
Runtime Estimation of Application Memory Latency for
Performance Analysis and Optimization
Huanxing Shen

huanxing.shen@intel.com

Intel Corporation

Cong Li

cong.li@intel.com

Intel Corporation

ABSTRACT
Various runtime factors impact memory latency and consequently

impact application performance. Unfortunately the causal relation-

ship is buried especially at runtime. In this paper we propose a

new method for runtime estimation of application memory latency

which helps discover the causal relationship. The newmethod lever-

ages the hardware performance counters to calculate the average

time that memory requests wait before getting fulfilled. We evalu-

ate the method empirically in multiple scenarios and the estimation

closely approximates the ground truth. We further demonstrate two

examples of using the runtime estimation of application memory

latency in application performance optimization and analysis, one

in mitigating memory access interference in workload co-location

and the other in dissecting the performance problem in the memory

subsystem.

KEYWORDS
performance analysis, memory access interference, memory latency,

workload co-location

ACM Reference Format:
Huanxing Shen and Cong Li. 2020. Runtime Estimation of Application

Memory Latency for Performance Analysis and Optimization. In The In-
ternational Symposium on Memory Systems (MEMSYS 2020), September 28-
October 1, 2020, Washington, DC, USA. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3422575.3422773

1 INTRODUCTION
Memory latency is not a new topic for application performance

tuning. Previous studies (see, e.g., [8, 18, 21]) have shown the impact

of memory latency on application performance. Recent trends put

the memory latency under the spotlight. First, applications, e.g.,

big data analytics and deep learning models, start to take more

memory, making memory access time significant. Second, with the

increasing number of CPU cores on a single server, the number of

co-located applications raises as well, exposing mounting pressure

to the memory subsystem. Third, cloud applications choose to use

tail latency to define their service level agreement (SLA) in order to

protect the end-user experience, which is a tough performance goal.

As a result, researchers are seeking possible improvements from

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8899-3/20/09. . . $15.00

https://doi.org/10.1145/3422575.3422773

every aspect. In this paper, we focus on runtime memory access

performance analysis.

Static performance analysis methods help to spot code level

improvements, e.g., data locality, and inspire the hardware-software

co-design (see, e.g., [2]). However, the runtime memory latency

of an application can be impacted by many factors such as new

architecture, hardware settings, application runtime configurations,

and workload co-location (see., e.g., [6, 8, 20, 24]). When memory

latency goes higher, it jeopardizes the application performance.

We propose a new method to estimate the runtime memory

latency of an application. The method leverages the hardware per-

formance counters to calculate the average time in nanoseconds

that memory requests wait before getting fulfilled. Experimental

results show that our latency estimation closely approximates the

ground truth in different scenarios.

We demonstrate the use of the latency estimation in runtime

performance analysis and optimization. In the first scenario where

workloads are co-located, we use the runtimememory latency of the

latency-critical (LC) application as an input for dynamic throttling

of a best-effort (BE) application. With the help of the metric, we

are able to detect memory interference, secure the performance of

LC applications, and improve the throughput of BE applications.

In the second scenario where the application performance drops

upon a runtime configuration change, we use the latency estimation

to dissect the performance problem. The estimation confirms the

impact of the configuration change on the application performance.

The rest of the paper is organized as follows. In the next section

we first introduce the hierarchy of the memory subsystem. We

then propose the new method for runtime estimation of application

memory latency in Section 3. After an empirical evaluation of the

method in Section 4, we further demonstrate how the estimation

can be applied to memory access interference mitigation in Section

5 and to performance diagnosis in Section 6. In Section 7 we discuss

the limitations of our method. After a brief review of the other

related work in Section 8, we conclude our work in Section 9.

2 BACKGROUND
In modern computing systems, memory is used for fast data stor-

age and retrieval. To alleviate the memory wall problem caused by

the processor-memory performance gap [23], modern multi-core

processors employ a hierarchy of multi-level caches to accelerate

the memory access performance. Figure 1 shows the diagram of

a multi-core sever processor. Each core typically has its dedicated

level 1 and 2 caches. The cores share the last-level cache (LLC)

which is much larger. A read request from a core is checked in its

dedicated caches first. Given a miss in the dedicated caches, the

request goes to the shared LLC. If the request also gets missed in

the LLC, it is forwarded to the shared memory controller (or one of

https://doi.org/10.1145/3422575.3422773
https://doi.org/10.1145/3422575.3422773

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Huanxing Shen and Cong Li

Figure 1: Multi-core server processor.

the several shared controllers) for memory access. Cache accesses

are fast, typically taking less than 50 cycles (that is, around 20 to

30 nanoseconds depending on the operating frequency). Memory

accesses are slow. With more requests queued for processing by

a memory controller, a longer waiting time is included in the to-

tal service time. Memory access time can range from 100 to 400

nanoseconds depending on the intensity on some recent server

platforms [21]. Once the request is served from the memory, the

content is then cached for faster accesses in the future. A write re-

quest is performed first in caches as well, making the corresponding

cache entries dirty. Dirty entries are typically written back later. In

such a design, the performance of read requests is more important

than that of write requests [15]. This is because that read requests

are more likely to be on the critical path and usually there are more

read requests than write requests. In this paper, we limit our study

to the read requests only.

Usually modern servers have several processor nodes. Each pro-

cessor node contains a multi-core processor and a set of local mem-

ory modules served by the memory controller(s) in the processor.

Those nodes are connected with a high-speed interconnect so that

the memory modules from all the nodes can be shared globally.

Figure 2 shows a topology on how memory and processors are con-

nected. While accesses to the memory of the local node go through

the local memory controller(s), accesses to the memory of a remote

node need to traverse the interconnect first. This makes the remote

accesses slower, forming the non-uniform memory access (NUMA)

design [4].

