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ABSTRACT
With many recent advances in interconnect technologies and mem-
ory interfaces, disaggregated memory systems are approaching
industrial adoption. For instance, the recent Gen-Z consortium
focuses on a new memory semantic protocol that enables fabric-
attached memories (FAM), where the memory and other compute
units can be directly attached to fabric interconnects. Decoupling of
memory from compute units becomes a feasible option as the rate of
data transfer increases due to the emergence of novel interconnect
technologies, such as Silicon Photonic Interconnects.

Disaggregated memories not only enable more efficient use of
capacity (minimizes under-utilization) they also allow easy inte-
gration of evolving technologies. Additionally, they simplify the
programming model at the same time allowing efficient sharing
of data. However, the latency of accessing the data in these Fabric
Attached disaggregated Memories (FAMs) is dependent on the la-
tency imposed by the fabric interfaces. To reduce memory access
latency and to improve the performance of FAM systems, in this
paper, we explore techniques to prefetch data from FAMs to the
local memory present in the node (PreFAM). We realize that since
the memory access latency is high in FAMs, prefetching a cache
block (64 bytes) from FAM can be inefficient, since the possibility of
issuing demand requests before the completion of prefetch requests,
to the same FAM locations, is high. Hence, we explore predicting
and prefetching FAM blocks at a distance; prefetching blocks which
are going to be accessed in future but not immediately. We show
that, with prefetching, the performance of FAM architectures in-
creases by 38.84%, while memory access latency is improved by
39.6%, with only 17.65% increase in the number of accesses to the
FAM, on average. Further, by prefetching at a distance we show a
performance improvement of 72.23%.
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1 INTRODUCTION
For over a decade, servers, wherein hardware resources are tightly
coupled, have been the linchpin for implementing data centers. In
such systems each server maintains various hardware resources,
mainly processing elements, memory and storage, exclusively. This
restricts the growth of distinct resources since the capabilities of
the resources are complimentary to each other. To overcome this
a new revolutionary architecture design, disaggregated systems is
explored and is becoming promising considering both academic
and industrial adoption. HPE Labs’ The Machine [11], Facebook’s
Disaggregated Rack [58], Intel’s Rack Scale Architecture [37] are
some of the prominent prototypes for disaggregated memory sys-
tems. In such architectures, different resources are decoupled and
are connected using fast interconnects [9, 13, 15, 22, 54] allowing
easy integration of evolving technologies, effective memory shar-
ing avoiding memory under-utilization, has potential to simplify
programming model and, most importantly, permits expansion of
resources autonomously.

Emerging Non-Volatile Memories (NVMs) are considered among
the best candidates for building memory-centric systems for several
reasons. NVMs are expected to have capacities in terabytes per
processor socket [38, 39, 42, 52]. NVMs can be used to host directly-
accessible filesystems, for instance, Linux’s Direct Access for Files
(DAX) support[2] allowing efficient operation on shared files. With
scaling up the total memory capacity of data centers to petabytes,
idle power becomes a major concern, and thus DRAM becomes
a less practical solution given its significant refresh power which
leads to high cooling and operational costs. Also, due to the slow
and limited endurance nature of NVM writes, they are expected
to be used as an additional layer in the memory hierarchy. Hence,
having small DRAM-based local memory within nodes while NVM
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being used as a lower-tier memory attached over fabric is a more
natural design point [11, 42–44].

Although FAM architectures improve memory utilization and
reduce maintenance cost, given that the memory is attached over
fabric network and also NVM is considered as a best candidate for
the remote memory, the latency in accessing memory is a prime
concern for such architectures. Further, FAM is accessed by a num-
ber of computing units and hence, the latency in accessing memory
is also dependent on the number of computing units accessing FAM.

To hide memory access latency and to improve the performance
of the system, in this paper, we explore prefetching for FAM archi-
tectures (PreFAM). A prefetcher is implemented in the local node’s
memory controller to prefetch data from the off-node FAM. We ded-
icate a small part of the local memory to store prefetched FAM data
(i.e., as a prefetch buffer). Prefetching in FAM architectures pose
unique challenges due to the nature of shared global memory and
fabric; thus conservative prefetching schemes are required. More-
over, the long latency for prefetching data from the fabric-attached
global memory can easily render many prefetching schemes inef-
fective, that is, fail to hide reasonable amount of latency before the
actual access is triggered. Thus, FAM-friendly prefetching schemes
need to be simple and accurate.

The accuracy of the prefetcher depends on the prefetching mech-
anism that detects possible future memory accesses. Address map
pattern prefetcher [29] proposed in the past is accurate and suc-
cessful in detecting predictable address streams. Hence, we adopted
address map pattern prefetcher in the memory controller to detect
multiple memory access patterns of the workloads. To increase the
prefetching accuracy, rather than choosing the nearest prefetchable
candidate among various candidates, as done in address map pat-
tern prefetcher, we choose the best prefetchable candidate. This is
achieved by training the prefetcher before issuing prefetch requests.

Even though the accuracy of the prefetcher is high, we observe
that because of high memory access latency, the workload might is-
sue demand requests to the prefetched locations before the prefetch
request is completed. Thus, the usage of the prefetched blocks de-
creases. To solve this, we explored distance factor based prefetching.
In distance factor prefetching scheme, the prefetcher brings FAM
data blocks at a distance of which they will be accessed in the near
future (at a distance) instead of bringing the block that will be
accessed next1.

Prefetching data before the actual memory access and placing it
in the faster memory is an approach explored intensively in previ-
ous studies [40, 49, 50]. Although prefetching is widely explored at
both cache side [49], memory side [50] and also for different mem-
ory architectures [40], to the best of our knowledge, this is the first
paper to study and investigate the impact of prefetching in FAM
architectures, and discuss the effectiveness of current prefetching
schemes and if suitable for FAM systems. Moreover, we discuss
how to tune the parameters of different state-of-the-art prefetching
schemes to better suit FAM architectures.

