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ABSTRACT
With the advent of GPU computing, profiling tools are now widely
used to assist developers in identifying and solving performance
bottlenecks. Those tools are commonly relying on hardware per-
formance counters to grant users the access to low-level activities.
Considering the increasing complexity of modern GPUs and also
the efforts needed to associate program behaviors with hardware
events, it is not trivial to construct the profiling tools with assured
correctness. As a result, profiling tools should be strictly validated
to make sure that the program behaviors and resource usages can
be correctly captured and analyzed. To aid the validation, we cre-
ate a testing prototype DELTA, on top of the open-source Radeon
Open Compute platform (ROCm), to investigate the values of the
derived profiling metrics and their underlying basic counters. The
tests of DELTA are generally based on the classical microbench-
marks, which are capable to control program behaviors to generate
predictable statistics. Differing from prior dissecting works, our
tests are to examine the profiled results and to compare against
desired patterns, reporting whether the profiling tools are correctly
working with appropriate data collection and processing. This pa-
per presents the validation methodology and experimental results
of cache and main memory on the recent GPUs and ROCm plat-
form, and the case studies demonstrate that the tests are helpful to
scrutinize the profiling tools.

CCS CONCEPTS
• Computer systems organization → Parallel architectures;
• Software and its engineering → Software verification and
validation.
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1 INTRODUCTION
In the past decade, graphics processing units (GPUs) have been
rapidly evolving from graphics processing to general purpose com-
puting. Offering massive parallelism and high energy efficiency,
GPUs are now widely deployed to accelerate emerging high per-
formance computing and machine learning applications. Particu-
larly, plenty of existing and planned supercomputers are adopting
GPU-centric nodes to meet the computation demands, such as the
currently fastest Summit [29] and the scheduled exaFLOPS Frontier
[28].

With excessive computation resources on GPUs, developing
efficient applications is extremely critical and requiring a lot of
expertise and efforts. Without careful designs, the GPU execution
units and memory system are likely to be idling or ineffectively ex-
ploited. As such, mainstream computing platforms like CUDA and
OpenCL are actively improving to ease the programming burden,
and extensive models like RAJA [14] and OpenMP target [15] are
being developed to further abstract out details. While with much
programming convenience, those high-level models make it even
more difficult for developers to pinpoint performance bottlenecks
by associating the key low-level details (e.g., instruction counts and
cache misses) with observed program behaviors (e.g., execution
time and memory footprint). To address the problem, profiling tools
(e.g., nvprof [26] and rocprof [11]), are thus provided to enable de-
velopers to understand fundamental properties of the applications
and further identify optimization opportunities.

The profiling generally relies on underlying hardware counters,
which are collected during program execution, then post processed
and presented as high-level metrics and analysis to developers.
To precisely depict the program behaviors, the profiling tools are
required to be correct on all levels, including the counter setting,
value collection and further metric calculation. However, it can be
problematic in any phase, and thus the profiling may eventually
give misleading results to the users. Therefore, it is significantly
critical to validate the profiling tools on result correctness with
dedicated testing frameworks.

Aiming at the validation, this paper proposes a set of tests
based on classical microbenchmarks and then develops some well-
understoodmetrics to calibrate the profiling results at end user level.
With the tests, the hidden profiling issues can be easily captured
and examined. The focus of this paper is placed onto the cache and
memory system, which are very precious resources highly com-
petitive among massive threads and are thus crucial to the overall
performance of GPUs [1, 17, 27]. The contributions of this paper
are:
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• we highlight the importance of validating GPU profiling
tools and present a testing methodology using microbench-
marks. To the best of our knowledge, this is the first work
focusing on GPU profiler validation.

• our designed testing prototype, which we call DELTA, well
covers GPU cache and memory behaviors from different
perspectives, including misses, data size and access latency.

• as case studies, the validation tests on recent GPUs effectively
identified the hardware configuration details, including the
existence of optimized cache policy and memory changes
across GPU generations.

The rest of the paper is organized as follows. Section 2 introduces
GPU models, profilers and microbenchmarks. Section 3 elaborates
the motivation and testing designs. Section 4 presents the experi-
mental methodology and analyzes our experimental results. Section
5 discusses related work. Section 6 concludes the paper.

