infer approach on ten real micro-
controller class chips running 8-bit and binarized CNNs and
MLPs on well-known MNIST, Google Speech command and
CIFAR10 datasets. We measure the achieved energy reduc-
tion and fault tolerance. The results show opportunities of
memory voltage reduction by up to 175mV and 350x im-
provement in BER tolerance.

• We also show approaches which try to make trained net-
works generally robust (e.g., [23]) do not work as well as
SAME-Infer.

Thus, SAME-Infer provides a methodology to tolerate (and repair)
increased hard fault rate in systems with scratchpad based mem-
ories while maintaining the same inference accuracy for Deep-
Learning applications. The increased BER tolerance not only helps
to lower supply voltage and save energy, it also helps to tolerate ag-
ing induced faults. When in-field memory faults happen, it provides
a simple software patch solution alternative to difficult in-field re-
pair and/or expensive hardware replacement solutions. SAME-Infer
also provides significant cost saving since device manufacturers
can now save chips with fault-prone or faulty cells rather than
discarding them.

2 BACKGROUND
In this section we briefly present the essential background to un-
derstand our contributions.

2.1 Scratchpad Memories (SPMs)
SPMs are small, on-chip, low latency memories like caches that help
to reduce memory access latency by storing frequently accessed

data or instructions. However, unlike hardware managed caches,
SPMs are software managed, i.e., the placement of data in these
memories is orchestrated by the software (compiler/linker or pro-
grammer). Most SPMs in today’s edge devices are SRAM-based.
Such on-chip memories consume significant fraction of the chip
area (can be as high as 70% [1]) and contribute significantly to
overall power consumption.

2.2 Program Sections and Memory Segments
The Executable and Linkable Format (ELF) is ubiquitous on Unix-
based systems for representing program executable images in a
portable manner [7]. ELF files contain a header that specifies the
Instruction Set Architecture (ISA), Application Binary Interface
(ABI), a list of program sections and memory segments, and various
other metadata.

• A section is a contiguous chunk of bytes with an assigned
name: sections can contain instructions, data, or even debug
information. For instance, the well-known .text section
typically contains all executable instructions in a program,
while the .data section contains initialized global variables.

• A segment represents a contiguous region of the memory
address space (i.e., ROM, instruction memory, data memory,
etc.). When a final output binary is produced, the linker
maps sections to segments. Each section may be mapped to
at most one segment; each segment can contain one or more
non-overlapping sections.

Manipulating the mapping between program sections and segments
is the core focus of the proposed SAME-Infer approach.

2.3 SRAM Faults
SRAM faults can be primarily characterized as either soft or hard
faults. Soft faults manifest at runtime due to radiation induced high
energy particle strikes, value disturbance due to cell leakage etc.
Error Correcting Codes (ECC) is a typical approach to deal with soft
faults. Hard faults, on the other hand, include all recurring and/or
predictable failure modes that can be characterized via testing at
fabrication time or in the field. These include: manufacturing de-
fects, weak cells at low voltage, and in-field device/circuit aging
and wearout mechanisms [13]. Using ECC for low voltage induced
hard faults will require a very strong protection scheme with high
overheads, making them impractical in the context of low cost
platforms. A common solution to hard faults is to characterize the
memory, generate a fault map, and then deploy it in a system-level
mechanism (e.g., page retirement in systems which support virtual
memory) to hide the effects of hard faults. However, most IoT de-
vices are bare metal and do not have support for operating system
and virtual memory framework due to limited memory capacity
and energy budget. Simple solutions used traditionally by designers
to increase reliability are including spare rows and columns [30] in
the memory arrays and employing large voltage guardbands [16].
Unfortunately, as the voltage is scaled and the fault rate rises ex-
ponentially, sparing soon becomes insufficient. Also, large voltage
guardbands limit the energy proportionality of memory, thus reduc-
ing battery life for duty-cycled embedded systems [34], a critical
consideration for the IoT. Although there are several past works
that propose approaches for reliable operation in low voltage SRAM
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caches [9, 36], they cannot be used in the context of scratchpads
and embedded main memory and often incur impractical overheads
for low cost devices.

2.4 Fault Resilient DL networks
Most deep learning neural networks are known to be moderately
fault resilient because of the abundant redundancy present in these
networks. However, the resilience of a DL network depends on the
type of data (such as inputs vs. weights), data values, data-types
(32-bit float vs 8-bit integer), layer type/position in the network
(such as input layer vs. hidden layer, convolution layer vs fully
connected layer), etc [26]. Inherent resilience and redundancy in
neural networks has also been leveraged to reduce precision of
computation [17, 21] or for compression [20]. A recent work [23]
focuses on exploiting the fault resilient characteristic of these net-
works for performance improvements and energy savings in DRAM.
However, it requires the network to be retrained on the target ap-
proximate DRAM system. Such an approach is often infeasible for
low cost, compute/memory starved edge devices. They also pro-
posed offloading the retraining on a separate system using a random
bit error rate (BER). However, hard faults in memory (especially
at lower voltage in SRAMs) are often correlated and hence, mod-
eling the bit errors as a uniform random distribution is not very
accurate (as we show later in this paper). Our fault aware linking
approach is similar to [14]. However, unlike [14], we exploit the
approximation-tolerant nature of DNNs and use faulty regions of
memory to store appropriately non-critical regions of the program,
thereby delivering much higher energy reduction/fault tolerance
(more than 100mV min-VDD gain) as compared to [14].