The runtime latency of memory accesses in an application is im-

pacted by multiple factors. For example, the hardware configuration

of memory interleaving may improve the parallelism of memory ac-

cesses. While enabling hardware cache prefetching probably makes

the cache hit ratio higher, it stresses the memory controllers with

more queueing requests and hurts the latency. Given the NUMA

design, modern operating systems provide different memory place-

ment policies and different CPU scheduling mechanisms that may

impact the memory access latency of the applications. With the

commercial persistent memorymodules on themarket, applications

can enjoy the higher memory capacity but at the cost of slower and

unstable performance [24].

Figure 2: Topology on how memory and processors are con-
nected.

In highly optimized cloud computing environments, many work-

loads are co-located on a server. This results in more requests

waiting in the queues for the shared memory controllers to pro-

cess. Thus memory accesses of an application may cost more time,

impacting its tail latency [9]. For example, Facebook SoftSKU dis-

covers that performance of microservices drops when the number

of co-located services reaches a certain threshold [21].

In summary, as a vital factor impacting application performance,

runtime memory latency of an application may change with respect

to different factors. Estimating thememory latency of an application

is important in runtime performance diagnosis and optimization.

3 MEMORY LATENCY ESTIMATION
We propose a method to estimate the average runtime memory

latency of an application. While there are cases that read requests

can be fed from the data in the cache, in this paper we focus on the

requests handled by the memory.

To estimate the average latency of those read requests, we mea-

sure their waiting time in nanoseconds before they get fulfilled.

The estimation breaks down the life cycle of a data read request

which goes to the main memory to cache time and memory time.

Let
¯𝑙 denote the average latency of the requests. We estimate the

average latency with

¯𝑙 =
𝑐
cache

+ 𝑐memory

¯𝑓
,

in which 𝑐
cache

denotes the average number of CPU core cycles

spent in checking and operating the cache, 𝑐memory denotes the

average number of core cycles spent in serving the requests from

memory, and
¯𝑓 denotes the average core frequency. Compared with

𝑐memory which can vary significantly at runtime, the variation of

𝑐
cache

is minor. As a result, we take 𝑐𝑐𝑎𝑐ℎ𝑒 as a processor-dependent

constant in the estimation. The denominator,
¯𝑓 , is estimated from

Runtime Estimation of Application Memory Latency for Performance Analysis and Optimization MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Table 1: Intel’s PMU events for memory latency estimation

Notation Intel PMU event Semantics

𝑐
CPU_CLK_UNHALTED. Unhalted

THREAD core cycles

𝑐
ref

CPU_CLK_UNHALTED. Unhalted

REF_TSC reference cycles

𝑟
total

OFFCORE_REQUESTS. Number of unique

L3_MISS_DEMAND_ requests with

DATA_RD LLC misses

∑
𝑡 𝑟𝑡

OFFCORE_REQUESTS_ Cumulative cycles that

OUTSTANDING.L3_MISS_ the requests wait

DEMAND_DATA_RD before getting fulfilled

the actual CPU core cycles versus the reference core cycles incre-

mented at a fixed frequency as

¯𝑓 =
𝑐

𝑐
ref

𝑓
base

,

in which 𝑐 denotes the unhalted core cycles counted at the varing
operating frequency, 𝑐

ref
denotes the unhalted reference cycles in-

cremented at the fixed reference frequency, and 𝑓
base

denotes the

fixed reference frequency. Both 𝑐 and 𝑐
ref

are directly monitored

through the corresponding hardware performance events.

We next explain how we estimate 𝑐memory. On a contemporary

Intel server platform, each core (or hardware thread with hyper-

threading enabled) has a super queue for memory requests missing

its dedicated level 1 and 2 caches. Each request is then checked

with the shared LLC. If an LLC miss occurs, the request is labeled

as as an LLC miss and is then routed to the memory controller

for memory access. Once the request is served from the memory,

it gets fulfilled and then gets removed from the queue. On con-

temporary Intel server processors, hardware performance counters

can be programmed to monitor the activities of those requests in

the queue. Let 𝑟𝑡 denote the number of requests labeled as LLC

misses in the queue at cycle 𝑡 . A counter,

∑
𝑡 𝑟𝑡 , is incremented

with number of ongoing read requests that miss LLC in the queue

every cycle. Therefore it counts the cumulative cycles that those

requests wait before getting fulfilled within a certain monitoring

period. Another counter, 𝑟
total

monitors the total number of unique

requests with LLC misses within the same period. Dividing the

cumulative waiting cycles by the number of the unique requests,

we have

𝑐memory =

∑
𝑡 𝑟𝑡

𝑟
total

.

Table 1 shows the hardware performance events provided by

Performance Monitoring Unit (PMU) on Intel SkyLake and Cascade

Lake platforms
1
to count the terms for latency estimation. Hard-

ware performance counters can be configured to monitor those

events. Since all the 4 events can be counted at core level and hard-

ware thread level, we are able to collect the data at the application,

1
See https://www.intel.com/content/www/us/en/design/products-and-solutions/

processors-and-chipsets/purley/intel-xeon-scalable-processors.html and https:

//www.intel.com/content/www/us/en/design/products-and-solutions/processors-

and-chipsets/cascade-lake/2nd-gen-intel-xeon-scalable-processors.html.

Table 2: Memory latency estimation vs. MLC measurement.

Configuration MLC (ns) Estimation (ns)

Relative

error

idle/local 88.8 86.31 2.80%

idle/remote 148.4 144.46 2.65%

idle/Optane 174.5 179.81 3.04%

loaded 131.1 128.17 2.23%

loaded (MBA) 100.8 99.11 1.68%

process, or thread level through the Linux perf tool
2
. For an ap-

plication, counters count the data for all its threads within the

monitoring period, so the estimation reflects the average memory

latency of the application.