2 BACKGROUND
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Figure 1: GPU high-level organization.

2.1 GPU Organization and Programming
Figure 1 shows the high-level architecture of a general-purpose
GPU, based on recent AMD GCN design [4]. A GPU is composed of
multiple compute units (CUs), also known as streaming multipro-
cessors (SMs). As the basic unit of computation, each CU consists
of a collection of SIMD units, each of which typically contains 16
stream processors (SP cores, not shown in the figure), to execute in-
structions of different types like arithmetic and load/store. In terms
of the memory hierarchy, a CU contains a private vector data cache
(L1) and shares a scalar cache and instruction cache with several
other CUs. All the three caches are then supported by a shared
L2 cache, which in turn connects to main memory, which can be
GDDR or HBM. Note that L2 and memory are typically partitioned
into multiple slices or channels to achieve higher bandwidth and
lower access latency.

To use GPUs, programmers define the parallel portions of ap-
plications as kernels and offload them onto GPUs with the help of
device driver and runtime. GPU hardware schedulers then dispatch
the kernels onto CUs in work-group (WG) granularity. EachWG is a
set of threads, which are grouped into bundles of 32 or 64, known as
wavefronts (WFs) or warps, to be assigned to a SIMD unit. Threads
of a WF execute the kernel code in lockstep by going through multi-
ple pipeline stages (e.g., instruction fetch, decoding and scheduling)
and generate requests to access the memory hierarchy.

2.2 GPU Profiling and Dissecting
To characterize GPU programs, multiple software profiling tools
were developed, such as NVBit [31] and VTune Amplifier [21].
Whereas with flexibility, software-based profiling may involve pro-
hibitive overheads and even distort the program dynamic behaviors
due to the inserted instrumentation codes [21]. As a result, hardware
profiling tools, such as nvprof [26] and rocprof [11], are popularly
used to characterize applications and tune performance. Compared
to software, those hardware-based tools are of much lower over-
heads and are more transparent to users. As a good balance on
flexibility and overhead, the open source rocprof, a part of Radeon
Open Compute platform (ROCm) [10], enables third-party users
to easily extend and customize the tool and runtime for particular
scenarios.

For hardware-based profiling, performance counters are pro-
vided by GPU manufacturers to tally specified actions (e.g., instruc-
tion stalls, cache requests and elapsed cycles) happening in the
components. Those counters enable users to measure and under-
stand the low-level hardware activities. To quantify the hardware
events, metrics (i.e., statistics based on the counters) are further
developed to analyze the behaviors. To bridge the raw counters to
high-level metrics, profiling tools are thus provided to closely mon-
itor kernel executions and then wrap up the counter processing.
The rocprof is one such tool to characterize compute applications
on a broad set of GPU architectures. Particularly, rocprof allows to
easily add new counters and metrics for customized usages, and
thus it serves as our experimental platform in this paper.

Whereas expertise and details of GPU components are necessi-
tated for GPU performance profiling and tuning, some architectural
parameters are typically not publicly released by GPU vendors,
thus motivating ample researchers to resort to demystify using
microbenchmarks. Wong et al. [32] investigated the hardware of
Nvidia GT200 GPU by creating a suite of microbenchmarks, which
were later used to dissect the cache structure of Fermi GPU [13].
To cover previously unknown characteristics, Mei and Chu [25]
proposed a novel fine-grained pointer chasing (P-chase) benchmark
to examine the GPU memory hierarchy. Jia et al. [22] continued
the line of research by benchmarking the Nvidia Volta architecture.
While being utilized to reverse engineering GPU hardware parame-
ters in prior works, the microbenchmarks in this paper are instead
used to validate the performance counters and metrics.

2.3 Microbenchmark: Pointer Chasing

Table 1: Parameters of cache and P-chase test

Sym. Description Sym. Description
𝐶 cache capacity (unit: int) 𝑁 array size (unit: int)
𝑏 cache line size (unit: int) 𝑠 stride size (unit: int)
𝑎 cache associativity 𝑀 #accesses to the array
𝑇 number of cache sets 𝑟 cache miss ratio