3 SAME-INFER METHODOLOGY
Software construction toolchains, by default, consider the memory
address space to be contiguous and place the program code and
data accordingly. However, with hard faults in the memory, the
contiguous placement of data and code can result in the intersection
of program sections with faults, making the system and program
execution unreliable. SAME-Infer extends the default toolchain so
that it is fault-aware and has the ability to incorporate the fault
map while placing instructions and data into the memory with
faults. Thus, at software deployment time, SAME-Infer, with the
help of the modified toolchain, prepares a customized binary for
each chip such that all critical sections of the program are placed
in non-faulty contiguous memory segments and the non-critical
sections in memory segments containing faults.

Figure 1 shows the complete SAME-Infer flow. In order to be
able to place program sections into different memory segments
efficiently, the monolithic program sections such as .text and .data
need to be split up on a per-function and/or a per-variable basis so
that each smaller section can be mapped to a particular memory
segment by the fault-aware linker. In order to do that, the program-
mer initially needs to compile the code using special compiler flags
for GCC (-ffunction-sections and -fdata-sections) so that
the compiler can place each subroutine and global variable into
their own named sections in the ELF object file. After compiling
the code the programmer does not link the object files. In the next

step, the object file is parsed using standard ELFIO C++ library [25]
to record the name of each program section and its size.

Once the program sections and their sizes are recorded, the sec-
tions are then annotated with their criticality level (i.e., how many
least significant bit (LSB) errors can be tolerated). The section pack-
ing algorithm (described later in Section 3.2) then iteratively maps
sections to segments starting with most critical sections first (each
criticality level gets its own memory fault map). If the tool provides
a feasible solution, a part of the customized linker is generated
based on that solution for the critical program sections. The stack
and heap are placed in the largest remaining non-faulty contiguous
memory segment.

3.1 Fault Impact Analysis
The non-critical sections of the network (in this work we considered
weights and activation data as non-critical sections) are fault re-
silient, but upto a certain degree. Naively placing these non-critical
sections in the memory can dramatically impact accuracy. As a re-
sult it is important to measure the effect of bit errors in each of these
non-critical weights and activation data on overall accuracy. In the
ideal scenario, it is required to search for the the highest tolerable
bit error rate (maximum error) of each weight and activation data
that would still yield an acceptable inference accuracy. However,
this search space is exponential, given the total number of weights
and activations in a reasonably sized DNN. In order to keep the
granularity of sections reasonable, we did layer-wise sensitivity
analysis of the weights and activations to understand the impact of
each layer’s weights and outputs on the overall accuracy.

The approach to calculate inference error sensitivity to bit er-
rors leverages the quantization approach proposed in [28]. We
essentially approximate bit errors in the k least significant bits by
reducing the precision by k bits. For example, in our 8-bit 2 layer
MLP network (weights and activations have 8-bit fixed point preci-
sion), the most sensitive weights (layer-1 weights) can be quantized
down to 5 bits without loss in accuracy. We interpret this as layer-1
weights can have upto three bit errors in the least significant 3 bits.
The fault map for layer-1 weights, thus, will contain all memory
addresses where there is an error in the most significant 5 bits.

3.2 Packing Critical and Non-Critical Sections
We solve the section to segment mapping problem iteratively. In a
8-bit network, we allow 5 criticality levels: from 0 to 4 LSB errors.
For every criticality level, the corresponding program sections are
identified from the sensitivity analyses above. For every chip, the
fault map is obtained from a software/BIST memory testing routine.
The fault map is different for every criticality level depending on
how many LSB errors can be tolerated. Section packing is then
solved in criticality order (most critical first) i.e., the section packing
algorithm is run 5 times (in the 8 bit case) sequentially each time
with a different fault map and availablememory segments. A sample
packing solution is shown in Figure 2.

The section-packing problem itself, is a variant of the Multiple
Knapsacks problem [3] which we solve using an ILP1 with multiple
criticality levels. The objective is to minimize the number of packed

1Number of sections/segments is small enough that the ILP runtime was always less
than 20 seconds in our experiments.
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Figure 1: SAME-Infer procedure: given source code of a DL network and a memory fault map, produce a per-chip custom
binary executable that will work in presence of known hard fault locations in the SPMs.

memory segments so that there are large enough chunks of memory
in between the packed segments to accommodate the program sec-
tions for the remaining criticality levels. This objective also helps
to naturally provide a solution that avoids memory regions with
higher fault densities. The placement algorithm ensures that no
weights or activation data of a particular layer intersects with faulty
bytes that have errors in the intolerable more significant bit posi-
tions. The algorithm also ensures that these non-critical sections
do not overlap with the already placed critical program sections.
Once this mapping is done, the linker generates the customized
binary ready to be deployed on that particular chip.

Figure 2: A sample section packing solution provided by
SAME-Infer. The critical sections are placed in fault free
memory segments while the non-critical sections intersect
with faults (grey regions represent fault locations). The
stack and heap is placed in the largest non faulty contigu-
ous memory segment remaining after placing the critical
sections.