4 EVALUATION OF LATENCY ESTIMATION
In this section, we compare our memory latency estimation against

the ground truth to evaluate its correctness. We then review an abla-

tion study
3
to discuss why the average CPU frequency is introduced

to our estimation method.

We choose to use the memory latency value reported by Intel’s

Memory Latency Checker (MLC) [22] as the ground truth
4
. To mea-

sure the latency, MLC launches a thread to traverse an array of

data pointers sequentially and calculates the average read latency

for reporting. Therefore the measurement represents the memory

access latency of the MLC thread. We create multiple scenarios in

which the memory latency of the MLC get impacted upon different

background memory loads and runtime hardware/software con-

figuration change. For each scenario, the memory latency of the

MLC thread is estimated by the proposed method and compared to

the ground truth reported by MLC. If the two results are close, we

regard that our estimation is accurate.

Note that though MLC provides the ground truth in our evalua-

tion, it cannot be used as an alternative tool for runtime estimation

of application level memory latency. This is because that it only

estimates the memory latency of its process or thread under certain

background load.

We run the evaluation on a server with two Intel(R) Xeon(R)

Gold 6252 processors. The server is equipped with 10 dynamic

random-access memory (DRAM) modules, each with the capacity

of 32GB, and 2 Intel Optane DC persistent memory modules, each

with the capacity of 128GB.

We run the evaluation with the scenarios below

(1) idle/local: latency within the same NUMA node without

any explicit background memory load in the system;

(2) idle/remote: latency towards the remote NUMA node with-

out any explicit background memory load in the system;

(3) idle/Optane: latency towards the Intel Optane DC persis-

tent memory module without any explicit background mem-

ory load in the system;

2
See https://perf.wiki.kernel.org/index.php/Main_Page.

3
In an ablation study, a feature in a method is removed to examine how that affects

the performance.

4
We use the so-called idle-latency testing mode of MLC to get the value, and generate

the background load with other tools.

https://www.intel.com/content/www/us/en/design/products-and-solutions/processors-and-chipsets/purley/intel-xeon-scalable-processors.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/processors-and-chipsets/purley/intel-xeon-scalable-processors.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/processors-and-chipsets/cascade-lake/2nd-gen-intel-xeon-scalable-processors.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/processors-and-chipsets/cascade-lake/2nd-gen-intel-xeon-scalable-processors.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/processors-and-chipsets/cascade-lake/2nd-gen-intel-xeon-scalable-processors.html
https://perf.wiki.kernel.org/index.php/Main_Page

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Huanxing Shen and Cong Li

Table 3: Intel’s PMU events for memory latency estimation
at the memory controller level

Notation Intel PMU event Semantics

𝑟 iMC

total

UNC_M_RPQ_

INSERTS

Number of unique requests

in the memory controller

∑
𝑡 𝑟

iMC

𝑡

UNC_M_RPQ_

OCCUPANCY

Cumulative cycles that

the requests wait

in the memory controller

before getting sent

𝑟 iMC-PMM

total

UNC_M_PMM_RPQ

_INSERTS

Number of unique requests

to the persistent memory

in the memory controller

∑
𝑡 𝑟

iMC-PMM

𝑡

UNC_M_PMM_

RPQ_OCCUPANCY.ALL

Cumulative cycles that

the requests to the

persistent memory wait in

the memory controller

before getting fulfilled

𝑓iMC UNC_M_CLOCKTICKS

Frequency of

the memory controller

(4) loaded: latency of the base scenario idle/local, but aug-
mented with a memory intensive workload in the back-

ground simulated by stress-ng5; and
(5) loaded (MBA): latency of the base scenario loaded, but with

the background memory load throttled with Memory Band-

width Allocation (MBA) at 10% of the total memory band-

width
6
.

We use the perf tool to collect the hardware performance events

listed in the Table 1. The MLC instance runs inside a docker con-

tainer. For each scenario, we run the MLC instance for 60 seconds.

In each second we collect the performance counters and calculate

the memory latency. When the run finishes, we compute the aver-

age value as the estimated latency of this run. 𝑐
cache

, the average

number of cycles spent in checking and operating the cache, is set

to 44 CPU cycles. 𝑓
base

, the base frequency of the processors, is

2.1GHz.

Table 2 shows the results in those scenarios. In all the scenarios,

our memory latency estimations closely approximate the MLC

measurements. The highest relative error is around 3%. The results

indicate that the proposed method is accurate in estimating the

memory latency of the application in the scenarios.

4.1 Comparing with an Alternative Estimation
Suggested in the performance monitoring guide for Intel proces-

sors
7
, one may use the counters in the shared memory controllers

as an alternative method for memory latency estimation.

The alternative approach shares the concept of our memory

latency calculation at the super queue level. First, it counts the

total clockticks that the memory requests wait at the queue of read

5
Available at https://wiki.ubuntu.com/Kernel/Reference/stress-ng.

6
See https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-

allocation.

7
See, e.g., https://www.intel.com/content/dam/www/public/us/en/documents/design-

guides/xeon-e5-2600-uncore-guide.pdf.

Figure 3: Memory Latency measured by MLC, the memory
controller and our estimation for all the scenarios.

requests at the memory controllers before getting sent to the DRAM

modules. Then, it divides the total clockticks by the total number of

requests to get the average latency in clockticks. Finally, the latency

in clockticks is converted to nanoseconds using the frequency of

the memory controller.

Table 3 shows the counters used in the alternative approach.