To evaluate our approach, we use the Structural Simulation
Toolkit (SST)[51], a publicly available architectural simulator. We
utilize the existing decoupled memory model Opal[35], to model

1Note that the distance factor based prefetching mentioned here differs from distance
prefetching[33]

our optimization. We developed a prefetcher component and at-
tached it to the memory controller. For every memory access, the
prefetching component is fed with the accessed memory address
and this component either trains or issues prefetch requests to
FAM. Also, before forwarding the request to the FAM we modified
the memory component unit of SST to check if the data is already
prefetched to the local memory.

Our contributions in this paper are as follows:

• We investigate the impact of prefetching blocks from FAM
memory to local memory, and effectiveness of current tech-
niques.

• Further, we analyzed potential drawbacks of prefetching in
FAM, and proposed distance factor prefetching to improve
the timeliness of prefetching.

• On average, with prefetching, we improve the memory ac-
cess latency by 39.6% and improve the performance of the
FAM system by 38.84% with 17.65% increase in the number
of accesses to the FAM. Further, by prefetching at a distance
we show a performance improvement of 72.23%.

The organization of the paper is as follows. First, we discuss dis-
aggregated memory and prefetching models background in Section
2. Section 3 explores our proposed prefetching design for FAM
architectures (PreFAM). Methodology and workloads evaluated
are discussed in Section 4. Section 5 analyses results. We provide
Section 6 to discuss possible alternatives to our approach. Finally,
we discuss the related work in Section 7 and conclude in Section 8.

2 BACKGROUND
In this section firstly, we briefly discuss drawbacks of in-node mem-
ory architectures then we give a brief primer on FAMs covering its
feasibility and benefits. Finally, since this paper is about techniques
for effective prefetching in FAMs, we shed some light on the prior
prefetching schemes.

2.1 Tightly Coupled In-node Resources
Traditionally, resources are tightly coupled within the nodes, and
the resources are dedicated to the components within the node.
However, tightly coupled resources restrict capabilities of individ-
ual resources. The performance and scalability of such systems
is limited to an inefficient resource within the node. For instance,
although the computation capability of the processing elements
in a node are improved significantly, memory is still a bottleneck.
Available memory technologies like DRAM are not suitable to scale
up the memory considering the power and real estate consumed by
such memory types [41]. Also, in order to preserve signal integrity,
memory channels restrict the number of connected DRAM mod-
ules [34]. This in turn, limits scalability. Recent studies show that
almost 80% of the tasks overestimate their memory requirements
on HPC systems[3]. Hence, the behavior of the workloads might
lead to under-utilization of memory if a large amount of memory is
dedicated for the workloads [46]. In addition, such tightly coupled
in-node memory architectures require complicated programming
models to access remote memory.
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2.2 Decoupled Fabric Attached Resources
In contrast to the tightly coupled resource architectures, recent
studies show that decoupling of resources as a potential solution[4,
5, 11, 36, 43–45, 53] to address the challenges when resources are
tightly coupled. In such architectures, various resources are decou-
pled from each other and are managed independently (Figure 1).
Memory regions of the decoupled memory are allocated on demand
and is allowed to be utilized by the co-located nodes avoiding mem-
ory under-utilization. Further, it simplifies programming models by
providing load/store access to the decoupled memory. Migrating
jobs is one of the crucial requirements for hybrid cloud systems.
With disaggregation, such requirement can be easily achieved by
simply transferring the process metadata to the target node, avoid-
ing expensive data transfers associated with memory migration.

CPU

FAM

Responder

Requester

Fabric
Interface

Switch

GPU

Requester

FPGA

Requester

Figure 1: Fabric attached memory architecture.

The essential prerequisite to make such memory-centric decou-
pled memory architecture feasible are a) fast memory semantic
interconnect and b) scalable memory.
a) Memory-semantic fast fabric interconnect: To connect decoupled
resources to each other a fast and reliable fabric interconnect is
required. In recent times more attention is given to develop fast
interconnects using fabrics. Various fabric providers released speci-
fications discussing different aspects to provide a standard fabric
protocol, Gen-Z [14], CCIX [13], CXL [54] etc. For instance, Gen-Z is
a new interconnecting standard which provides memory semantic
interface allowing resources to be attached directly to the comput-
ing systems and accessing such fabric attached remote memory
using traditional load/store operations. Fabric interconnect also
provides reliability by providing multi-path connectivity to the
remote memory.
b) Memory Scalability: Another important requirement for FAM is
dense memory and ease of scalability, since FAM serves requests
from various computing resources, unlike in-node architectures
wherein memory is granted only to the tightly coupled nodes. To
support scalability, memory is organized in a rack-scaled manner
[1]. This allows easy integrating of additional memory pools to scale
up memory. Further such a memory organization and the universal
nature of the fabric interconnects supports different memory types.
However, NVMs in their different variants, that is, 3D Xpoint, PCM,
ReRAM [25, 59, 60] are suitable as mainmemory due to high density.
Moreover, NVMs are suitable to host direct access filesystems (DAX)
[2] which provides efficient file sharing between the compute units
and avoids costly page caching to process files [16].
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Figure 2: Normalized performance for DRAM-Only and
(FAM + DRAM) systems.

In such systems, for fast processing, a small DRAM is maintained
within the node while NVM being used as a lower-tier memory
attached over fabric. Hence, local memory (lower addresses) plus
FAM (higher addresses) combined is considered as main memory.
However, FAM architectures suffer from severe performance over-
head. We evaluated and compared the performance of the system
with DRAM as the main memory (DRAM only) and dedicated DRAM
with shared NVM over a fabric interconnect as the main memory
(FAM+DRAM), Figure 2. On an average, we observe that compared to
systems which has only dedicated DRAM as a main memory, FAM
architectures suffer a performance overhead of 5.48x (maximum
of 11.58x for 429.mcf from SPEC CPU® 2006 suite2), according
to our evaluation configuration (refer to Section 4 for evaluation
methodology).