3.3 Breaking up monolithic weight sections
into smaller kernels

We observe that SAME-Infer fails when the packing of the largest
section fails. A lot of times the largest section turns out to be a
data section corresponding to a particular layer’s weight. One way
to relieve this would be to do a one-time simple modification of
the source code where the weight data sections are broken down
into smaller sections. A simple way to do this would be to break up
the convolution layer weights on a per-filter basis. This splitting
induces no code space overhead as the same functions can be used,
the only additional step would be to concatenate the final output.
The layer-wise sensitivity analysis of the weights in [28] can be
modified to compute weight quantization noise gain on a per layer
per filter basis as shown below:

EW ,l,k =


M∑
i=1
i,Yf l

∑
h∈Wl,k

���� ∂(Zi−ZYf l )∂wh

����2
24

���Zi − ZYf l

���2


(1)

Here,M is the number of classes, {Zi }Mi=1 are the soft outputs, ZY f l

is the floating point output, and {{Wl,k }
L
l=1}

NC

k=1 are the per layer
(L is the total number of layers), per filter (Nc is the number of
filters in layer l ) weights.

We computed the per filter quantization noise gain for a large
CNN (with 6 convolution layers and 3 fully connected layers). The
network architecture is 32C3− 32C3−MP2− 64C3− 64C3−MP2−
128C3 − 128C3 − 256FC − 256FC − 10 using CIFAR-10 dataset [5].
The layer 1 and 2 filter wise quantization noise gain results obtained
using Equation 1 are shown in Figure 3. From the results it can be
seen that the sensitivity of the weights across kernels varies signif-
icantly. Since the precision assignment matches the quantization
noise gain profile on a logarithmic scale, using the same number of
least significant bits for error tolerance for every weight in a layer
might lead to under utilization of available network redundancy for
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energy efficiency. In Section 5.2, we analyze the min-VDD benefits
of weight splitting.

Figure 3: Weight quantization noise gain per filter - layers 1
and 2 of a nine layer CNN.

Finding the best split size: The smallest granularity at which
the non critical sections need to be split in order to be able to
run at a given voltage can be determined from Equation 3 in the
next subsection. Note that going to finer-grained splitting than
what is "natural" for neural networks (layer/filter), would require
fairly intrusive code changes which we want to avoid. Furthermore,
making the split granularity much smaller than section sizes in code
part of memory (dictated by the code and not weights/activations)
is not useful as code memory will limit the voltage scalability in that
case(Figure 7). In this work, we limit splitting to a filter granularity.

Performance and Code Size Overheads. We evaluated the per-
formance and code size overheads of splitting up data and code
sections on a per-variable/per-function basis and placing them in
non-contiguous memory segments. The performance impact is
almost negligible (∼ 0.1%). This is because of static allocation of
program sections. Also, since stack and heap are not split, there are
not any additional performance overheads due to increased pointer
chasing. There is no impact on code size since the source code re-
mains unchanged and hence, the size of the final executable that is
loaded into the memory also remains unchanged. Even splitting to
a filter granularity resulted in minimal code changes and negligible
(∼ 1%) code size overhead.

3.4 Analytical Critical and Non-critical Section
Packing Estimation

The section packing mostly fails when the largest program section
is larger than the largest non-faulty contiguous memory segment.
We extend the packing failure probability model developed in [14]
to account for multiple criticality levels. The analytical model is
based on the probability distribution of the longest consecutive
sequences of coin flips as provided in [29]. Let Lk be a random
variable representing the length of the largest run of heads in k
independent flips of a biased coin (with p as the probability of
heads). The following equation is an approximation for the limiting
behavior of Lk , i.e., the probability that longest run of heads is less
than x and assuming k(1 − p) ≫ 1 [29]

P(Lk < x) ≈ e−p
(x−logp−1 (k (1−p)))

. (2)

We only consider the largest critical program section size (mmax).
Let b be the i.i.d. bit-error-rate and s be the probability of no errors
occurring in a 32-bit word, i.e., s = (1 − b)32. For a total memory
capacity of size bytes, we can approximate the probability of there
not being a memory segment that is large enough to store the
largest program section [14]:

P
(
Lsize/4 <

mmax
4

)
≈ e−s

(mmax
4 −logs−1 (

size
4 (1−s )))

. (3)

For multiple criticality levels, we need to iteratively perform
the estimation for each section since the fault tolerance capability
of different sections is different. We use the same equation 3 for
approximating the packing failure probability. However, size and
s varies between program sections. For example, if each weight of
a particular layer is n bits and it can tolerate errors in upto kbits
from the LSB, then

s =
(
(1 − b)(n−k )

)32/n
(4)

This value of s is then substituted in equation 3. We start with
the most critical weights and activations. For that layer, the size
of the memory is taken as size − sizecr it bytes where sizecr it is
the sum of the sizes of all program sections more critical than the
current one being packed. After computing each layer, the size of
the memory is reduced by the total size of weights and outputs
of that layer since we will try to pack the next layer (in terms of
criticality) after the previous layer has already been placed in the
memory.

This analytical approach, combined with the sensitivity anal-
ysis results, can be used to estimate the achievable accuracy and
packing yield at a particular VDD or BER and hence predict before
deployment, fault tolerance and/or energy benefits of SAME-Infer
for a specific hardware platform and neural network.

4 EXPERIMENTAL SETUP
We evaluate SAME-Infer on ten micro-controller class test chips.
Each chip contains a single ARMCortex-M3 core, 176 KB of on-chip
data memory, 64 KB of instruction memory. They were fabricated
in a 45nm SOI technology with dual-Vth libraries the chip floorplan
and test board are shown in Figure 4. We characterized the voltage
scaling-induced bitwise fault maps for these ten chips using detailed
March-SS tests [19].
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(a) Chip floorplan (b) Board

Figure 4: Test chip and board used to collect hard fault maps
for SAME-Infer.