Note that in the memory controllers, for a request going to DRAM,

when its read command is issued to thememorymodule, the request

gets immediately removed from the queue. Therefore we add an

additional term to account for the so-called Column Access Strobe
(CAS) latency, the delay time between the read command and the

moment data is available. The calculation for requests going to

DRAM then becomes

¯𝑙 iMC =

∑
𝑡 𝑟

iMC

𝑡

𝑟 iMC

total

× 1

𝑓iMC

+ 𝑙CAS,

in which 𝑙CAS represents the CAS latency. However, for a request

going to the persistent memory, it is not removed until it gets

fulfilled. The calculation for those requests becomes:

¯𝑙 iMC-PMM =

∑
𝑡 𝑟

iMC-PMM

𝑡

𝑟 iMC-PMM

total

× 1

𝑓iMC

.

Figure 3 compared the memory latency values measured byMLC,

those estimated by the proposed method, and those estimated by

the alternative approach. As we see from the figure, while our

estimation closely approximates the ground truth reported from

MLC, the alternative estimation deviates away significantly.

There are several reasons making the alternative estimation

inaccurate:

(1) Memory controllers are shared by all the CPU cores in a pro-

cessor. When memory requests from different cores mingle

at the controllers, the latency measured is for all the applica-

tions running on the cores, not just for the target application

running on some specific cores. For example, in the first 2

scenarios, even if there is no explicit background load, there

is the implicit background load.

(2) The alternative estimation does not account for the time

spent in checking and operating the cache (which may vary

with respect to the core frequency). It underestimates the

latency in all the scenarios.

https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
https://www.intel.com/content/dam/www/public/us/en/documents/design-guides/xeon-e5-2600-uncore-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/design-guides/xeon-e5-2600-uncore-guide.pdf

Runtime Estimation of Application Memory Latency for Performance Analysis and Optimization MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Table 4: Memory latency measured in CPU cycles for differ-
ent CPU frequency settings

Configuration MLC (ns)

Estimation in

nanoseconds

Estimation in

CPU cycles

2.1GHz 81.4 80.2 168.50

2.6GHz 80.0 77.27 200.90

(3) The alternative estimation does not account for the time

spent in traversing the interconnect in remote memory ac-

cesses. This exacerbates the deviation of the alternative esti-

mation from the ground truth in scenario idle/remote.
As a result, the alternative estimation cannot match the accuracy

achieved by the proposed estimation approach.

4.2 CPU Cycles vs. Nanoseconds
The memory latency can be measured in CPU cycles without con-

sidering the CPU frequency. However, in this way, the memory

latency in CPU cycles has a bias towards a lower core frequency.

This is because that with a lower core frequency, the cycle time is

longer than that at a higher frequency. As a result, a lower latency

measured in CPU cycles can actually take more time in nanosec-

onds.

To illustrate the issue, we perform a simple ablation study. We

run the scenario idle/local with two different core frequencies,

2.1GHz and 2.6GHz. In the two configurations, we measure the

memory latency in both nanoseconds and CPU cycles.

Table 4 shows the latency estimation in nanoseconds and that in

CPU cycles along with the ground truth fromMLC. As shown by the

MLC results, the higher core frequency speeds up the processing so

it produces a slightly lower latency. However, without considering

the shorter cycle time, the latency in CPU cycles for the higher

core frequency is estimated to be higher. This study shows that the

memory latency measured in CPU cycles can not be interpreted as

the memory access performance directly. Our latency estimation

measures the average cycle time in order to translate the memory

latency to nanoseconds so it does not suffer from the problem.

5 APPLICATION TO INTERFERENCE
MANAGEMENT

We demonstrate the use of runtime memory latency estimation in

two scenarios, one for mitigating memory access interference in

workload co-location and another for dissecting the performance

problem in the memory subsystem.

While workload co-location improves cluster utilization in cloud

environments, it brings performance-impacting contentions on un-

managed resources. Memory controllers are shared among all the

cores in the processor. When we allocate some cores to a latency-

critical (LC) application and some other cores to a best-effort (BE)

application
8
, memory requests from the two applications mingle

at the controllers and may impact each other. Some traditional

8
LC applications are either end-user facing or serving as the basic infrastructure in the

cloud. Their workload intensity varies based on the demand. They are typically with a

stringent requirement on the tail latency. BE applications, e.g., batch data analytics or

machine learning jobs, usually do not have a stringent performance requirement.

Algorithm 1 Memory access interference management

procedure manageMemoryInterference(𝐿𝐶, 𝐵𝐸)

\ ← getTargetThreshold(𝐿𝐶, 𝐵𝐸)
𝑞𝑢𝑜𝑡𝑎 ← 1

𝐵𝐸.setCPUQuota(𝑞𝑢𝑜𝑡𝑎)
while LC.notStopped() and BE.notStopped() do

𝑙 ← estimateMemoryLatency(𝐿𝐶)
if 𝑙 < \ then

if 𝑞𝑢𝑜𝑡𝑎 < 𝐵𝐸.getMaxQuota() then
𝑞𝑢𝑜𝑡𝑎 ← 𝑞𝑢𝑜𝑡𝑎 + 0.5

else
𝑞𝑢𝑜𝑡𝑎 ← 1

𝐵𝐸.setCPUQuota(𝑞𝑢𝑜𝑡𝑎)
procedure getTargetThreshold(𝐿𝐶, 𝐵𝐸)

𝑠𝑢𝑚 ← 0

𝑡 ← 0

𝐵𝐸.setCPUQuota(0)
while 𝑡 < 𝑇 do

if 𝐿𝐶.fullyUtilized() then
𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + estimateMemoryLatency(𝐿𝐶)
𝑡 ← 𝑡 + 1

return 𝑠𝑢𝑚/𝑇

approaches rely on runtime application level performance data

(see, e.g., [10, 27]) to detect and manage the interference. However,

application level metrics are not always available for a large vari-

ety of workloads. Other approaches are proposed to use low level

metrics to detect and manage cache contentions (see, e.g., [17, 19]).