2.3 Prefetching Schemes
Prefetching is a mechanism to avert expensive FAM accesses by
timely bringing the data from FAM into local memory. Previously
prefetching has been explored extensively at various levels includ-
ing at the cache and at the memory [6, 30, 49, 50]. Prefetching is
explored both at software and hardware levels. In software, prefetch-
ing is achieved by placing dedicated prefetch instructions into the
code [10, 48]. Software prefetchers, although they have control over
prefetching, are often oblivious to resource contention in the hard-
ware. On the other hand, hardware prefetching schemes require
separate hardware structures to predict the prefetchable candidates.
There are different variants of hardware prefetchers.
Immediate next block prefetcher: this scheme prefetches next
immediate block (cacheline) for each memory access without any
prior verification if the block will be accessed in future or not. Next
block prefetcher provides performance for workloads which access
memory sequentially. However, since there is no prior verification,
false positives are higher.
Verification based prefetcher: unlike prefetching immediate next
blocks for every memory access, verification based prefetchers
issues prefetch requests based on the previous accesses. Stride
prefetching [19], stream buffers [32], distance (delta) prefetching
[33] and address map pattern prefetching [29] are prominent ver-
ification based prefetching schemes. These schemes store recent
history of memory accesses and triggers prefetch requests when a

2SPEC® , SPEC CPU® , SPECint® , SPECfp® , and SPECrate® , SPECjbb® are registered
trademarks of the Standard Performance Evaluation Corporation. More information
about SPEC CPU® 2006 can be obtained from https://www.spec.org/cpu2006/

https://www.spec.org/cpu2006/
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specific pattern is observed. For instance, assuming ’A’ as an address
of a block, if ‘A’ and ‘A+3’ blocks are accessed contiguously, the
stride prefetcher assumes that the memory is accessed in multiples
of 3 (stride 3) and prefetches ‘A + 3 ∗ N ′ address blocks, where
N is the degree of the prefetcher. Distance prefetching is a cor-
relation prefetcher which is based on Markov prefetching[31]. It
maintains a correlation table to store the history of address differ-
ences (deltas) of any two consecutive misses. When the prefetcher
receives any two consecutive misses with a delta difference, then
the prefetcher verifies the history with similar delta and issues
prefetching requests after calculating addresses using deltas right
after the current delta. Address map pattern matching prefetcher
identifies multiple prefetchable candidates based on the memory
access patterns. Memory access map table is a bit map which stores
memory access patterns. Memory is divided into multiple zones
and memory access map table records access patterns of only hot
zones. Each entry has bits to store access states of the blocks within
the hot zone (two bits per block). Based on the previous accessed
block states, prefetchable candidates are chosen. For instance, if
blocks ‘A’, ‘A+2’, ‘A+4’ and ‘A+5’ accessed previously and if ‘A+6’ is
the current accessed block with in the hot zone, the prefetcher iden-
tifies two potential candidates to prefetch, ‘A+7’ and ‘A+8’ blocks
with strides 1 and 2 respectively based on the previous accesses.
Among these the nearest candidate is chosen, ‘A+7’ in this case.
Feedback based dynamic prefetcher: based on the accuracy of
the prefetcher, for each workload, the feedback based prefetcher
dynamically adjusts prefetch parameters. For instance, the prefetch-
ing aggressiveness is varied based on the accuracy of the prefetcher
[28, 30, 57].
Trained prefetcher: in the trained prefetcher, first the prefetching
algorithm is trained to evaluate the prefetchable candidates. For
instance, Sandbox prefetcher [49] issues prefetchable addresses
and stores them in the bloom filter during candidate evaluation.
For every LLC miss the bloom filter is checked if the prefetcher
would have prefetched the current block or not. If the current
access would have been prefetched previously, the scores of the
prefetchable candidate is incremented. Prefetch requests are issued
during prefetch action if the candidate scores are high.

3 DESIGN
In this section, we describe our prefetching policy for FAMs. Then
we explain prefetching blocks at a distance and brief about prefetch
buffers. Finally, we discuss the feasibility of memory contiguity in
FAMs to enable prefetching blocks beyond a page. However, before
diving into the respective topics we first explain the request flow
in PreFAM.

3.1 Memory Access Request Flow in PreFAM
In the baseline, for every memory access the memory controller
verifies if the request is for the local memory or for the FAM. This
is done by verifying the block address of the requester event. Since
FAM provides a flat address space we dedicated the lower addresses
to the local memory. If the request address falls within the local
memory address region, it is identified as a local memory request.
When accessing the local memory the request is directly forwarded

to the local memory without any delay. If accessing FAM, the mem-
ory controller forwards the requests to the media controller of the
FAM, Figure 3. In PreFAM, while serving the current memory access
the requested block address is also sent to the FAM prefetching
unit. This unit verifies and identifies any prefetchable candidates
and issues prefetch requests. The media controller unit of the FAM
maintains separate queues for prefetch and demand (actual requests
sent by the workloads) requests, to avoid demand requests being
throttled by the prefetch requests. The media controller serves
both the prefetch and demand request and responds back to the
requesting node. Upon receiving a response from the FAM, the
memory controller verifies if the response is a demand response or
a prefetch response. A demand response is forwarded to the last
level cache and a prefetch block is stored in the temporary prefetch
buffer of the memory controller. This prefetched block is stored in
the temporary buffer until a new block is prefetched. For the next
memory access, the memory controller first inspects the prefetch
buffer and if the accessed FAM block is found in the prefetch buffer,
the memory controller responds back to the last level cache with-
out issuing a FAM requests. If not found in the prefetch buffer, the
request is forwarded to the media controller of the FAM over the
fabric network. Concurrently, prefetchable candidates are issued by
the prefetching unit if found, based on the current memory access.
When the prefetching unit receives a response, it moves previously
prefetched blocks from the temporary prefetch buffer to the local
memory prefetch buffer and stores the recently prefetched block in
the temporary prefetch buffer. Section 3.3 details about temporary
and local memory prefetch buffers. While moving the previously
prefetched block to the local memory, the prefetch buffer table
(PBT) is updated with the location of the local memory where the
prefetched block is stored. PBT size depends on the local memory
prefetch buffer size. If the size of PBT is large as shown in Figure
3 we move the PBT to the local memory and cache part of the
PBT in the memory controller. Henceforth, for every FAM access,
the memory controller first inspects the temporary prefetch buffer,
then probes PBT to verify if the FAM block is prefetched to the
local memory prefetch buffer. If found in PBT, the request address
is updated with the local memory address and is forwarded to the
local memory. The request is forwarded to the FAM only if the block
is not found in the temporary prefetch buffer and local memory
prefetch buffer.