For most of our experiments, we used four 8-bit networks as
given in Table 1. The first network is a minimally sized perceptron
(MLP) with one hidden layer and is tested using MNIST dataset [6].
The second is a convolutional neural network (CNN) with two
convolution layers and one fully-connected layer and is tested
using Google Speech Command dataset [35]. The third and the
fourth networks are bigger convolutional neural networks with
three and six convolution layers and one and three fully-connected
layers, respectively. Both these networks are tested using CIFAR-10
dataset [5]. All the layer weights and activation data of all networks
are quantized to 8-bit precision. The first three networks are im-
plemented using the ARM CMSIS-NN [24] library, version 5.6.0,
optimized for Cortex-M processors and run on the test chip. The
fourth network was too big to fit on our test chip. Hence, a fault
injection framework was developed using PyTorch 0.4.1. In Table 1,
32CONV5-MP2 means 32 5x5 filters and 2x2 max pooling layer
while 12FC/10FC means fully connected layer with 12/10 output
neurons. The networks were trained using PyTorch 0.4.1.

Table 1: DL networks used in our experiments

Model
(Precision) Architecture Dataset

MLP (8-bit, 1-bit) 784-128-10 MNIST
32CONV5-MP2

CNN-1 (8-bit) 32CONV5-MP2 SPEECH
12FC

32CONV5-MP2
CNN-2 (8-bit) 32CONV5-MP2 CIFAR-10

64CONV5-MP2
10FC

CNN-3 (8-bit) 32CONV3-32CONV3 CIFAR-10
MP2-64CONV3-64CONV3

MP2-128CONV3-
128CONV3

256FC-256FC-10FC

For all these networks we considered all weights and activation
data to be non-critical (i.e., where sensitivity to errors would be
calculated to assign them a criticality level) and all other parameters
and instructions to be critical.

The toolchain, by default, packs the entire program code sequen-
tially in the memory with no notion of faults. The supply voltage of
each chip is reduced from the nominal 1V to 600mV in step size of
25mV. As the voltage is reduced, the hard fault rate in the memory
increases. For each step, the binary is loaded and ran till completion
to note the accuracy drop with decrease in voltage.

We then performed SAME-Infer for all 10 chips at every 25mV
voltage step from 1V to 600mV and ran the customized binary on the
chips to measure the final accuracy for all the voltage levels which
had feasible packing solutions. The layer-wise precision results
were obtained using a Theano [32] based framework. We used
CPLEX [2] to solve the ILP packing problem in our experiments. All
code is packed in the instruction memory while all data is packed
in the data memory. If the section packing (solved iteratively for
the multiple criticality levels) failed, we considered SAME-Infer not
to have a feasible solution for that network on that particular chip
at voltage equal and/or less than the current one. Since CNN-3 was
too large for the test chip, the accuracy results were obtained using
our PyTorch based fault injection framework. We created a series of
randomly-generated synthetic fault maps for memory of size 1 MB.
We synthesized 10 fault maps in 10 mV increments for a total of 10
“synthetic test chips.” using detailedMonte Carlo simulation of SRAM
bit-cell noise margins in the corresponding 45 nm technology. The
fault maps were fed into our PyTorch framework and inference with
faulty weights and activations were run to get the final accuracy.

We extended our analysis to binarized networks which can often
be used for very resource-constrained embedded devices. As an
example, we analyze binarized versions (dense and one with 85%
sparsity) of the two layer MLP network. Since binarized networks,
especially the sparse one, have the least amount of redundancy
in them and are much smaller in size as compared to the 8-bit
networks, they will be less resilient to faults, while at the same
time, would be easier to fit in the memory. As binarized networks
are already at the lowest precision level, error sensitivity is not
calculated for these networks. Instead, while packing the weights,
we try to maximize the intersection of 1’s with stuck at one faults
and the 0 values with stuck at zero faults.

5 RESULTS
As the supply voltage of each of the ten chips is reduced from the
nominal 1V to 600mV in step size of 25mV, the hard fault rate starts
increasing. The first faults start appearing around 800-850mV and
the fault rate increases exponentially beyond 750mV.

5.1 Reduction in voltage with SAME-Infer
Using the default toolchain placement (without SAME-Infer), all
three networks are ran for each voltage step on all ten chips and the
results are shown by the solid lines in Figures 5a, 5b and 5c for MLP,
CNN-1 and CNN-2, respectively. For the 2-layer MLP and the 2-
layer CNN (CNN-1), network accuracy remains almost unchanged
till above 750mV for 8 out of 10 chips and drops drastically at
725mV. This is because from 750mV to 725mV, the hard fault rate
(bit error rate) increases by 2.7x. For the three-layer CNN (CNN-
2), the network accuracy starts dropping at around 750mV. This
is because of the larger size of the network resulting in a higher
number of intersection with faults. Also, in CNNs, if a particular
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weight or an input is erroneous, it affects multiple output values
due to the high amount of reuse. Thus, the weights and activation
data in CNNs have higher impact on the final accuracy as compared
to MLP. Two, out of the ten test chips had intersecting faults with
critical code sections at 775mV and hence, these chips start failing
at higher voltage compared to the rest.