However, those methods cannot detect and manage memory access

interference.

5.1 Use of Memory Latency Estimation to
Manage Memory Access Interference

We propose to use the runtime memory latency estimation as the

low level metric to detect and manage memory access interference,

as is shown in Algorithm 1.

When a new LC application is started, we fully throttle the

co-located BE application. During this period, the LC application

runs without any memory access interference. When all the cores

allocated to the LC application are fully utilized, we estimate its

memory latency every second. Let (¯𝑙1, ..., ¯𝑙𝑇) denote the 𝑇 samples

collected. The average value,

∑𝑇
𝑡=1

¯𝑙𝑡
𝑇

, is then taken as the threshold

to detect memory interference.

We then design a dynamic control mechanism to manage the

interference from the BE application as follows. We start the BE

application with the CPU quota of 1 core. We keep monitoring the

runtime memory latency of the LC application every second. If the

latency stays below the threshold, we increase the CPU quota of

the BE application by 0.5 cores. If the latency violates the threshold,

we throttle the CPU quota of the BE application to 1 core.

5.2 Experiment
We use a experiment to evaluate the new approach to manage mem-

ory access interference using runtime memory latency estimation.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Huanxing Shen and Cong Li

The deep learning inference workload, Facebook’s Deep Learn-

ing Recommendation Model (DLRM) [14] benchmark
9
, is set up as

the LC application. For inference, DLRM provides personalized con-

tent based on users’ input. Using high dimensional embeddings,

the application performance in terms of inference latency becomes

vulnerable to the memory access latency [5]. Therefore we choose

it to evaluate the mitigation method of memory access interference.

We place the LC application on one processor of the server

used in Section 4. To match the memory capacity of the server, we

configure themaximum intensity of the DLRM benchmark as running

24 concurrent worker threads, each running inside a Caffe2 [12]
thread with AVX2 enabled. Each worker is pinned to a hardware

thread in the processor. The average inference latency is 8.92ms.

Therefore adding a small buffer, we assume 9ms as the target service

level agreement (SLA)
10

to maintain during workload co-location.

We assume that at runtime the LC application is not at its peak in-

tensity. Instead, it is running at a moderate intensity with 9 worker

threads. This provides the opportunity to co-locate a certain BE

application. Two applications are used: a computing-intensive one

and a memory-intensive one. They are simulated by a system stress-

ing tool, stress-ng [7]. For the computing-intensive application,

we configure stress-ng to iterate over all the CPU stress methods.

For the memory-intensive application, we configure stress-ng to

exercise the memory bandwidth. In both cases, 6 worker threads

are used. They run on hardware threads which are not currently

occupied by the LC application. The choice of 9 LC workers and 6

BE workers is to make the intensity of both applications moderate.

With such a setting, we are not only able to observe the memory

access interference in some cases but also able to achieve reason-

able productivity of the BE application with the interference under

control.

To evaluate how well our method performs, we examine the

performance of the LC application and the productivity of the BE

application. The average inference latency of the DLRM benchmark

is checked against its SLA. The throughput of stress-ng in bogo
ops 11 is recorded as BE’s productivity under the co-location. The

goal is to maximize the productivity of the BE application without

violating the SLA of the LC application.

We also compare our method to 2 baseline settings:

(1) Without quota: without any control on the CPU quota of the

BE applications.

(2) Static quota: with a static CPU quota of 1 core on the BE

applications.

Figure 4 shows the inference latency of the LC application and

the bogo ops of the BE application for three settings. Without CPU

quota control, the BE applications achieve the highest productivity

but the performance of the LC application is scarified when the BE

application is memory-intensive. It is because the memory access

interference is not detected and handled. The static one-CPU-quota

setting is too conservative for BEs’ productivity, especially when

the BE application cannot create any pressure on the memory

subsystem. With our method, the BE applications achieve decent

9
See https://github.com/facebookresearch/dlrm.

10
Note that the SLA information is not known to the interference management

algorithm.

11Bogo ops is the number of completed stressing iterations during the run.

(a)

(b)

Figure 4: Results of workload co-location (a) inference la-
tency of the LC application; and (b) bogo ops of the BE ap-
plication.

throughput and the LC performance meets the SLA. Thanks to the

runtime memory latency estimation, our method is able to detect

performance impactingmemory access interference and to dynamic

control the CPU quota to mitigate the interference and improve the

productivity.

To conclude, the runtime estimation of application memory la-

tency is useful for workload co-location to mitigate the contentions

on the shared memory resource. It enables us to detect memory

access interference to secure the performance of memory latency

sensitive applications. Besides it offers the opportunity for BE appli-

cations to thrive as long as they do not impact the memory latency

of LC applications.

6 APPLICATION TO PERFORMANCE
DIAGNOSIS

In this section we show an example of using the estimation of

application runtime memory latency for performance diagnosis.

SPECjbb2015 [16] is a benchmark that simulates the online trans-

action processing for a wholesale company. The benchmark is mem-

ory intensive, as it stores all its data in the memory and accesses

the data extensively in processing. In this scenario, We pin the

back-end component of SPECjbb2015 to one of the two processors

of the server used in Section 4 and place the load generator on a

different server in the same local area network. We configure the

https://github.com/facebookresearch/dlrm

Runtime Estimation of Application Memory Latency for Performance Analysis and Optimization MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Table 5: Application tail latency andmemory latency in two
different runs.

Configuration

SPECjbb2015 tail latency (ms) Memory latency (ns)

Average / maximum Average / maximum

Pinned 36 / 91 89 / 149

Not pinned 57 / 640 156 / 261

back-end component with 24 workers. Under this configuration,

the throughput score
12

for a standard benchmark run is 38964

transactions per second.