3.2 Our FAM Prefetcher
As shown in Figure 3, FAM prefetcher is attached to the memory
controller to perform prefetching. Since patternmatching prefetcher
is considered as one of the best candidates as it stores memory
access states and issues multiple prefetch requests. Address map
pattern prefetcher maintains a table to store the states of mem-
ory accesses (access, init and prefetch). In our prefetching scheme,
memory is divided into multiple zones and the memory map ta-
ble maintains an entry for each hot zone. This limits prefetchable
candidates to only within the hot zones. Similarly, we also divided
memory into zones, with 64 blocks per zone. However, instead
of storing the states of only hot zones, we store memory access
states of the entire memory and rely on replacing memory map
table entries if not found. Prefetching aggressiveness is defined as
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Figure 3: Overview of prefetching in FAM architectures.

the degree of the prefetcher. The number of prefetch requests a
prefetcher issues for every memory access to the FAM is based on
the prefetch degree.

In FAMs, prefetcher false positives are very costly because the
FAM is shared by multiple nodes and an incorrectly calculated
prefetched block might starve demand requests from other nodes.
Also, part of the local memory is used as a prefetch buffer and
the prefetched data has to be stored (written) in the local mem-
ory. Hence, an incorrectly prefetched block pollutes local memory
prefetch buffer. Further, prefetch buffer victim entries are written
back to the shared FAM pool if the victim entry is modified. There-
fore, the prefetching accuracy should be higher in PreFAM. To
improve the prefetching accuracy we first train the prefetcher and
then issue prefetch requests. To do so, our prefetching mechanism
constitute of two phases a) training phase and b) prefetching phase.

3.2.1 Observation/training Phase: During the training phase, for
every Last Level Cache (LLC) miss the prefetcher trains the mem-
ory map table of address map pattern prefetcher and book-keeps
specific patterns which are frequently observed to be prefetchable.
For instance, considering 16 blocks per entry in memory map table,
if the memory accesses are as shown in Figure 4(a) from left to
right, we note down the detected prefetchable candidate strides.
That is when accessing block 1 the prefetcher checks the previous
access with stride 1. Since block 0 is not accessed the prefetcher
identifies no prefetchable candidates. Number of strides verified
is dependent on the stride limit configured during initialization.
When block 1 is accessed and when the stride limit is higher than
1, the status of the blocks from the preceding memory map table
entry are checked. For now we are assuming that all the preceding
entry blocks are in not accessed state. When block 2 is accessed, the
prefetcher identifies prefetchable candidate at stride 1. When ac-
cessing block 3, the prefetcher identifies prefetchable candidates at
stride 1 and 2 based on the previous accesses. The frequency of the
prefetchable candidate strides are book-kept in prefetchable stride
frequency table, Figure 4(b). After the training phase is completed,
during the prefetch phase the prefetcher looks for prefetchable can-
didates starting with the most frequently identified strides during
the training phase. The aggressiveness of the prefetcher and the
frequency of the training period are dynamically adjusted based on
the accuracy and the usage of the prefetched blocks.

I A A A I A I A A A I A I I I I

I: Init
Stride
1

Frequency
4

2 5
3 3
4 4
5 2
6 4

b)a)

0 151

A: Access

Figure 4: (a) Memory map table entry and (b) prefetchable
stride frequency table with stride limit 6

3.2.2 Prefetching Phase: During the prefetching period the prefetcher
issues prefetch requests. The blocks to be prefetched are dependent
on memory access pattern of the memory map table and identi-
fied prefetchable strides book-kept in the frequency table during
the observation period. The current memory access map pattern
for a memory region is as shown in the Figure 5. For such an
access pattern, when block P is accessed, based on the previous
accesses, block P1 and P2 are identified as prefetchable candidates.
Among these, the block, which is nearest to the accessed block, P1,
is prefetched in address map pattern matching prefetcher. How-
ever, to make sure that the prefetched block is most likely used by
the node, the prefetcher in PreFAM, prefetches blocks only with
identified prefetched strides during the observation period. In the
case of Figure 5, P2 is prefetched first since stride 2 is identified
most frequently (5 times) prefetchable stride, as depicted in Figure
4(b). At that instant, if the prefetch degree is more than 1, next
most frequently prefetchable stride (stride 1) is also prefetched, P1.
When multiple strides are identified frequently prefetchable, 1,4
and 6 from Figure 4(b), block with nearest stride is selected. Also,
when only fewer blocks in the memory region are accessed, even
though a stride is identified frequently prefetchable compared to
other strides, it is unlikely that the block is used if prefetched. To
eliminate such prefetchable strides, we only consider strides whose
frequency is greater than stride frequency threshold percentage of
the observation period. For instance, if stride frequency threshold is
set to 25% then according to Figure 4(b) only stride 2 is identified as
useful. This is because the frequency of stride 2 of 5 times, which is
greater than 25% of observation period (16 memory accesses). Even
though the prefetching degree is more than 1, the prefetcher does
not prefetch any other blocks if the identified prefetchable strides
are as shown in Figure 4(b).

I A I A I A I A A I I I I I I I I I I I I I I I I I I A A I I A

I: Init
A: Access

P P1 P2 P4

Distance Factor: 2

P8

Distance Factor: 4

Figure 5: Memory map table entry and prefetchable blocks
with and without distance factor.
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3.2.3 Distance Factor Prefetching. When addressmap pattern prefetcher,
with training and prefetch phases, is directly deployed in FAM sys-
tems, the benefits of the prefetcher are limited. This is because
the prefetcher predicts and prefetches the next immediate acces-
sible block and due to high memory access latency in FAMs, a
demand request might be issued before the prefetch request, issued
to the same memory location, is completed. Hence, the prefetched
block might not be used by the workloads and the accuracy of the
prefetched blocks decreases.

Hence, to make effective use of prefetching in FAMs we explore
prefetching blocks at a distance. That is, instead of prefetching
next immediate accessible block we prefetch blocks which might be
accessed by the workloads in future (at a distance) but not immedi-
ately. We achieve this by introducing distance factor. For instance, if
the distance factor is 2 and the most frequently identified prefetch-
able stride is 2, according to Figure 4, the prefetcher prefetches block
P4 and if the distance factor is 4, block P8 is prefetched instead of
P2, Figure 5.