The results with SAME-Infer are shown in Figures 5a, 5b and
5c using dotted lines. The red vertical line shows the minimum
voltage estimated by the analytical model that can be scaled down
to while having minimal impact on accuracy. For the two layer MLP
and the two layer CNN, there is minimal impact on accuracy above
650mV and 625mV respectively. At 600mV, for all the ten test chips,
the critical section packing failed. Thus, with SAME-Infer, about
100mV-150mV voltage reduction was achieved for the two layer
MLP and 125mV-175mV reduction was achieved for the two layer
CNN network. The min-VDD estimated by the analytical model for
the two layer CNN (CNN-1) is 620mV, but since we used step size
of 25mV, we have not shown the exact result at 620mV. However,
the model estimation falls within our obtained min-VDD range.

For the three layer CNN (CNN-2), the voltage could be scaled
down to 675mV with no impact on accuracy (100mV lower than
baseline). At 650mV, the non-critical section packing failed. From
the sensitivity analysis results, the layer-2 weights and activation
have the highest quantization noise gain or the highest minimum
precision requirement. Therefore, for this layer, the number of
tolerable faulty bit positions is 1 from the least significant bit (LSB)
for weights and activation data. The weights in this layer also form
the largest data section. As a result, packing the layer’s weights in
a contiguous memory segment with where each memory location
can have at most one faulty LSB becomes infeasible at 650mV. The
best case reduction achieved for this network was 125mV. This is
similar to the minimum voltage estimated by the analytical model
(670mV), thus, validating the model. Once again because we used
step sizes of 25mV, we have not shown the results at 670mV, but
we tested on three chips at 670mV and the network accuracy gets
minimally (2%) affected at that voltage.

For all three networks, SAME-Infer achieved more than 100mV
min-VDD reduction. Since memories consume significant fraction
of the total system energy, 100mV-175mV reduction in min-VDD
of the SRAM based scratchpad memories would lead to dramatic
decrease in overall system energy consumption. Also, SAME-Infer
can now tolerate upto 350x higher Bit Error Rate (BER). This is
critical for tolerating aging induced or other in-field failures. If a
built-in-self-test (BIST) engine can periodically upload fault maps
to the cloud, SAME-Infer can be run remotely and the new failures
can be avoided with a simple inexpensive software patch instead
of an expensive faulty hardware replacement or in-field repair.

5.2 Splitting up Weights to Achieve Better
Packing

As seen in the three layer CNN, at 650mV, SAME-Infer fails to pack
the largest and the most sensitive weight section. As mentioned
in Section 3.3, one way to further reduce min-VDD and achieve
better packing would be to split per layer’s weight sections into
smaller sections. The sensitivity analysis of the weights is extended
to compute weight quantization noise gains on a per layer per filter

(a) MLP

(b) CNN-1

(c) CNN-2

Figure 5: Change in inference accuracy (8-bit networks) as
voltage on the test chips is scaled down. Dotted lines are
results with SAME-Infer while the solid lines are without
SAME-Infer. The red dotted vertical line shows the analyti-
calmodel estimation for theminimumvoltage possiblewith
no/minimal impact on accuracy.

basis. The results for the three layer CNN-2 are shown in Figure 6.
An additional 50mV reduction in min-VDD was achieved for all 10
chips tested at negligible (<1%) code space overhead and no impact
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on accuracy compared to SAME-Infer with layer-wise monolithic
weight sections.

The weights can be further split up by granularity finer than a
kernel. The best case is when each weight section is as small as a
memory word. However, splitting up the data sections into such
small sizes require non-negligible code modifications. Also, as can
be seen in Figure 7, for the bit-error rate measured in our test chips
and the three layer CNN network, it is seen that at the voltage
where critical code sections fail, the smallest size of the non critical
data section doesn’t need to be smaller than the size of the kernel.
Therefore, splitting on a per kernel basis is often good enough and
results in least intrusive code changes.

Figure 6: Change in three layer CNN-2 inference accuracy
as voltage on the test chips is scaled down. The result shown
here is the average accuracy across 10 test chips for each test
case. The test cases are - (1) without SAME-Infer (2) with
SAME-Infer and layerwise monolithic weight sections (3)
when the weight sections are split up on per filter basis in
every layer.

Figure 7: Achievable min-VDD as the smallest non-critical
section size is reduced for the three layer CNN. The min-
VDD is obtained using Equation 3 while the min-VDD for
critical section is obtained from the test chip results.

We extended the analysis for a larger CNN (with 6 convolution
layers and 3 fully connected layers). The network architecture is

Figure 8: Change in nine layer CNN inference accuracy
as voltage on the synthetic chips is scaled down. The re-
sult shown here is the average accuracy across 10 synthetic
chips for each test case. The test cases are - (1) with SAME-
Infer and layerwisemonolithic weight sections (2) when the
weight sections are split up on per filter basis in every layer.

32C3 − 32C3 − MP2 − 64C3 − 64C3 − MP2 − 128C3 − 128C3 −

256FC − 256FC − 10. Since the network was too large for the test
chip, we created a series of randomly-generated synthetic fault maps
for memory of size 1 MB. We synthesized 10 fault maps in 10 mV
increments for a total of 10 “synthetic test chips.” We used detailed
Monte Carlo simulation of SRAM bit-cell noise margins in the
corresponding 45 nm technology. The filter-wise precision results
were obtained in Theano [32]. The accuracy results were obtained
by running inference with faulty weights and activations using our
PyTorch based fault injection framework and the synthetic fault
map. The results are shown in Figure 8. With only SAME-Infer and
monolithic layer weights, the desired packing could not be obtained
for layers 5, 6 and 7 below 750mV. With split weight sections, in 8
out of 10 synthetic test chips, the min-VDD achieved was 550mV
with desired precision, thus, having almost no impact on accuracy.
The overall min VDD reduction with split weights was as much as
200mV compared to simple layerwise weight packing.