In this paper, P-chase will be primarily used for our studies on
cache and memory system. P-chase is to perform a sequence of
dependent accesses in varying strides onto different sized arrays and
it is capable to reflect cache configurations. For ease of explanation,
we will use the notations listed in Table 1. The P-chase is traversing
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an array with size 𝑁 and stride 𝑠 in 𝑀 total number of accesses.
For illustration purpose, we will use 4-byte integer as the unit
1 for both the array and cache (i.e., stored elements are 4-byte
integers). The cache is capable to hold 𝐶 integers, a line size is of
𝑏 integers and the associativity is 𝑎, giving the number of cache
sets 𝑇 = 𝐶/𝑎𝑏. Suppose that the cache is regularly organized (i.e.,
with basic replacement algorithm LRU and lowest address bits on
set mapping) 2, then the stride allows to change the miss ratio by
controlling the number of consecutive accesses to the same cache
line, cache set, etc. Specifically, cache miss patterns are a function
of array size (𝑁 ) and accessing stride (𝑠), as shown in Figure 2:
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Figure 2: With varying traverse strides onto different sized
arrays, P-chase microbenchmark exposes changing and pre-
dictable miss ratios, which reflect the cache configuration
details.

• 𝑟 = ( 𝑁𝑥 )/𝑀, 𝑥 =𝑚𝑎𝑥 (𝑠, 𝑏) 𝑖 𝑓 𝑁 ≤ 𝐶

The array fits in cache, and thus misses are just from cold
start, which is 𝑁

𝑥 . Apparently, if there are sufficient accesses
(i.e.,𝑀 >> 𝑁

𝑥 ), then miss ratio is zero.
• 𝑟 = 𝑠

𝑏
, 𝑖 𝑓 𝑁 ≥ 2𝐶 𝑎𝑛𝑑 1 ≤ 𝑠 < 𝑏

If array is larger than the cache (𝑁 ≥ 2𝐶) and stride is less
than line size (1 ≤ 𝑠 < 𝑏), then there are 𝑏/𝑠 consecutive
accesses to the same cache line. The first access to a line
is always a miss, as every line is displaced from the cache
before it can be re-used in subsequent iterations. Therefore,
the reuse only happens within a line (i.e., in the consecutive
accesses).

• 𝑟 = 100%, 𝑖 𝑓 𝑁 ≥ 2𝐶 𝑎𝑛𝑑 𝑏 ≤ 𝑠 < 𝑁
𝑎

If accessing stride goes beyond the line size (𝑠 ≥ 𝑏) but is
still smaller than the set size (𝑏 < 𝑁

𝑎 ), then the reuse within
a line goes away and meanwhile each line still gets replaced
before reuse, thus forcing all accesses to be misses.

• 𝑟 = 0%, 𝑖 𝑓 𝑁 ≥ 2𝐶 𝑎𝑛𝑑 𝑠 ≥ 𝑁
𝑎

In this scenario, the number of addresses mapped to a single
set is no larger than the set associativity, thus no more misses
once the array is loaded. Again, the miss ratio is zero with
enough accesses (𝑀 >> 𝑁

𝑏
).

3 MOTIVATION AND DESIGN
Whereas with proper hardware counters being exposed to profilers,
guaranteeing precise profiling can be still tricky due to multiple
1Without specific comment, all sizes are in integer unit in the rest of paper (e.g., size
of 4𝑘 is equivalent to 16KB).
2While optimized policies might be used to improve cache data usages, the regular
mode is typically kept as a baseline to verify the cache logics, and it can be easily
enabled by programming the configuration registers.

Table 2: Comparison of two recent GPUs

GPU Product AMD Radeon VII [5] AMD Radeon RX Vega [3]
Architecture Vega 20 Vega 10
Code Name gfx906 gfx900
Technology 7 nm 14 nm
SP Cores 3840 4096
Base Clock 1400 MHz 1247 MHz
Peak FP32 13.8 TFLOPs 12.7 TFLOPs
Memory HBM2 (16GB, 1TB/s) HBM2 (8GB, 484GB/s)

potential pitfalls. First, newer and faster GPU products are released
at a rapid pace, and there can be significant architectural changes
on the chip layout, execution pipelines and memory system, etc. For
example, as listed in Table 2, compared to AMD Radeon™ RX Vega
GPU [3] (Vega 10), the leadership Radeon™ VII [5] (Vega 20) pro-
vides much higher memory bandwidth, by widening HBM interface
and raising frequency. However, profilers are typically abstracted
from specific architecture, and are thus required to support varied
generations by handling the hardware divergences, which may be
unnoticed for users.