We then run the SPECjbb2015 application twice with the fixed

intensity (38964 transactions per second). Each run lasts for 10

minutes and tail latency at the 99th percentile is reported every

35 seconds. In the first run, the back-end component is pinned to

one of the two processors. In the second run, the processor pinning

constraint is removed. We examine the tail latency for the two runs

as the performance indicator for a specific workload intensity.

Table 5 shows the average and maximum value of the tail la-

tency in the two runs. It shows that the tail latency becomes worse

when the SPECjbb2015 back-end component is not pinned to one

processor.

We speculate that the performance drop is caused by the NUMA

design. In the default first-touch NUMA policy in Linux, the mem-

ory pages are placed on the local memory node of the processor

where they are first accessed. When the back-end component is

pinned to the processor, almost all the memory accesses are local

ones. However, when the back-end component is not pinned to a

specific processor, the Linux CPU scheduler will move the worker

threads across the processor boundary [11]. Some of the memory

accesses have to go to the inter-processor interconnect thus they

are slower than the local memory access. It can eventually affect the

tail latency of a memory-intensive application, e.g. SPECjbb2015.
To dissect the performance drop and confirm our speculation, we

monitor the memory latency of the SPECjbb2015 back-end compo-

nent for each run. Table 5 shows the average and maximum value

of the memory latency. As we see from the table, in the second run

the memory accesses become much slower. This confirms the spec-

ulation on how the configuration change impacts the performance.

With the help of the runtime memory latency estimation, we can

pinpoint the cause of performance deterioration.

7 LIMITATIONS
The estimation of memory latency proposed in the paper applies

to read requests only. It assumes that write requests are not on the

critical path. For applications in which write requests play a critical

role for their performance (e.g., applications using the transactional

memory programming), the assumption becomes invalid. The pro-

posed estimation method misses a significant factor in memory

latency that may impact application performance.

In the estimation, we assume a constant number of cycles spent

in checking and operating the cache. It is possible that the actual

number of cycles spent for one request for cache operations can

deviate significantly from the constant. For example, if the super

12
It is named as critical-jOPS in the benchmark report.

queue of a core is full, a request missing the level 1 and 2 caches

needs to wait for a free slot in the queue. It is also possible that

allocating a new cache line for a read request evicts a dirty cache

line. The eviction may result in a chain of evictions in the multi-

level cache hierarchy. When all the buffers for data storing are full,

it then becomes a write operation costing a significant number of

additional cycles. Also in some extreme cases, the LLC controllers

in the processor can be too busy in handling the incoming requests,

so that the requests in the super queue may need to wait a long

time even before knowing the results of LLC misses. Misses in

the translation lookaside buffer (TLB) can introduce significant

deviation in the cost as well.

Besides we assume that all the read requestsmissing in the shared

LLC become requests to memory. It is possible that in the NUMA

design, such a request gets served from the cache in a different

processor. The request is then mistakenly regarded as a memory

request in our estimation. This becomes a noise factor in estimating

the average latency for requests that actually go to memory.

The estimation method proposed in the paper relies on the cor-

responding counters in the processors. The counters are available

in the contemporary Intel server platforms. The method is not ap-

plicable to older Intel server platforms. Transferring the method

to other non-Intel platforms also depends on the availability of the

counters.

8 OTHER RELATEDWORK
Efforts have been made to pinpoint the execution bottleneck of an

application. For example, Yasin proposes a top-down method to

detect the bottlenecks [25] by calculating CPU stalls in different

CPU execution pipeline slots. The proposal also relies on hardware

performance counters. However, this method provides the relative

contribution from a broad hierarchy of different categories (e.g.,

frontend bound, bad speculation, etc.), but not on the specific esti-

mation of memory latency. Furthermore, many of the categories

are more relevant to offline optimization rather than to runtime

optimization and performance diagnosis.

Using the right hardware performance counters to analyze the

performance of memory subsystem has also been studied. For exam-

ple, in [13] counters are identified to measure the usage of available

bandwidth and the percentage of cycles consumed by the compo-

nents in the memory hierarchy. However, the work does not address

the measurement of memory request latency. It does not demon-

strate how the analysis helps in runtime performance optimization

as well.

Workload memory characterization is also a hot topic. For ex-

ample, a performance model is proposed in [3] to evaluate the

workloads’ sensitivity towards memory bandwidth and memory la-

tency. The model focuses on the characterization of different types

of workloads in a static offline environment. However, the static

evaluation does not account for the complexity of runtime memory

subsystem performance that impacts the application performance.

An analytical memory model is presented in [1] to predict the

performance of a program on different processors. The model uses

static analysis based on reuse distances to estimate the memory la-

tencies at different hierarchies of the memory subsystem. However,

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Huanxing Shen and Cong Li

the static analysis does not account for the varying runtime factors

such as the interference from other co-located workloads.

Managing interference for workload co-location is a difficult

problem. In Heracles [10], application performance information is

used as the indicator to guide the throttling of the BE application.

CPI
2
[26] does not require the application performance informa-

tion and only uses the cycles-per-instruction metric as application

performance indicator. It cannot discriminate whether the inter-

ference come from memory accesses or not. In Kelp [28], the LC

application and the BE application are placed in different NUMA

subdomains to limit the memory access interference. Different from

those methods, we use the runtime memory latency estimation of

the LC application to detect and mitigate memory access interfer-

ence. To the best of our knowledge, our work is the only method

that can discriminate the interference in memory accesses without

application level information or the strict NUMA placement. This

helps to develop more flexible resource management policy for

workload co-location.

9 CONCLUSION
In this paper we have presented a new method to estimate the

runtime memory latency of an application. The measurement is

accomplished with the hardware performance counters. The em-

pirical evaluation indicates that the estimation is accurate.