5.3 Importance of Sensitivity Analysis of Fault
Tolerant sections

For comparison against naive placement strategy, we tried placing
the non-critical weights and activation data sections at the first
available memory region (greedy placement - first available unused
memory segment) with no notion of sensitivity or bitwise intersec-
tion with faults at 700mV for the three layer CNN network on five
test chips. Thus, instead of having 5 levels of criticality, we only
had two levels. The first level is for the critical sections, and the
second level is for all non-critical sections with no upper bounds on
the number of faulty least significant bits. So, for the non-critical
sections, even the most significant bit could have a fault.

The impact on accuracy was significant (shown in Figure 9)
because a large number of weights and activation data were inter-
secting with faults in the most significant bits, thus, making the
chips unusable at 700mV.With the intelligent placement of the fault
tolerant sections we can run the network at 700mV with negligible
impact on accuracy. Thus, doing a sensitivity analysis of the fault
tolerant weights and activation data and placing these sections such
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Figure 9: Change in the three layer CNN-2 inference accu-
racy as voltage on the test chips is scaled down. The result
shown here is the average accuracy across 5 test chips for
each test case. The test cases are - (1)when the fault tolerant
sections are naively placed (greedy placement) in the mem-
ory while the critical text sections are placed in non-faulty
memory regions (2) SAME-Infer with criticality aware place-
ment.

Figure 10: Voltage reduction or BER tolerance estimation by
the analytical model for the three layer CNN-2 on different
memory sizes.

that only the tolerable bits intersect with faults result in more than
50mV reduction in voltage.

5.4 Analytical Model to Estimate for Larger
Sized Memories

Using the analytical model we estimated the minimum voltage
(maximum BER) that the three layer CNN-2 network can tolerate
if the size of the memory is increased. In most cases, the target
inference systems are of standard sizes while the network sizes
vary greatly. The results are shown in Figure 10. It can be seen
that for a memory size of 512KB (instead of the 176KB in our test
chip), the voltage can be scaled down to 640mV (from 670mV with
176KB) and a 2.5x higher BER can be tolerated. Once again, we used
detailed Monte Carlo simulation of SRAM bit-cell noise margins in
the corresponding 45 nm technology to calculate the bit error rate.

Figure 11: Change in dense binarized MLP inference accu-
racy as voltage on the test chips is scaled down.

Figure 12: Change in sparse binarized MLP inference accu-
racy as voltage on the test chips is scaled down.

5.5 Evaluation for Binarized Dense and Sparse
Networks

To evaluate the impact of SAME-Infer on networks that are expected
to be less fault tolerant (quantized and/or sparse networks), we
extended our analysis to binarized dense and sparse versions of
the two layer perceptron network, tested using MNIST dataset
(results shown in Figures 11 and 12). For the 8-bit version of the
same network, at 750mV, the network accuracy almost remains
unaffected for all 10 chips. The same is true for the dense binarized
version. However, in the binarized sparse MLP network, we start
seeing an impact on accuracy at 750mV. This is because most of the
redundant weights have been removed from the network and only
the critical weights are used. Therefore, any intersection with faults
results in an impact on accuracy, causing the network to have very
low tolerance to faults. However, all three versions of the network
can be scaled down to 650mV with SAME-Infer. The non-critical
sections in the sparse network are the smallest in size and hence,
can be packed perfectly even at 650mV.

5.6 Comparison with Past Works
5.6.1 Treating all data sections as critical. In [14], the authors pro-
pose a software assisted methodology to place program sections
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Figure 13: SAME-Infer achieves lower min voltage as com-
pared to FaultLink [14] with negligible impact on accuracy
because SAME-Infer allows intersection with faults in the
less critical LSB bits of non-critical fault tolerant data sec-
tions.

in non-faulty memory segments. However, they treat all program
sections (data and instructions) as critical and try to fit them in
fault-free segments of the memory. Doing so has two primary disad-
vantages. Firstly, it fails to exploit the inherent redundancy in Deep
Learning Inference (or any other Approximation Tolerant) applica-
tions. As a result, the packing solution would fail at a much lower
fault rate (higher voltage) than what it can actually tolerate. Sec-
ondly, since this solution does not allow any intersection with faults,
the actual size of the memory needs to be much higher than the size
of the binary to be able to successfully pack all sections in fault free
memory segments at low voltages. We compared [14] with SAME-
Infer and the results are in Figure 13. SAME-Infer allows scaling by
more than 100mV (average) for most applications. The 100mV volt-
age scaling translates to >25x higher fault tolerance as well. Thus,
SAME-Infer delivers much higher energy reduction/fault tolerance
as compared to [14]. Also, for the same memory size, SAME-Infer
will be able to fit a larger sized network than FaultLink when run-
ning at the same voltage. This is critical as network sizes that are
being deployed on these edge devices is increasing rapidly.