3.3 Prefetch Buffers and Metadata Structures
As shown in Figure 3, the prefetched data is stored at two buffers
a) local memory buffer and b) temporary buffer.
Local memory prefetch buffer:We carve out some space from
the local memory for storing prefetched blocks and the respective
metadata. This carving is done in the OS and the carved out space
is managed by the hardware. PBT manages the metadata of the
prefetch buffer. Both PBT and local memory prefetch buffer are
managed as set-associative caches in the local memory. Each PBT
entry contains multiple FAM addresses which are prefetched to
the local memory. If the FAM address is found in PBT, the local
memory address is calculated and the request is forwarded to the
local memory prefetch buffer. While adding a prefetch block to the
local memory, PBT replacement bits (LRU) are used to replace an
entry in the PBT and the buffer. Since PBT is checked for every
FAM access, for a faster access to PBT it is cached in the memory
controller.
Temporary prefetch buffer: This is a buffer maintained in the
memory controller to store prefetched blocks temporarily before
they are written to the prefetch buffer in the local memory. Since
the prefetched blocks are supposed to be accessed by the workloads
next, after prefetching is completed, instead of immediately storing
them in the local memory prefetch buffer, it would be beneficial to
store them temporarily in the memory controller. The temporary
buffer is used for this case. The number of entries in the tempo-
rary buffer are limited to prefetch degree (4). When the prefetcher
prefetches newer blocks the temporary buffer entries are moved to
the local memory prefetch buffer.

3.4 Media Controller Modifications
Media controller abstracts memory media of FAM. It maintains a
queue to execute requests one at a time and returns responses back
to the requester. With FAM prefetcher the media controller request
queue also hosts prefetch requests. This throttles on-demand re-
quests. Hence, to avoid this, we added a separate prefetch queue
to host prefetch requests coming from different nodes. Further to
avoid demand request throttling, priority is given to the demand

requests (i.e., prefetch requests are served only when all the demand
requests are served).

3.5 Feasibility of Prefetching Blocks over Page
Boundary

Prefetchers usually disable prefetching blocks over the page bound-
ary. However, since prefetching is implemented at the memory side,
some of the workloads access memory with strides beyond page
limit. For instance, for a block size of 64 (Bytes), a 4KB page has 64
blocks. With such a configuration when the pages are allocated con-
tiguously, according to our evaluation setup, we observe that 46%
of memory accesses are with stride 66 for 436.cactusADM workload.
Also, when prefetching blocks over page boundary the prefetcher
can identify more prefetchable candidates. To enable prefetching
blocks beyond the page size the pages should be contiguously allo-
cated. For instance, virtual pages vpn0 and vpn1 should translate
to physical pages ppn0 and ppn1 (ppn1 is immediate next page to
ppn0).

To allocate 4KB pages contiguously, first option is to allocate
huge pages. However, since local memory is limited, allocating huge
pages will host lesser number of workloads. This will also have a
negative impact on the performance of the workloads which rely
mostly on the local memory. Further, this wastes memory since for
most of the time the entire allocated large page is not used by the
workloads. Second method is to allocate memory at 4KB pages and
relying on Linux memory allocator to allocate contiguous pages.
Previous work [47] showed that Linux memory buddy allocator
aims at allocating physical pages that are close to each other on
each allocation request. Using such memory allocators there is a
high chance that the subsequent physical pages are related. Third
option is to allocate local memory at 4KB page size and allocating
FAM regions (2MB for instance).

In all the above cases if page migration is enabled [36, 44], phys-
ical pages will no longer be contiguous with respect to the vir-
tual pages after the pages are migrated. However, we note that
FAM architectures require a second level address translation to
access FAM [43], that is, virtual addresses are converted to node
addresses and node addresses are converted to the FAM addresses
(node to physical address translator), Figure 6. Hence, for such sys-
tems, when the pages are migrated to the local memory or moved
from one location to the other location within the FAM, only node
to FAM address mapping is modified but virtual to node address
mapping is unchanged. For instance, when node physical address
(npn2) is migrated to the local memory the node to physical address
mapping is modified from npn2:ppn2 to npn2:ppnX, in the transla-
tion unit. However, the virtual address to node address mapping,
vpn2:npn2, is not modified. Hence, memory contiguity is preserved
with node addresses even when the pages are migrated. In this case
the prefetcher operates on node addresses instead of actual FAM
physical addresses, that is, the prefetcher keeps status of previous
memory accesses tagged with node addresses and also predicts and
prefetches blocks tagged with node addresses. For virtual address
to node address contiguity we rely on buddy allocator of the Linux
operating system to prefetch blocks over the page boundary.
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Figure 6: FAM prefetcher schematic with two-stage address
translation based FAM design.

4 METHODOLOGY
We evaluated our design in Structural Simulation Toolkit (SST) [51].
SST is a cycle accurate event based architectural simulator. SST is a
modular based design in which each component is implemented as
a module and the modules are linked to construct and evaluate the
system. Kommareddy et al. evaluated dis-aggregatedmemorymodel
by developing a centralized memory manager model, Opal [35].
This model emulates memory management for scaled architectures,
[12, 21]. We utilize this memory manager to implement our design.
We modeled prefetcher component and attached it to the memory
controller component.

System configuration used in our evaluation is shown in Table 1.
The system is emulated with 4 cores and two instructions are served
per cycle. Three levels of caches L1, L2 and L3 are evaluated with
sizes 32KB, 256KB and 1MB, respectively. 256MB of DRAM is used
as local memory [53] and 16GB of NVM is used as FAM. In real
systems global FAM is in TBs or PBs and local memory is in GBs.
Considering the simulation speeds, we evaluated our proposal with
reduced memory sizes. However, although the performance and the
results vary in numbers in the real system, our approach will still
show similar trends. After recent projections on the fabric network
interconnects [13, 15] and considering fabric latency assumed by
recent works [20, 53, 56], we simulated fabric network to connect
to dis-aggregated NVM with a network latency of 500ns. Local
memory and FAM are allocated at 1:4 ratio wherein 80% of the
memory required by the workloads is allocated in the FAM.