Algorithm 1 Example P-chase program written in HIP [9]

1 / ∗ s e t u p : i n i t i a l i z e a r r ay on CPU wi th t h e s t r i d e ∗ /
2 for ( i = 0 ; i < N ; i ++) {
3 a r r ay [ i ] = ( _TYPE ) ( ( i + s t r i d e ) % N ) ;
4 }
5
6 / ∗ copy a r r ay t o GPU , l aunch k e r n e l ( n o t shown ) ∗ /
7
8 / ∗ k e r n e l : s e r i a l l y r e a d i n g a r r ay e l em e n t s ∗ /
9 __g l o b a l _ _ void pchase_RO ( _TYPE ∗ ar ray ,
10 in t a r r ay_ l eng th , in t m,
11 u i n t 6 4 _ t ∗ du r a t i o n ) {
12 _TYPE j = 0 ;
13
14 in t k ;
15 u i n t 6 4 _ t t ime = c l o c k ( ) ;
16
17 for ( k = 0 ; k < m; k++) {
18 j = a r r ay [ j ] ;
19 }
20
21 du r a t i o n = c l o c k ( ) − t ime ;
22 }

Meanwhile, for each GPU component (e.g., L1 cache), there usu-
ally exists tens of performance counters, requiring the proper ones
to be selected for each specific characterizing goal. This is achieved
by setting the configuration registers inside profiler. In addition,
certain counters are designed to run in multiple modes to monitor
varying events with minimized implementation overheads. For ex-
ample, memory request counters can be incremented sequentially
or intermittently over the elapsed cycles. Besides, high-level metrics
are typically defined on the basis of one or more basic counters,
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Figure 3: L1 miss ratios with varying array sizes and strides (512k total accesses).
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Figure 4: L1 and L2 miss ratios with varying array sizes and strides (4m total accesses).

with the example of cache miss depending on counts of misses and
total requests. To this end, appropriate counters and modes must be
specified to ensure metrics’ correctness. Further, counter collection
and results presentation commonly involve intensive data process-
ing, storage management and algorithm designs, which may easily
introduce bugs or negligence.

Given the potential implementation issues, it is urgently de-
manded to validate the profilers at end-user level to make sure the
collected results are faithfully representing the underlying resource
usages. In this paper, we choose to verify profiling with focuses on
cache and memory system, using the P-chase benchmark. Primar-
ily, the read P-chase, as shown in Algorithm 1, will be frequently
used in our studies with varied input parameters to stress certain
memory levels.

We will first run the P-chase tests on Vega 10 GPU to see whether
they can successfully obtain/verify key hardware details, which
are critical parameters to direct the subsequent validation studies.
Particularly, we collect cache counters and metrics by sweeping
over a series of array sizes and strides, and then compare against
the desired patterns discussed in Section 2.3.

3.1 L1 Cache
As aforementioned, there are only cold misses if the P-chase array
fits in cache; and misses then change with respect to the accessing

stride with larger array sizes. As such, we run the microbenchmark
on L1 cache by gradually increasing the array sizes (𝑁 = [64, 64𝑘],
i.e., 256B-256KB) and the traversing strides (𝑠 = [1, 𝑁 ]). The num-
ber of accesses to the array is fixed at 512k, which is much larger
than the cold miss counts.

Figure 3 reports the miss ratios of different array sizes with
varying strides. From the figure, we see that if 𝑁 ≤ 4𝑘 , the miss
ratio is close to zero and is just contributed by cold misses; for
larger 𝑁 s (e.g., 8𝑘 and 16𝑘), the miss ratios become much higher
even with strides less than 16, and reaches 100% when stride is 16,
indicating that each loaded line is evicted before being reused. Thus,
the cache capacity should be no less than 4𝑘 × 4𝐵 and no larger
than 8𝑘 × 4𝐵. To get the exact size, we can exhaustively search
the range 𝑁 = [4𝑘, 8𝑘], and we do see that even 𝑁 = 4097 leads
to replacement misses, indicating that the capacity is 16KB (i.e.,
4𝑘 × 4𝐵). For 𝑁 ≥ 8𝑘 , the miss ratio curve exactly tallies with the
expected one shown in Figure 2, thus giving 𝑏 = 16 (i.e., 64B).