5.6.2 Fault Injection During Training as an Alternative to SAME-
Infer. In order to boost DNN’s error tolerance, [23] proposed a
curricular retraining approach. This mechanism injects errors into
the DNN training procedure to boost the error tolerance of the
network. A similar fault-aware training has also been proposed
in [22]. We assumed a random uniform distribution of bit errors and
measured the average bit error rate (BER) at every voltage across
our 10 test chips. This is because training on the target faulty edge
devices is impractical and hence, exact fault maps cannot be used
while retraining. The authors alsomake a similar assumption in [23].
The results are shown in Figure 14. The baseline here refers to
running the original trained network (without curricular retraining)
on the chip at reduced voltage. The baseline min-VDD is compared
against the min-VDD obtained with curricular retraining and with
SAME-Infer. For the 10 test chips tested, curricular retraining helps
to lower the voltage by at most 50mV in only 5 chips (a few of them
see a non-negligible impact on accuracy), whereas, SAME-Infer
allows voltage reduction in all of them.

Figure 14: MLP (2 layer) withMNIST - average accuracymea-
sured across 10 chips for each test case - (1) Baseline (2) Cur-
ricular Retraining (3) SAME-Infer

Figure 15: Hard Fault Map of the 64KB instruction memory
(left) and the 176KB data memory (right) of a test chip. The
black dots represent the faulty byte locations.

From the results it can be seen that curricular retraining using
uniform random bit error distribution provides negligible improve-
ment in this case. This is because, at lower voltage, faults in SRAMs
tend to be correlated (shown in Figure 15). Hence, unless it is re-
trained on the target platform, the retraining mechanism would
provide very limited improvement. But retraining on target plat-
form is likely impractical (e.g., training may have been done with
proprietary datasets on high performance GPUs). Most edge plat-
forms lack the computational power required for training these
networks [37]. Large networks require tens of exaFLOPS of com-
pute across the entire training cycle [10], making them infeasible
to be run on edge devices. Moreover, faults appear in code memory
as well. Therefore, only making network data (weights and activa-
tions) more resilient to faults is insufficient. In the next section, we
discuss how error-injection based training may be helpful.

Overall we see that SAME-Infer not only allows energy saving
through voltage scaling, it is also an efficient fault tolerance tech-
nique as it tolerates 25x average increase in byte error rate with
minimal impact on inference accuracy. For some chips it tolerates
upto 350x increase in BER with minimal to no impact on network
accuracy. Since edge devices may have long lifetimes, aging be-
comes a concern for the reliability of the device. SAME-Infer can
be used as an in-field repair technique where fault maps are peri-
odically sampled using BIST and uploaded to cloud. SAME-Infer is
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then run remotely for aging induced faults and the updated binary
is deployed during software updates with minimal disruption to the
customers. SAME-Infer also helps to increase the increase the yield
of chips by allowing usage of faulty chips leading to significant cost
savings.

6 DISCUSSION
In this section, we briefly discuss some of the possible extensions to
SAME-Infer, which though not explored thoroughly in our current
set of experimental results, can provide additional fault tolerance
and/or power benefits as well as easier deployment.

6.1 Fault Injection During Training to Tolerate
Soft Errors

As we saw in Section 5.6.2, curricular retraining by injecting bit
errors while training does not provide much benefit against corre-
lated hard faults at lower voltage when used on its own. However,
curricular retraining or random fault injection during training can
help with tackling soft errors (random memory bit flips during
runtime). At lower voltage, susceptibility to radiation-induced soft
faults increases because critical charge, which is the charge thresh-
old to cause a soft error, decreases [12, 31]. Curricular retraining
can be used to augment SAME-Infer to tolerate this increased soft
error rate at lower voltage.

6.2 Improving Packing by Optional Reversing
of Non-Critical Sections

SAME-Infer is able to tolerate faults in the least significant bit
regions of the memory but largely leaves the most significant bit
regions untouched. As a result, faults in roughly half the memory
remain unaddressed by SAME-Infer. An interesting way to extend
SAME-Infer is to optionally reverse the weights/activations (i.e.,
essentially reverse the order of bits in the byte).

In our framework, we try to pack our non-critical weight/activation
sections in contiguous memory segments with no faults in the de-
sired most significant bits. If the number of error tolerant least
significant bits for a particular weight is 2, every address in the
memory segment used to pack this section needs to have fault-free
5 most significant bits. Now if the weights have the option of being
reversed before being stored in the memory, the packing algorithm
has the option of storing the weights in either a memory segment
where every address has fault free 5 MSBs or in a memory segment
where every address has fault free 5 LSBs. If the latter is chosen, the
weights need to be reversed. This doesn’t require a pre-compilation
modification to the source code for every chip. The way to do this
is to have custom load and store procedures for weights. When
storing or loading weights, a particular address location is checked.
If the value stored there is 1, then the weights are not reversed, if 0,
then the weights need to be read from or written to in a reversed
fashion. The value to be stored in that particular address can be
done during link time based on the packing solution. Therefore, this
is a one-time source code modification, every-time link solution
(like the rest of our methodology). The probability of there not
being a memory segments that is large enough to store the largest
program section decreases and the updated Equation 3 will be:

P
(
Lsize/4 <

mmax
4

)
≈ e−2s

(mmax
4 −logs−1 (

size
4 (1−s )))

. (5)

We evaluated this for a limited number of synthetic test chips
with the nine layer CNN. For two out of ten chips, it helped to reduce
the min-VDD by 50mV as compared to the baseline SAME-Infer
(with no weight splitting). The obvious drawback of this approach
is the additional runtime and code size overhead of checking and
reversing. The code size overhead is small though the runtime over-
head can be noticeable since every load operation now translates to
branch, load and rotate operations. As a result, we did not explore
this option further. However, this approach is useful in very high
fault rate or very low power scenarios.