In our design, we used a part of the local memory to act as
prefetch buffer. 1MB of local memory (<0.5%) is reserved for prefetch
buffer. Number of entries (or) size of PBT is dependent on the size
of the prefetch buffer and prefetching granularity. For the given
prefetch buffer size (1MB), and for the prefetching granularity of
cacheline size (64B), the prefetch buffer can store 16K prefetch
blocks and the number of PBT entries required is 16K. In this case,
each PBT entry is 64 bits, for storing the prefetched FAM address,
replacement and dirty bits. With such a prefetch buffer size and
prefetch granularity, the metadata, PBT, required is 128KB. Hence,
128KB of local memory is also reserved for PBT. To reduce the
search latency, PBT is maintained as a set-associative cache and
part of it is cached in the media controller (1KB) Memory map
table size is 1KB. During the training period for every access 128
strides are verified which cover up to 2 pages. Epoch frequency to
dynamically adjust prefetch parameters is 1000 memory accesses.

Table 1: System Configuration

Node
CPU 4 Out-of-Order cores, 2GHz, 2

issues/cycles, 32 max. outstand-
ing requests

L1 Private, 64B blocks, 32KB, LRU
L2 Private, 64B blocks, 256KB, LRU
L3 Shared, 64B blocks, 1MB, LRU
Local memory DRAM, Size: 256MB
Number of nodes up to 8

Fabric Network
Latency 500ns

Fabric Attached Memory
Size 16GB
Latency Read 60ns, Write 150ns
Outstanding requests 256
Number of FAM pools up to 8

Prefetching Unit
Local memory prefetch buffer 1MB
Prefetch buffer table 128KB
Stride frequency threshold 50%
Degree 4
Training period 100 memory accesses

Since we are focusing on HPC workloads, we evaluated 12 HPC
workloads from various suits, Table 2. 429.mcf, 436.cactusADM and
473.astar workloads are from SPEC CPU® 2006 suite[26] which is
widely used in both industry and academia. Lulesh and Pennant [18]
are mini-apps for unstructured hydrodynamics and mesh physics
implemented for advanced architecture research. SimpleMoC (sim-
moc) [23] is another mini-app which characterizes the performance
and demonstrates the feasibility of the Method of Characteristics
(MOC) in 3D neutron transport calculations for full scale light
water reactor simulation. Path finder (pf ) [27] is from Mantevo
suite, which searches for signatures within the directed and cyclic
graphs. Breadth-first search (bfs) and connected components; based
onAfforest sub-graph sampling algorithm (cc) and Shiloach-Vishkin
algorithm (cc-sv), workloads are from Intel GAP[8] suite [55]. Data
cube (dc) is from NAS suite [7] which showcases grid capabilities
to handle large distributed data set. Each of these workloads are
evaluated for a minimum of 100 million instructions per core. Since
4 cores are evaluated per node, in total each workload is evaluated
for up to 400 million instructions.

5 EVALUATION
In this section, we first show the impact of prefetching on memory
access latency and off-node traffic. Then we discuss prefetching ac-
curacy, possible improvement by prefetching using distance factor.
Finally, we discuss overall performance improvement with one and
multiple nodes.
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Table 2: Workloads

Suite Workload Input

SPEC CPU® 2006 [26]
429.mcf ref input
436.cactusADM ref input
473.astar ref input

Mantevo [27] Path Finder (pf) -x
10kx750.adj_list

Intel GAP [8]
Betweenness
Centrality (bc)

-g 26 -n 50

Connected Com-
ponents (cc, ccsv)

-g 26 -n 50

NAS [7]
BT class B
DC class B

HPC Mini-Apps
Lulesh -s 120
Pennant leblancbig.pnt
SimpleMOC (sim-
moc)

-t 4

5.1 Impact of Prefetching on Average Memory
Access Latency

When FAM blocks are prefetched to the local memory, the memory
latency while accessing (both writes and reads) the prefetched FAM
locations eliminates fabric network latency and also eliminates
NVM latency. Figure 7 shows normalized delay per request to fetch
the data to the LLC. The baseline is the latency observed without
prefetching. With PreFAM, the delay in fetching the data to the
LLC reduces to 0.71x on an average. The maximum reduction is
observed for sequential memory access workloads lulesh, pennant,
cc and bfs workloads (0.54x, 056x, 0.56x and 0.58x respectively).
These workloads are moderately memory intensive with sequential
accesses to the memory. For such a memory access the accuracy of
the prefetcher is high, Section 5.4, and hence most of the memory
accesses are served by the prefetch buffer. cc-sv workload also
accesses memory sequentially and the prefetching accuracy is high,
however, since the memory is accessed intensively, the reduction
in memory access latency is 0.73x.
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Figure 7: Average memory access latency observed at the
LLC of the node.

5.2 Impact of Prefetching on Off-Node Traffic
As asserted in Section 3, for every FAM access by the workloads,
based on the prefetching degreewe either issue one ormore prefetch
requests, in prefetching phase, when multiple strides are identified

as useful. Thus, although memory access delay is improved, the
number of total requests (demand and prefetch) sent to the FAM
and hence off-node traffic might increase and the prefetcher should
be conservative while issuing requests to the FAM. Figure 8 shows
off-node traffic generated by a node while accessing FAM. We ob-
serve that for the evaluated workloads, on an average, the number
of requests sent to the FAM increases by 17.65%. Hence, PreFAM
increases off-node traffic by 17.65% to improve the memory access
latency by 39.60% as shown in Figure 7.
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Figure 8: Off-node traffic. Total number of requests (demand
and prefetch) sent by a node to the FAM via fabric intercon-
nect.

5.3 Number of Demand Requests Issued for
ongoing Prefetches

While prefetching FAM blocks to the local memory, it is possible
that the workload might issue demand requests, before the prefetch
request to the same location is completed. Specifically in FAMs,
since the memory access latency is higher, the number of such
scenarios can be higher. Also, to avoid throttling demand requests,
priority is given to the demand requests over prefetch requests
in the media controller. This increases the latency to prefetch a
block and hence increases the chances of issuing demand requests
before the prefetch request to the same location is completed. Figure
9 shows the fraction of demand requests issued to FAM whose
locations (blocks) are being prefetched but not yet completed. For
instance, for 473.astar, we observe that with PreFAM this fraction is
0.70, that is, for every prefetch request issued there are 70% of the
chances that the demand request will be issued before the prefetch
requests is completed. This is one of the reasons for not able to
achieve significant reduction in memory access delay.