Putting together, the L1 configurations we get are 16KB capacity
and 64B line size, which perfectly match the released hardware
details [24] and parameters reported by the rocminfo command
[12].
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3.2 L2 Cache
To characterize L2 cache, we keep using the prior testing kernel.
However, considering that L2 involves more cold misses and extra
instruction cache misses, we enlarge the number of accesses from
512𝑘 to 4𝑚. Meanwhile, to exclude the filtering effects of L1, we
apply strides larger than 16, which indicates the cache line size.

The miss ratios of L1 and L2 are reported in Figure 4. As shown
in Figure 4(a), if stride is in [16, 2𝑘], all requests are missing on
L1 for the chosen array sizes (256k, 512k, ... , 4m). And thus, we
just narrow the stride range down to [16, 2𝑘] to observe L2 miss
behaviors, which is as illustrated in Figure 4(b).

From Figure 4(b), we see that 𝑁 -2𝑚/4𝑚 show regular miss pat-
terns, similar to L1 covered in Figure 3. Replacement misses are not
happening until the array size goes beyond 1𝑚, indicating the L2
capacity is 4MB [24].

4 VALIDATION TESTS AND RESULTS
The P-chase runs on L1 and L2, as covered in Section 3, demonstrate
that the benchmark is capable to demystify cache parameters, as
presented in [25, 32], which are valuable to direct test settings to
control the access behaviors for validation purpose. As a result, we
can flexibly configure the testing kernels to expose varying access
patterns, which can be predicted beforehand, onto each cache or
memory level, and then profile the configured kernel with specified
counters and metrics. After getting both the predicted (i.e., ground
truth) and profiled results, we can then compare to see whether the
profiling is properly working.

With the validation methodology, we choose to vary array sizes
and strides of the P-chase kernels to verify cache and memory
profiling, in terms of misses, data size and access latency. The
tests are performed on the Vega 10 and Vega 20 GPU architectures
with recent release of ROCm v3.3 [8]. While identical tests are
performed on both GPUs, the data from newer Vega 20 will be
primarily reported and analyzed.

4.1 Cache Misses
Cache misses are generally determined by the chosen array size and
stride, and thus we run validation with varied inputs to generate
different misses. For the 16KB (i.e., 4k) L1, the selected configura-
tions are array sizes 𝑁 = 64 and 𝑁 = 64𝑘 with strides in [1, 𝑁 ].
The profiled counts of L1 misses are reported in Figure 5(a), which
shows miss counts as calculated in Section 2.3. Note that for lower
strides (i.e., 𝑠 ≤ 16), small array (𝑁 = 64) keeps constant number
of misses (i.e., cold-start misses), whereas large array’s (𝑁 = 64𝑘)
induced misses change with respect to strides.

Regarding L2 testing, as illustrated in Figure 4, we choose larger
array sizes (𝑁 > 4𝑘 , which is L1 capacity) and strides (𝑠 > 16, i.e.,
cache line size) to force all requests to reach onto L2, thus excluding
L1 noises. Like L1 tests, both small and large arrays are chosen,
ranging from 𝑁 = 256𝑘 to 𝑁 = 4𝑚. From Figure 5(b), we see that
𝑠 = 256 always causes cold-only misses, giving a constant miss ratio
across the studied array sizes. Differently, miss counts of 𝑠 = 16
shows a straight line (i.e., constant miss ratio) when 𝑁 < 1𝑚 but
jumps at 𝑁 = 2𝑚 with all requests are missing, confirming that L2
capacity is 1𝑚 (i.e., 4MB).
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Figure 5: Profiled L1 and L2 misses of P-chase, with varying
array sizes and traversing strides.

Observation: default policy of L2 is not LRU. The above vali-
dation tests are performed after programming the configuration
register to enable basic LRU mapping, as mentioned in Section
2.3. However, the same test runs can help identify L2’s non-LRU
policy if the register is restored to the default value, which applies
an optimized addressing to effectively distribute requests among
cache lines. With the policy, cache behavior is not as regular as re-
ported in Figure 5(b). For example, replacement misses may happen
on smaller arrays like 𝑁 -512𝑘 and 𝑁 -1𝑚. For profiler validation
purpose, we simply programmed the configuration register to uti-
lize LRU to make cache show clear patterns. However, for normal
usages, we suggest to adapt the cache policy with respect to appli-
cation behaviors to maximize performance gains.