6.3 Universal Packing Solution to Allow
Dynamic Voltage Scaling and Tolerate
Aging Induced Faults

Hard faults in SRAMs due to voltage scaling are inclusive, that
is, faults that appear at a higher voltage remain as the voltage is
lowered [15]. The fault map at 600mV would include all the faults
that appeared at voltages higher than 600mV (along with some
additional faulty bits). Therefore, if the SAME-Infer packing is done
for the lowest possible VDD, the same packing solution can be
used when running the chip at higher voltages. This allows having
a universal packing solution for a given chip. The application is
loaded into the memory based on this solution during deployment
and the voltage can be dynamically scaled during runtime without
having to repack every time.

We tested the solution out on three test chips where the packing
solution at 650mV was used when running at 700mV and the accu-
racy was the same as what was achieved when specifically packed
using the memory fault map and packing solution of 700mV.

Memory chips go through multiple rounds of burn-in [4] testing
which involves a series of full chip read and write operations. We
suggest having something similar for the memories in embedded
chips. During burn-in, a March test equivalent can be run. As em-
bedded memories are much smaller than standard DRAM chips,
burn-in testing overhead should be small. Based on the stored fault
map, the application can be packed for the lowest possible supply
voltage. Having this not only saves the effort of repacking every
time the voltage is scaled during runtime, it also provides protection
against in-field aging induced failures. This is because the weaker
cells are expected to fail and get captured in the low voltage fault
map and the universal packing solution would take care of it.

6.4 Addressing the Code Memory Bottleneck
In several of our benchmark/chip combinations (especially for
smaller networks), SAME-Infer packing failure is due to code (which
is all considered critical) that is unable to get packed in code mem-
ory. There are two possible ways to address this. First, microcon-
troller designs can allow for separate power delivery network for
code memory (so that data memory can be independently voltage
scaled). Second, more intrusive changes to the machine learning
code can be made to build it from smaller functions. This would
have a negligibly small impact on code size and runtime but will
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result in more packable code in presence of faults in code memory
(as every function can be mapped to different memory segment).

6.5 Use of Error Correcting Codes (ECC)
ECC is a common approach for error detection and correction in
memories. However, they are better suited for random, temporary
faults and incur area, performance and energy overheads. If a t-bit
error correcting code is used, i.e., errors upto t-bits can be detected
and corrected by the code, all k-bit messages get encoded into (k+r)-
bit codewords before they are stored in the memory. The extra
r-bits of parity are added onto the original message to enable error
correction. As the code becomes stronger or the requirement for
t increases, the number of parity bits (r) also increases. During a
read operation, the encoded message is loaded from the memory
and decoded such that the original k-bit message can be recovered
and errors upto t-bit can be detected and corrected. The additional
parity bit storage as well as the encoding and decoding overheads
are non-negligible and increase rapidly as the correction capability
of the code increases. As a result, they can be an overkill (and
therefore a bad approach) for permanent faults.

Our experiments revealed that the hard faults at lower voltages
normally tend to be correlated. As a result, multi-bit error correc-
tion would be required. While SAME-Infer can tolerate up to 4-bit
faults on 8-bit weights/activations with negligible performance
overheads, an double-bit error correcting (DEC) code would require
8 additional bits of parity and have 2 cycles of encoding and decod-
ing latency. For example, the 9-layer CNN-3 network has a total size
of ∼700KB. To fit this network at nominal voltage with no faults, at
least 1.4MB of memory is needed if DEC code is used for protection.
Moreover, around 650mV-670mV, triple bit errors start appearing
and thus, lowering the voltage further will lead to loss in accuracy
as the un-correctable errors can coincide with MSBs. On the other
hand, with SAME-Infer, we managed to fit in the entire network
within a 1MB memory and could lower our voltage to less than
600mV with no impact on accuracy (Figure 8). However, if ECC
is available, it should augment SAME-Infer to address soft errors
during runtime.

6.6 Extending SAME-Infer to Other
Approximation Tolerant Applications

The SAME-Infer framework can be easily extended to other approx-
imation tolerant applications. There are several applications in the
field of approximate computing that can tolerate controlled relax-
ation of correctness for improving performance or energy efficiency.
For such workloads, already existing frameworks (such as Approxi-
lyzer [33]) can be used to identify the non-critical approximation
friendly sections of the code that can intersect with faults without
impacting output quality. Once the one-time analysis of the code
is done, SAME-Infer can be used to correctly map the critical and
non-critical sections in non-faulty and faulty memory segments
respectively, leading to lower energy or higher fault tolerance.

7 CONCLUSION
Design of edge devices is driven by the need for the lowest possible
cost and energy consumption, which are both strongly affected
by on-chip memories. Further, many of these may be deployed

in harsh environments where in-field replacement is difficult due
to faults. The proposed SAME-Infer methodology addresses both
these issues for embedded scratchpad memories running machine
learning applications. SAME-Infer uses the linker to map the critical
code/layers onto the non-faulty segments of the memory while
the fault-tolerant sections of data are placed in faulty memory
segments. This allows SAME-Infer to tolerate upto 350x (average
25x) higher bit error rate without degrading inference accuracy.
Our evaluations on 10 real micro-controller class chips and 10 larger
synthetic chips show that up-to 175mV reduction in voltage can be
achieved without any loss in accuracy for a fully connected network
and for two convolutional neural networks. Thus, SAME-Infer helps
to tolerate higher hard fault rate by exploiting the redundancies
in the DL applications and helps in cost savings by making error
prone memory chips usable.
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