Memory access latency metric provides a unique perspective for

runtime performance diagnosis and optimization. We have demon-

strated the use of the metric in two scenarios. For workload co-

location, we have proposed a new method to detect and manage

memory access interference by monitoring the memory latency

of the critical application. Experimental results indicate that our

method improves the productivity of best-effort applications and

secure the performance of latency-critical applications. We have

also shown how the memory latency metric can help to dissect the

performance loss. With the help of the metric, we are able to pin-

point the cause to the runtime configuration change which impacts

memory access performance.

ACKNOWLEDGMENTS
We thank Tai Huang and Jia Bao for comments on an early draft

of this paper. We acknowledge the anonymous reviewers for their

valuable comments and criticisms to improve the paper.

REFERENCES
[1] Gopinath Chennupati, Nandakishore Santhi, and Stephan Eidenbenz. 2019. Scal-

able Performance Prediction of Codes with Memory Hierarchy and Pipelines. In

Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation (Chicago, IL, USA) (SIGSIM-PADS ’19). Association for Computing

Machinery, New York, NY, USA, 13–24. https://doi.org/10.1145/3316480.3325518

[2] Zeshan Chishti and Berkin Akin. 2019. Memory System Characterization of

Deep Learning Workloads. In Proceedings of the International Symposium on
Memory Systems (Washington, District of Columbia) (MEMSYS ’19). Association
for Computing Machinery, New York, NY, USA, 497–505. https://doi.org/10.

1145/3357526.3357569

[3] Russell Clapp, Martin Dimitrov, Karthik Kumar, Vish Viswanathan, and Thomas

Willhalm. 2015. Quantifying the Performance Impact of Memory Latency and

Bandwidth for Big Data Workloads. In 2015 IEEE International Symposium on
Workload Characterization. 213–224.

[4] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud

Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. 2013. Traffic Man-

agement: A Holistic Approach to Memory Placement on NUMA Systems. In

Proceedings of the Eighteenth International Conference on Architectural Support

for Programming Languages and Operating Systems (Houston, Texas, USA) (ASP-
LOS ’13). Association for Computing Machinery, New York, NY, USA, 381–394.

https://doi.org/10.1145/2451116.2451157

[5] Udit Gupta, Xiaodong Wang, Maxim Naumov, Carole-Jean Wu, Brandon Reagen,

David Brooks, Bradford Cottel, Kim M. Hazelwood, Bill Jia, Hsien-Hsin S. Lee,

Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, and

Xuan Zhang. 2019. The Architectural Implications of Facebook’s DNN-based

Personalized Recommendation. CoRR abs/1906.03109 (2019). https://arxiv.org/

abs/1906.03109

[6] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,

Tipp Moseley, Gu-YeonWei, and David Brooks. 2015. Profiling aWarehouse-Scale

Computer. In Proceedings of the 42nd Annual International Symposium on Com-
puter Architecture (Portland, Oregon) (ISCA ’15). Association for Computing Ma-

chinery, New York, NY, USA, 158–169. https://doi.org/10.1145/2749469.2750392

[7] Colin Ian King. 2017. Stress-ng. http://kernel.ubuntu.com/~cking/stress-ng/

[8] Baptiste Lepers, Vivien Quema, and Alexandra Fedorova. 2015. Thread and Mem-

ory Placement on NUMA Systems: Asymmetry Matters. In 2015 USENIX Annual
Technical Conference (USENIXATC 15). USENIXAssociation, Santa Clara, CA, 277–

289. https://www.usenix.org/conference/atc15/technical-session/presentation/

lepers

[9] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. 2014. Tales

of the Tail: Hardware, OS, and Application-Level Sources of Tail Latency. In

Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA, USA)

(SOCC ’14). Association for Computing Machinery, New York, NY, USA, 1–14.

https://doi.org/10.1145/2670979.2670988

[10] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and

Christos Kozyrakis. 2015. Heracles: Improving Resource Efficiency at Scale. In

Proceedings of the 42nd Annual International Symposium on Computer Architecture
(Portland, Oregon) (ISCA ’15). Association for Computing Machinery, New York,

NY, USA, 450–462. https://doi.org/10.1145/2749469.2749475

[11] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Quéma,

and Alexandra Fedorova. 2016. The Linux Scheduler: A Decade of Wasted Cores.

In Proceedings of the Eleventh European Conference on Computer Systems (London,
United Kingdom) (EuroSys ’16). Association for Computing Machinery, New York,

NY, USA, Article 1, 16 pages. https://doi.org/10.1145/2901318.2901326

[12] Aaron Markham and Yangqing Jia. 2017. Caffe2: Portable High-Performance

Deep Learning Framework from Facebook. NVidia Developer Blog (2017).

[13] Daniel Molka, Robert Schöne, Daniel Hackenberg, and Wolfgang E. Nagel. 2017.

Detecting Memory-Boundedness with Hardware Performance Counters. In Pro-
ceedings of the 8th ACM/SPEC on International Conference on Performance Engi-
neering (ICPE ’17). Association for Computing Machinery, New York, NY, USA,

27–38. https://doi.org/10.1145/3030207.3030223

[14] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,

Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean

Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-

avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-

dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang

Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model

for Personalization and Recommendation Systems. CoRR abs/1906.00091 (2019).

https://arxiv.org/abs/1906.00091

[15] Patrick Ndai, Ashish Goel, and Kaushik Roy. 2010. A Scalable Circuit-architecture

Co-design to Improve Memory Yield for High-performance Processors. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 18, 08 (aug 2010),

1209–1219. https://doi.org/10.1109/TVLSI.2009.2022628

[16] Hitoshi Oi. 2016. Power Optimization and Service Level Agreement Trade-off in

SPECjbb2015. In 2016 IEEE 7th Annual Ubiquitous Computing, Electronics Mobile
Communication Conference (UEMCON). 1–6. https://doi.org/10.1109/UEMCON.