4.2 Memory Traffic
In a GPU, main memory is being shared by all the CUs, and it is
of limited capacity and throughput. Therefore, profiling and opti-
mizing memory usage is critical to tune applications’ performance.
Targeting at the traffic related counters, we craft tests to examine
memory data fetch and data write size.

Given that memory data size is decided by the cache misses,
we thus configure the tests to issue known numbers of memory
requests. For ease of validation, we further set the array with a size
falling between L1 capacity and L2 capacity, indicating that the
array fits into L2 and thus all memory requests are just contributed
by the cold misses in the initial warm-up phase. Specifically, the
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Figure 6: Correlation studies of profiled memory read and
write data to the expected misses (Cold_Miss) and request
counts (Mem_Rds/_Wrs).

array is sized as 𝑁 = 8𝑘 , and traversed by 512𝑘 total requests with
varying strides. To separately examine read and write sizes, we
repeated the tests on two different kernels (one issues only reads,
and the other issues only writes).

The results are as shown in Figure 6. For read, Figure 6(a) cor-
relates FetchSize with Cold_Miss and Mem_Rds, which are pre-
senting expected cache cold misses and profiled memory read re-
quests, respectively. Apparently, the curves are well matching with
each other, conveying that the profiling counters and metrics are
well developed and processed to capture the read traffic. Differing
from read, write in Figure 6(b) shows mismatched Cold_Miss and
Write_Size, where written data is less than expected. By exam-
ining the detailed counters, we found that write requests can be
of either 32B and 64B granularity, and if we calculate the effective
64B writes (i.e., Mem_Wrs_64B’), then we see the write size is just
as expected.

Observation: Vega 20 owns more memory partitions (MPs) than
Vega 10. The traffic metrics smoothly passed the validation on Vega
10 GPU, but failed on Vega 20 by surprisingly reporting significantly
lower amounts, indicating that somehow a fraction of requests
failed to be captured by the profiler. Through careful examination
of the profiled data, we identified thatmoreMPswere added onVega
20 to achievemuchwider interface and higher throughput [3, 5], but
the traffic metrics are still based on elder Vega 10, causing the extra

MPs accidentally escaped the profiling. As a fix 3, the traffic metrics
are revised to uniquely define for each platform. The MP difference
identified here is just an example of the constantly changing GPU
hardware components, which highlights the importance to validate
profiling results on every new architecture.

4.3 Access Latency
While GPUs are considered to have high latency-hiding ability
thanks to the massive parallelism, memory latency is still critical
to improve overall performance and boost resource utilization [18].
Thus, latency counters are frequently used to characterize GPU
applications to seek optimization opportunities.

Considering that latency values are largely dependent on the
applications and runtime environments, we thus keep using the P-
chase kernel and utilize the provided latency counters to obtain the
latency of each memory level, and then verify the values with cross
validation. Available latency counters cntA and cntB are measuring
the round-trip delays frommemory pipeline to L1 and from L1 to L2,
respectively. As listed in Table 3, dedicated array sizes and strides
are selected to respectively stress L1, L2 and Memory: a). tests T0
- T2 are to obtain the latency of servicing requests on each level
(i.e., 𝑉𝐿1, 𝑉𝐿2 and 𝑉𝑀 illustrated in Figure 7); b). tests T3 - T5 are
measuring mixed latency as described in the table. With the values
obtained from T0 - T2, we can then manually calculate the expected
average latency based on the miss ratios on each level, and then
compare against the profiled data to validate.

L1-$

L2-$

MEMORY

𝑉𝐿1

𝑉𝑀

𝑉𝐿2

Mem Pipe
cntA

cntB

Figure 7: Access latency to cache and memory, and the asso-
ciated counters.

In the validation, we first run tests T0 - T2 to collect latency
values at program level using built-in clock() function, and then
profile the latency numbers. The comparison demonstrates similar
relative values among the cache and memory levels. Then, with
profiling tests T3 - T5, we get the measured average latency values,
which is then verified against expected ones based on the frac-
tion of requests serviced on each level. As reported in Table 4, the
tests show that the profiled latency values are of no more than
3% difference from the expected ones, conveying that the latency
counters and metrics are working correctly among the studied GPU
architectures.