To reduce such a fraction we prefetch FAM blocks at a distance
from the current identified prefetchable FAM location using dis-
tance factor. ’DF’ indicates distance factor. For instance, ’DF:2’ indi-
cates PreFAM with distance factor 2. We varied the distance factor
from 2 to 16 and we note that as the distance factor increases this
fraction decreases. For instance, for the 473.astar workload, this
fraction reduces from 0.7 to 0.1, with just PreFAM and PreFAMwith
distance factor 16, respectively. However, as the distance factor in-
creases although this fraction decreases, for some workloads, the
usage of the prefetched blocks might decreases, Section 5.4.
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Figure 9: Probability of a demand request issued to FAM be-
fore the prefetch request to the same memory location is
completed.

5.4 Usage of Prefetched Blocks
Prefetching FAM blocks improves the performance or is beneficial
only when the prefetched blocks are used by the workloads. Figure
10 shows the usage of the prefetched blocks. For instance, for pen-
nant workload the chances of utilizing a prefetched block is 75.6%
with PreFAM. However, when prefetching blocks at a distance,
using distance factor, the probability of using a prefetched block de-
creases to 74%, 66.29%, 54.17% and 47.81% when the distance factor
is 2, 4, 8 and 16 respectively for pennant workload. This decrease
is because, since we are far fetching the blocks the prefetching
unit accuracy is less. Specifically lulesh workload for most of the
time access memory blocks with stride 64. And when the distance
factor is 16, the prefetching unit, prefetches block 16 ∗ 64 from the
current accessed block. This eliminates performance improvements
achieved by not introducing the distance factor. Distance factor is
a variable which works differently for different workloads. That is,
for workloads 473.astar, sim-moc and bfs, when distance factor is
2 the usage of the prefetched blocks is more. This has a positive
impact on the performance. But when the distance factor is further
increased the prefetched block usage decreases.
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Figure 10: Probability of a prefetched FAM block being used
atleast once.

5.5 Overall Performance Improvement
Figure 11 shows overall performance improvement with PreFAM
and with PreFAM plus distance factor. On an average the perfor-
mance improves by 38.84% with PreFAM (maximum of 90.9% for cc
workload). As the distance factor increase the average performance
also increases because a) the prefetched block usage increases with

distance factor. b) the number of total requests issued to FAM in-
creases when the distance factor increases.When the distance factor
is small, for two consecutive LLC misses the prefetcher might gen-
erate repeated prefetch candidates and the repeated requests are
cancelled. However, when the distance factor is high the repeti-
tions are less and, hence, the number of prefetch requests issued to
FAM are more. Thus, the performance increases from 38.84%, with
PreFAM only, to 72.23%, with a distance factor 16. This increase
in performance is at the cost of a greater number of requests is-
sued to the FAM, 17.65% without distance factor to 33.64% with
distance factor 16. A maximum performance improvement of 3.24
is achieved for cc workload with 45.56% increase in requests sent
to FAM.
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Figure 11: Performance improvement using prefetching
with respect to the baseline.

5.6 Temporary Prefetch Buffer Hit Rate
Since the prefetched block is supposed to be accessed immediately,
based on the prediction, we maintained a temporary prefetch buffer
in the memory controller to avoid accesses to DRAM. The size of the
temporary prefetch buffer is equal to the degree of the prefetcher (4).
The hit rate of the temporary prefetch buffer is shown in Figure 12.
The hit rate is very small (4.15% on an average) because this buffer
is very small and is very frequently replaced by the prefetched
requests.
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Figure 12: Temporary prefetch buffer hit rate.

5.7 Sensitivity Analysis
5.7.1 Impact of Memory Allocation Policy. Performance of the
workloads depends on the number of pages allocated in the lo-
cal memory and in the FAM. When more pages are allocated in the
local memory the performance will be better. We allocated local



MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA Vamsee Reddy Kommareddy et al.

memory and FAM at 1:4 ratio. However, in this section we evaluate
performance improvement with PreFAM when memory allocation
ratio is varied, Figure 13. We varied the ratio from 1:1 to 1:16. When
more pages are allocated from FAM (1:16) the latency in accessing
the data increases and hence the performance degrades. When the
data is prefetched the performance improvement increases as the
number of pages allocated from FAM increases. On an average, the
performance improvement increases from 1.3x to 1.43x with Pre-
FAM when memory allocation is varied from 1:1 to 1:16, as shown
in Figure 13. With distance prefetching the performance improves
further. With distance factor 8 we observe a maximum performance
improvement of 1.8x, when local memory to FAM allocation ratio
is 1:16.
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Figure 13: Impact of memory allocation policy on PreFAM.

5.7.2 Impact of Prefetch Buffer Size. We dedicated 1MB of the lo-
cal memory to store the prefetched data. However, PreFAM can
improve the improve the performance further if the size of the local
memory prefetch buffer is increases. In this section we show the
performance improvement with PreFAM by varying the size of the
prefetch buffer in the local memory. When local memory prefetch
buffer size is 4MB PreFAM improves the performance by 48.95%
and with distance factor 16 the improvement is 75.6%. Also, even
when the prefetch buffer size is 256KB, PreFAM achieves an im-
provement of 24.6% and PreFAM with distance factor 8 achieves an
improvement of 60.89%. Further increasing the distance factor will
decrease the performance. With higher distance factor the number
of prefetch block cancellations are less and the prefetcher tend to
prefetch more blocks, Section 5.5. When prefetch buffer size is less
and when more prefetch blocks are fetched the useful prefetched
blocks are frequently replaced by the upcoming prefetched blocks.
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Figure 14: Impact of local memory prefetch buffer size.