2016.7777880

[17] Ioannis Papadakis, Konstantinos Nikas, Vasileios Karakostas, Georgios I. Goumas,

and Nectarios Koziris. 2017. Improving QoS and Utilisation in Modern Multi-core

Servers with Dynamic Cache Partitioning. In Proceedings of the Joined Workshops
COSH 2017 and VisorHPC 2017, COSH/VisorHPC@HiPEAC 2017, Stockholm, Sweden,
January 24, 2017. 21–26. https://doi.org/10.14459/2017md1344298

[18] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert Hundt.

2010. Google-Wide Profiling: A Continuous Profiling Infrastructure for Data

Centers. IEEE Micro 30, 4 (2010), 65–79.
[19] Huanxing Shen and Cong Li. 2019. Detecting Last-Level Cache Contention

in Workload Colocation with Meta Learning. In 2019 IEEE International Sym-
posium on Workload Characterization (IISWC). 14–23. https://doi.org/10.1109/

IISWC47752.2019.9041983

[20] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt. 2007. Feedback

Directed Prefetching: Improving the Performance and Bandwidth-Efficiency

of Hardware Prefetchers. In 2007 IEEE 13th International Symposium on High
Performance Computer Architecture. 63–74.

[21] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F. Wenisch. 2019. SoftSKU:

Optimizing Server Architectures for Microservice Diversity @Scale. In Proceed-
ings of the 46th International Symposium on Computer Architecture (Phoenix,

Arizona) (ISCA ’19). Association for Computing Machinery, New York, NY, USA,

https://doi.org/10.1145/3316480.3325518
https://doi.org/10.1145/3357526.3357569
https://doi.org/10.1145/3357526.3357569
https://doi.org/10.1145/2451116.2451157
https://arxiv.org/abs/1906.03109
https://arxiv.org/abs/1906.03109
https://doi.org/10.1145/2749469.2750392
http://kernel.ubuntu.com/~cking/stress-ng/
https://www.usenix.org/conference/atc15/technical-session/presentation/lepers
https://www.usenix.org/conference/atc15/technical-session/presentation/lepers
https://doi.org/10.1145/2670979.2670988
https://doi.org/10.1145/2749469.2749475
https://doi.org/10.1145/2901318.2901326
https://doi.org/10.1145/3030207.3030223
https://arxiv.org/abs/1906.00091
https://doi.org/10.1109/TVLSI.2009.2022628
https://doi.org/10.1109/UEMCON.2016.7777880
https://doi.org/10.1109/UEMCON.2016.7777880
https://doi.org/10.14459/2017md1344298
https://doi.org/10.1109/IISWC47752.2019.9041983
https://doi.org/10.1109/IISWC47752.2019.9041983

Runtime Estimation of Application Memory Latency for Performance Analysis and Optimization MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

513–526. https://doi.org/10.1145/3307650.3322227

[22] Vish Viswanathan, Karthik Kumar, Thomas Willhalm, Patrick Lu, Blazej Filipiak,

and Sri Sakthivelu. 2013. Intel Memory Latency Checker v3.8. https://software.

intel.com/en-us/articles/intelr-memory-latency-checker

[23] Wm. A. Wulf and Sally A. McKee. 1995. Hitting the Memory Wall: Implications

of the Obvious. SIGARCH Comput. Archit. News 23, 1 (March 1995), 20–24.

https://doi.org/10.1145/216585.216588

[24] Jian Yang, Juno Kim,Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson.

2020. An Empirical Guide to the Behavior and Use of Scalable Persistent Memory.

In 18th USENIX Conference on File and Storage Technologies (FAST 20). 169–182.
[25] Ahmad Yasin. 2014. A Top-DownMethod for Performance Analysis and Counters

Architecture. In 2014 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). 35–44. https://doi.org/10.1109/ISPASS.2014.

6844459

[26] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John

Wilkes. 2013. CPI
2
: CPU Performance Isolation for Shared Compute Clusters. In

Proceedings of the 8th ACM European Conference on Computer Systems (Prague,
Czech Republic) (EuroSys ’13). ACM, New York, NY, USA, 379–391. https://doi.

org/10.1145/2465351.2465388

[27] Haishan Zhu and Mattan Erez. 2016. Dirigent: Enforcing QoS for Latency-

Critical Tasks on SharedMulticore Systems. In Proceedings of the 21st International
Conference on Architectural Support for Programming Languages and Operating
Systems (Atlanta, Georgia, USA) (ASPLOS ’16). ACM, New York, NY, USA, 33–47.

https://doi.org/10.1145/2872362.2872394

[28] Haishan Zhu, David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-

ganathan, and Mattan Erez. 2019. Kelp: QoS for Accelerated Machine Learning

Systems. In 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 172–184. https://doi.org/10.1109/HPCA.2019.00036

https://doi.org/10.1145/3307650.3322227
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://doi.org/10.1145/216585.216588
https://doi.org/10.1109/ISPASS.2014.6844459
https://doi.org/10.1109/ISPASS.2014.6844459
https://doi.org/10.1145/2465351.2465388
https://doi.org/10.1145/2465351.2465388
https://doi.org/10.1145/2872362.2872394
https://doi.org/10.1109/HPCA.2019.00036

	Abstract
	1 Introduction
	2 Background
	3 Memory Latency Estimation
	4 Evaluation of Latency Estimation
	4.1 Comparing with an Alternative Estimation
	4.2 CPU Cycles vs. Nanoseconds

	5 Application to Interference Management
	5.1 Use of Memory Latency Estimation to Manage Memory Access Interference
	5.2 Experiment

	6 Application to Performance Diagnosis
	7 Limitations
	8 Other Related Work
	9 Conclusion
	Acknowledgments
	References