Observation: Vega 20 is of shorter access latency than Vega
10. The tests demonstrate that the studied delays on Vega 20 are

3The fix has been incorporated into rocprof v2.8+ to customize the traffic metrics for
Vega 20 [7].
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Table 3: Tests to obtain and validate latency of cache and memory

Test ID Test Notation Setting <𝑠 , 𝑁 ,𝑀> Description
T0 ALL_L1_HIT <16, 4k, 4m> All hits on L1 (miss: L1≈0%)
T1 ALL_L2_HIT <16, 8k, 4m> All misses on L1, but hits on L2 (miss: L1≈100%, L2≈0%)
T2 ALL_L2_MISS <16, 2m, 4m> All misses on L1 and L2 (miss: L1≈100%, L2≈100%)
T3 L1_L2_MIX <8, 8k, 4m> Half hits on L1, half on L2 (miss: L1≈50%, L2≈0%)
T4 L1_MEM_MIX <8, 2m, 4m> Half hits on L1, half on mem (miss: L1≈50%, L2≈100%)
T5 L2_MEM_MIX <32, 2m, 4m> Half hits on L2, half on mem (miss: L1≈100%, L2≈50%)

visibly lower than those on Vega 10. Contributing factors might
be the optimized micro-architectures, and also the widen memory
interface.

Table 4: Latency validation results

Test ID Expected Profiling Difference
T3 50% ×𝑉𝐿1 + 50% ×𝑉𝐿2 1.1%
T4 50% ×𝑉𝐿1 + 50% ×𝑉𝑀 2.7%
T5 50% ×𝑉𝐿2 + 50% ×𝑉𝑀 2.9%

4.4 Additional Studies
L1 is write-through: while focusing on kernels with only reads
or writes, we also ran tests with mixed reads and writes to observe
cache behaviors. The studies show that all writes are missing on L1
but may hit on L2 instead, indicating that the L1 is defaulted to be
write-through.

L2 is address sliced with interleaving: in the studies, we ex-
amined the request distribution among L2 slices (i.e., partitions) by
sweeping over strides in [1, 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒]. With small strides, the
requests are evenly distributed among the slices; with larger strides,
certain slices gradually stop receiving requests, and if stride is large
enough, all requests are routed to one single slice, implying the
existence of address interleaving.

5 RELATEDWORK
Computer designers and programmers rely on a wide set of tools
to explore design alternatives and to tune application performance.
The CPU world, after decades of evolution, has lots of mature tools
including profilers (e.g., Pin [23], Instruction Sampling [2]) and
debuggers (e.g., GDB [20]). Nonetheless, GPUs are still actively
building the counterparts to unleash the capabilities of massive
resources.

With GPU architectural complexities on the rise, developing
highly efficient software are becoming significantly critical and
challenging, motivating a plethora of work on program verification
and performance profiling. For program correctness, multiple tools
have been developed to verify the source codes of kernels [16, 19,
33]. To aid performance tuning, lots of software- [31] and hardware-
based [11, 26] profiling tools were provided to identify bottlenecks
and optimizations.

While analysis correctness is urgently needed, very few studies
have been performed to verify the profiling tools. The most relevant
work is Sen’s assessment methodology [30], which is to rate the

quality of power profiling mechanism. Differently, our goal is tar-
geting at validating performance profiling with microbenchmarks.

In this paper, we are using microbenchmarks for validation.
While the similar benchmarks were commonly adopted to reverse-
engineering hardware details, they are instead used by us to pre-
dict program behaviors. As a result, the prior dissecting works
[13, 22, 25, 32] are orthogonal to our proposed validation.

6 CONCLUSION AND FUTUREWORK
Profiling tools are heavily used to tune GPU programs, and thus are
required to be operating correctly across architectures. Accordingly,
there is an urgent need for validation to assist the construction
of GPU profiling infrastructures. To address the issue, this paper
presents a practical testing prototype DELTA using fine-grained
microbenchmarks. The preliminary results on cache and memory
imply that the validation is very helpful to identify incorrectness of
profilers. In the future, we plan to extend the tests to support the all
new RDNA architecture [6] and cover additional components (e.g.,
execution pipelines and virtual memory), with a wide spectrum of
microbenchmarks and dedicated kernels.
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