5.7.3 Effect of Prefetching on Number of Node. Apart from fabric
network and NVM, the memory access latency is also dependent
on the number of nodes accessing FAM. By prefetching blocks to
the local memory, latency when multiple nodes sharing a FAM pool
can be reduced. When the number of nodes increase, the number
of shared FAM pools also usually tend to increase, since it is not
practical to just have one pool and assigning all the nodes to access
a single pool. Hence, in our evaluation we maintained equal number
of FAM pools and number of nodes. However, each FAM pool is
shared by all the nodes. Figure 15 shows that as the number of nodes
increase from 1 to 8 the performance improvement also increases
for bt workload. When the number of nodes is 1, on an average, we
observe a performance improvement of 90% with a distance factor
16 and it increases to 94% when the number of nodes in the FAM
systems increases to 8.
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Figure 15: Impact of number of nodes on PreFAM.

6 DISCUSSION
In this paper, we implemented FAM prefetcher within the node.
The advantages of this approach are that the prefetching unit can
also consider local memory accesses by the benchmarks to study
memory access patterns. Also, per node prefetching units can run
in parallel and independent to the other nodes. This is beneficial
for configurations wherein applications are not allowed to run in
multiple nodes. However, when the applications are allowed to run
in multiple nodes this approach is not beneficial, since to learn
application memory access patterns prefetching unit should also
consider memory accesses coming from multiple nodes.

Prefetching unit can also be implemented in the media controller
near the FAM. The advantages of implementing it in the media
controller is that the prefetcher can also consider access pattern of
the other nodes when an application is allowed to run in multiple
nodes. But when an application is allowed to run only in one node,
multiple prefetching units (one per node) has to be maintained
in the media controller, which can operate independently and in
parallel. However, the number of requests sent from the node to
the media controller are more in this approach. For every memory
access, the prefetching unit has to be informed about the current
memory access, even though the memory requests are served by
the local memory prefetch buffer.

In this paper, since we are focused on improving the perfor-
mance of HPC benchmarks which are executed in a single node we
explored and implemented prefetching unit within the node. We
are leaving exploring prefetching unit in the media controller for
future.



PreFAM: Understanding the Impact of Prefetching in Fabric-Attached Memory Architectures MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

7 RELATEDWORK
Fabric attached disaggregated memory systems have been recently
explored to address the challenges of tightly coupled in-node mem-
ory architectures [4, 5, 11, 36, 42–45, 53]. GenZ [15], CCIX [13],
CXL [54] aim at providing standard fabric memory semantic pro-
tocols to access FAM. Birrittella et al, designed Intel Omni-path
to enable scalable computations and resources by packing CPU
or other resources like memory and storage with NIC in a single
chip [9]. Gu et al. [22] and Han et al. [24] discuss and explored
fast fabric network requirements to enable decoupling memory.
Lim et al. [43] discussed fine-grained and page swapped remote
memory access based disaggregated memory system. Shan et al.
[53] proposed complete disaggregation of resources including OS.
Aguilera et al. [4, 5] demonstrated the ease of using remote memory
and discuss various challenges with remote memories. However,
none of the previous works discuss prefetching in FAMs.

A large body of the previous work explored prefetching both at
the cache and memory side to improve the performance of vari-
ous systems. Pugsley et al. [49] proposed sandbox prefetching to
prefetch blocks to the last level cache, after training the prefetcher.
Ebrahimi et al. proposed prefetchers per core to prevent interfer-
ence from other workloads running simultaneously [17]. Rafique et
al. proposed memory side prefetching, conflict aware prefetching,
which closely monitors the states of memory banks and prefetches
data based on utilization of rows opened in the row buffer [50].
Yoon et al. stores PCM row buffers, which are frequently accessed
and which incur row conflicts in the DRAM [61]. Address map
pattern matching prefetcher [29], distance prefetcher [33], stride
prefetcher [19] and stream prefetcher [32] are conventional and
prominent prefetching types. Srinath et al. [57], Hur et al. [28] and
Jiménez et al. [30] proposed adaptive prefetching schemes. The
prefetch parameters are adjusted dynamically adjusted based on
the efficiency.

We adopted address map pattern prefetcher to prefetch blocks
from FAM. To increase the accuracy, we first train the prefetch-
ing algorithm, similar to sandbox prefetcher [49]. Then, we adapt
prefetch parameters; prefetch aggressiveness and frequency of the
training period, based on the accuracy of the prefetcher. Also, local
memory is used to store prefetched blocks.

8 CONCLUSION
Disaggregating resources and accessing the decoupled resources
is seemingly a promising design to address crucial challenges of
tightly coupled in-node memory architectures. Such systems elim-
inate memory under-utilization and manage memory efficiently
with less operational costs. However, these benefits come at the cost
of memory access latency. According to our evaluations, we observe
that when the fabric network latency is around 500ns, the perfor-
mance overhead in FAM systems is 9.77x on an average, compared
to when the entire workload memory is allocated in the dedicated
and fast memory (DRAM). To reduce this latency in this paper we
explore prefetching from FAM.

A prefetching unit is attached to the memory controller of each
node. We adopted address map pattern prefetching as a prefetching
scheme to prefetch FAM blocks. However, we observe that the cost
of false positives is high in FAMs. This is because FAM is shared

by multiple nodes and thus unused prefetched blocks not only can
delay demand requests of the current node but affect all the nodes
sharing the FAM. Hence, to improve the usage of the prefetched
blocks and to predict future accesses accurately, we first train the
prefetching unit and use only most frequently identified prefetch-
able strides to decide and issue prefetch requests in the prefetch
phase. Furthermore, we observe that due to high memory access
latency, the demand requests might be issued to the FAM location
which are ongoing prefetch. This also reduces the usage of the
prefetched blocks. To address such cases, we proposed distance-
factor based prefetching, which prefetches blocks which might be
accessed in near future but not immediately. Also, a part of the
local memory is dedicated to store prefetched blocks. To avoid de-
mand request throttling, separate queues for demand requests and
prefetch requests are maintained in the media controller of the
FAM pool. Priority is given to the demand requests over prefetch
requests. In total, with prefetching in FAMs, the performance can
be improved by 38.84% and the memory access latency per request
can be improved by 39.6%. However, this increases number of ac-
cesses to the FAM by 17.65%. By introducing distance factor the
performance can be further improved to 72.23%, at the cost of more
accesses to FAM.
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